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Abstract

In this article, efficient numerical methods for finding solution of linear and nonlinear
Fredholm integral equations of the second kind based on Bernstein multi scaling functions
are presented. Initially, the properties of these functions, which are a combination of block-
pulse functions on [0,1) , and Bernstein polynomials with the dual operational matrix are
presented. Then these properties are used for the purpose of conversion of the mentioned
integral equation to a matrix equation which is compatible to an algebraic equations system.
The imperative of the Bernstein multi scaling functions for proper quantitative values of
m and k, have a high accuracy and specifically the relative errors of the numerical
solutions will be minimum. The presented methods from the computational viewpoint are
very simple and attractive and the numerical examples at the end show the efficiency and

accuracy of these methods.

Introduction
The computational approach for solution of integral equations is an essential branch
of the scientific inquiry. In recent years many different basic functions such as
orthogonal functions and wavelets for the estimation of the solution to linear and
nonlinear integral equations have been used. The orthogonal functions are categorized

into four groups [1] that are as follow:
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i) The sets of piecewise constant orthogonal functions (e.g., block-pulse, Walsh, Haar,
etc.),

i1) The sets of orthogonal polynomials (e.g., Legendre, Chebyshev, Laguerre, etc.),

iii) The sets of sine-cosine functions in the Fourier series,

iv) The sets of hybrid functions which often are composed of orthogonal polynomials
mentioned in (ii) and (iii) with the block-pulse functions on [0,1) (e.g., hybrid
Legendre, hybrid Chebyshev, hybrid Fourier, etc.).

These hybrid functions have recently been used as a very powerful and useful
mathematical tools for the solutions of integral equations. The primly work in system of
analysis with the hybrid functions [2] refers to [3], [4].

In this article, firstly we introduce the Bernstein multi-scaling functions (BMS

functions) and dual operational matrix of them. Then we used these functions which
make a non orthogonal system, to approximate the solution of linear and nonlinear
Fredholm integral equations of the second kind in the form
y(t)=g(t)+lj§z<(t,s)y(s)ds, o<t <1 (1)
and
y(t)=g(t)mﬂx(t,s)h(s,y(s))ds, o<t <1, @)

where g(t)eL?[0,1) and x(t,s)<eL?([0,1)x[0,1)) are known analytic functions, A is
the suitable constant, y (t) is the unknown function to be determined and h(s,y (s)) is
nonlinear in y (s).

We presume that Egs. (1) and (2) have a unique solution y(t) that will be
determined. The methods consist of expanding the solution by BMS functions with
unknown coefficients. The main characteristic of this technique is that it reduces these
equations to those of an easily solvable system of algebraic equations, thus greatly
simplifying the problem. Various computational techniques for solving the equations (1)
and (2) have been developed in the literature (see for example [5-19] and the references
therein). In this section, some of them will be presented. Authors [5] suggested
rationalized Haar wavelets for solving linear Fredholm integral equations. Babolian et
al. [6] introduced triangular orthogonal functions for solving these equations and the
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same equations have been solved by the Laguerre series method and Legendre series
method in [7] and [8], respectively. The hybrid functions are also used in the literature,
such as [2], [9-12].

In [13] the nonlinear Volterra-Fredholm-Hammerstein integral equations are solved
by using the Legendre wavelets. Ordokhani in [14] applied rationalized Haar functions
for solving these equations. Chebyshev approximation method for solving non linear
integral equations of Hammerstein type was introduced in [15] and Walsh hybrid
function method for solving the Fredholm-Hammerstein integral equations was
presented in [16]. Haar wavelets and periodic harmonic wavelets are also applied for
solving these problems in [17-19].

From the imperative advantages of BMS functions one can refer to high accuracy of
approximate solutions with less computational costs for the quantitative values of m and
k compare to other hybrid functions [2], [9], [10].

Also in this article we compare the results of presented method with the result of [2],
[9], [10] which shows superior method with respect to these methods in tables (1-4) .

The organization of this article is as follows: in Section 2 we give some basic
definitions and in Section 3, we introduce the BMS functions and dual operational
matrix of them. Section 4 is devoted to the function approximation by using Bernstein
multi-scaling functions. Section 5 is devoted to the solution of linear Fredholm integral
equations of the second kind. Solution of nonlinear Fredholm integral equations of the
second kind will be derived in Section 6. In section 7, we provide some numerical

examples. The final Section offers our conclusion.

Basic definitions
Definition : For m >0, the Bernstein polynomials (B-polynomials) of m -th degree are

defined on the interval [0,1] as [20]

B (1) :[imJti @-H)" ., i=01..m,

where
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There are m+1, m -th degree B-polynomials. For mathematical convenience, we

usually set, B; ,,(t)=0,if i <Oor i >m.

{Bi m)i= O,L...,m} in Hilbert space L?[0,1], is a complete non orthogonal set [21].

Definition : For any positive integer m, a set of block-pulse functions is defined on the

interval [0,1) as [22]
i i+1
1, —<t<—o1,
b (t) = m m

0, otherewise,
where i =0,1,...,m -1,
There are some properties for these functions. The most important properties are
disjointness, orthogonality and completeness. The disjointness property can be clearly

obtained from the definition of these functions as
bi (t)’ i = j1
b; t)b; (t) = i,j=01...,m-1.
0, i =],
The orthogonality of these functions is expressed by the relation
1 1
[ b O ©dt ==,
0 m

where J; is the Kroneker delta.

Some properties of BMS functions
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Figure 1: Graph of BMS functions for (m=3; k=4)

1. Definition of BMS functions
For  m2>land any positive integer k >1, the BMS functions

v n),i =0,1....,mand n=0,1,...,k —1are defined on the interval [0,1) as

n n+1
B (kt—n), —<t<——,
win(t)= m (k=) k < K

0, otherewise,

where mis the degree of B-polynomials on the interval [0,1], n is the translation
argument and tis the normalized time. The graph of BMS functions for

(m =3,k =4)is plotted in Figure 1.

2. Dual operational matrix

If
.
¢(t)=[‘//0,01 V3o VYm0 Wmor-- Yok Wik Vmak-1 l//m,kfl} (t),
be a vector function of BMS functions on the interval [0,1), then with taking integration
of the cross product of two of these vector functions, a matrix of k (m+1)xk(m +1)

dimensional will be resulted which will be indicated as:
1
D =<¢.¢>= | #)¢" O)ct. ©

This matrix is known by dual operational matrix of ¢(t) and will be calculated as
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Q 0 0
p=2% Q@ %
k|: .

0 0 - Q

where 0 is the zero matrix (m+1)x(m+1)and Q is the dual operational matrix of B-

)
=
)

HB[36
G
(L) G
vwa ) F
) G
B

As you observe, Q is an invertible matrix.

Function approximation

A function f (t) defined over [0,1] may be expanded in terms of BMS functions as
k-1 m

YO~ D cinwin)=CT4(t),

n=0i=0

where ¢(t) is the vector function defined before and C is a k (m +1) x1 vector given by
T
C :[CO,O’Cl,O""’Cm—l,O’Cm,O""’CO,k—l’Cl,k—l""'Cm—l,k—licm,k—l:"
and can be obtained

cT :Uolf t)g' (t)dtjD‘l. 4)

We can also approximate the function x(t,s) L%([0,2) x[0,1)) as follows:
xt.s) =g OK (),

where K isa k(m+2)xk (m +1) matrix and can be calculated as
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K =[KO,O’K1,01~--’Km,O!""KO,kfl’Kl,kfl""’Km,kfliI’ )
m, k-1
and {K"”(t)}i:o _, are k(m+2)xIcolumn vectors and to calculate them firstly, we
. ] m, k-1
approximate «(t,s) in terms of {Wi,n(s)}i:0 o a8

K(t,s) = & (t)4(s),
where
f(t):[fo,w 81,001 Sm-1,0 Sm0r-+ S0k 11 S1k—1r+r Sm-1k-1» Sm k1 JT (t),

and wusing Eq. (4) we can obtain the elements of vector &(t)for

m, k-1

i=021...mn=01...,k -1. Now, we approximate all functions {fi,n(t)}izo Lo N
terms of y; ,(t) for i =0,1...,m,n=0,1...,k -1 as

k-1 m

Ea® =D D Kinwin)=KI 40t), 6)
n=0i=0
. m, k-1 .

where using Eq. (4), {K in (t)}i=0 __, can be obtained from Eq. (6).

Solution of linear Fredholm integral equations of the second kind
Consider the linear Fredholm integral equation of the second kind given in Eq. (1).

Firstly, we approximate y (t) with BMS functions as

y®)=~CT4(t). )
Likewise, g(t) and x(t,s) are also approximated with BMS functions as follows:
gt)~G' 4(t), k(t.s)~4 )K ¢(s), 8)

where G and K are defined similarly to Egs. (4) and (5), respectively. Replacing Egs.
(7) and (8) into Eqg. (1) we obtain
T T L T T
#OC=¢" OG+[ ¢ OKP(E)¢" (5)Cs. ©

Using Eq. (3) we have
# t)C =4 ()G +4d (t)KDC. (10)

Therefore we get
C=G+1KDC, (11)

and so by rewriting Eq. (11) we will have
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(1-AK D)C =G, (12)
where | is the k(m+1)xk(m+1) identity matrix and Eqg. (12) is a system of linear
algebraic equations which can be solved for C . Once C is known, y(t) can be

calculated from Eq. (7).

Solution of nonlinear Fredholm integral equations of the second kind

Consider the non-linear Fredholm integral equation of the second kind given in Eq.

).
Let

@) =ht,ye),  0<t<L (13)
Using Eq. (2) we have

z(t)=h(t,g(t)+iI:K(t,s)z(s)ds). (14)

Now, we approximate z (t) and «(t,s) with BMS functions as
zt)~CTgt),  xt.s)~g O)K$E), (15)

where C and K are defined same as Egs. (4) and (5), respectively. By applying Egs.
(15) and (3) we can write the integral part of Eq. (14) as

1 1
| k)21 = ¢ OK g4 ()Cds =4 K DC. (16)
Replacing Eqg. (16) into Eq. (14) we obtain
z(t)=h(t.g)+1 ¢ ()KDC). (17)
In order to construct the approximation for z(t) we collocate Eq. (17) in

k (m +1) points. Suitable collocation points are Newton-Cotes nodes as [24]

__2p-1 _
p_2k(m+l)' p=L12, ..., k(m+1). (18)
So, we have Eq. (17) as
z(t,)=htt,.9(,)+4 4 (t,)KDC), p=12 ....k(m+2). (19)

Eqg. (19) is a system of nonlinear algebraic equations which can be solved for the

elements of C using Newton's iterative method.
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Now, with substituting Eq. (13) into Eq. (2) we have
1
y(t):g(t)+/1J'OK(t,s)z(s)ds, o<t <1, (20)
And therefore by replacing Eq. (16) into Eq. (20) we obtain the approximation solution
of Eq. (2) as
yt)=gt)+1 ¢ (t)KDC. (21)

IHlustrative Examples
In this section, we apply the method presented in this article and solve six examples.

The computations associated with the examples were performed using Matlab 7.1.

Tablel: Numerical results for Example 1.

K | m HYexact _yappI’OX 2 cond (I -1K D)
Presented method | Method of [9] | Presented method | Method of [9]
2 | 2 6.9204E-004 1.253E-001 1.6794 2
4 |2 8.7592E-005 1.586E-002 1.6262 2
8 |2 1.0984E-005 1.989E-003 1.6135 2
16 | 2 1.3740E-006 2.488E-004 1.6103 2
2 |3 2.1780E-005 3.845E-003 1.6540 2
4 |3 1.3792E-006 4.333E-004 1.6204 2
8 |3 8.6484E-008 9.909E-005 1.6121 2

Example 1: Consider the linear Fredholm integral equation given in [9] by
1
y () =(@1-t)e +t +J'0t2es(‘-1>y(s)ds. 22)

The exact solution is Y (t) =€ . For this example we consider the L?-norm of errors and

condition numbers of systems in norm 2 which can be shown by

HYexact ~ Y approx Hz = (Jj(yexact ~ Y approx )2 dt jz )

and

Cond (M) =Cond (M ,2) =M |, [m | .

These values for equal basis functions for the BMS functions and hybrid Legendre
functions [9] in Table 1 are compared. As you observe in this table, the BMS functions

have more accuracy compared with the hybrid Legendre functions. In addition,
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condition numbers of system for two of these functions are approximately equal to each

others.

Table 2: Numerical results for Example 2.

K | 'm Hyexact _yapprox 2 cond (I -1K D)
Presented method | Method of [9] | Presented method | Method of [9]
2 | 2 8.5140E-002 1.541E+001 3.6413 3
4 | 2 8.3820E-003 1.517E+000 2.1418 3
8 |2 1.0711E-003 1.939E-001 1.7252 2
16 | 2 1.3463E-004 2.437E-002 1.6593 2
2 |3 2.7736E-003 5.021E-001 3.8765 3
4 |3 8.3310E-004 1.508E-001 1.9929 2
8 |3 5.3053E-005 9.633E-003 1.6924 2

Example 2: Consider the linear Fredholm integral equation given in [9] by
1
y(t) :cos(27rt)+%sin(47rt)—'[osin(47rt +27s)y(s)ds. (23)

The exact solution is y (t) =cos(2zt) . For this example we also consider the L?-
norm of errors beside condition numbers of system in norm 2. In Table 2, the results
obtained by the BMS functions are compared with the results of the hybrid Legendre
functions [9]. As we see from this table, it is clear that the result obtained by the present
method is superior to that by [9]. In addition, condition numbers of system for two of

these functions are approximately equal to each others.
Example 3: Consider the linear Fredholm integral equation given in [10] by
¢ 2t+% 1l 2t—%s d
yO=e *-Zfe" y@)s. (24)

The exact solution is Y (t) =e® . For this example we consider the norm infinity of

errors and condition numbers of system in norm infinity which can be shown by

max ‘yexact (t) - yapprox (t)‘,

y -y =
H exact approx | - te[0.1]

and

Cond (M ) =Cond (M ,0) =M | HM —1H ,
and are tabulated these values for equal basis functions for the BMS functions and
hybrid Taylor functions [10] in Table 3. The advantage of presented method compared
with the method of [10] is obvious, because by the same number of basis functions,
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norm infinity of errors and condition numbers of systems in present method are lower.
Also we solved this example by using the presented method with (m =10,k =2) and

the approximate solutions are compared with the results of hybrid Legendre functions

[2] in Table 4.
Table3: Numerical results for Example 3.
Kl m Hyexaﬁt — ¥ spprox i cond (I —AK D)
Presented method | Method of [10] | Presented method | Method of [10]

10| 2 4.3967E-004 3.0057E-002 4.0359 6.0920
20| 2 5.8164E-005 8.6689E-003 4.0622 7.0734
40 | 2 7.1156E-006 2.3166E-003 4.0748 7.6292
80 | 2 8.7995E-007 5.9816E-004 4.0810 7.9248
10| 3 6.3003E-006 2.8930E-002 4.0492 7.1086
20| 3 4.1611E-007 7.3513E-003 4.0685 8.3168
40 | 3 2.5433E-008 1.8471E-003 4.0779 9.0048
80 | 3 1.5718E-009 4.6254E-004 4.0825 9.3718

Example 4: Consider the nonlinear Fredholm integral equation given in [25]

NG

y(t) =1+t+ (1—§In(3) +?37r)t2 + JJthsln(y(s))ds, 0<t<1 (25)

with the exact solution y (t) =1+t +t%. This example is solved by using the method
described in section 6 with (m =6,k =2,4). The comparison among approximate
solutions of the present method and the methods in [25] and [26] with the exact
solution is shown in Table 5. As we see from this table, it is clear that the result

obtained by the present method is superior to that by B-polynomials and the method in

[26].
Tabled: Approximate and exact solution for Example 3.
¢ BMS functions Method of [2] Exact solution
For m=10, k=2 For m=11, n=2
0.0000 | 1.00000000000 | 1.00000000000 | 1.00000000000
0.0625 | 1.13314845307$ | 1.13314845282 | 1.13314845307
0.1250 | 1.28402541669 | 1.28402541666 | 1.28402541669
0.1875 | 1.45499141462 | 1.45499141434 | 1.45499141462
0.2500 | 1.64872127069 | 1.64872127063 | 1.64872127070
0.3125 | 1.86824595743 | 1.86824595710 | 1.86824595743
0.3750 | 2.11700001662 | 2.11700001648 | 2.11700001661
0.4375 | 2.39887529397 | 2.39887529358 | 2.39887529397
0.5000 | 2.71828182847 | 2.71828182826 | 2.71828182846
0.5625 | 3.08021684892 | 3.08021684845 | 3.08021684892
0.6250 | 3.49034295747 | 3.49034295718 | 3.49034295746
0.6875 | 3.95507672292 | 3.95507672235 | 3.95507672292
0.7500 | 4.48168907032 | 4.48168906994 | 4.48168907034
0.8125 | 5.07841903717 | 5.07841903648 | 5.07841903718
0.8750 | 5.75460267601 | 575460267546 | 5.75460267601
0.9375 | 6.52081912034 | 6.52081911947 | 6.52081912033
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Table5: Numerical results for Example 4.

Presented method Method of [25 Exact
t m=6, k=2 m=6, k=4 for m:6[ ] Method of [26] for N=6 solution
0.0 | 1.0000000000000 | 1.0000000000000 | 1.0000000000000 1.000000 1
0.1 | 1.1099999998945 | 1.1099999999996 | 1.1099999949939 - 111
0.2 | 1.2399999995780 | 1.2399999999982 | 1.2399999799756 1.238432 124
0.3 | 1.3899999990506 | 1.3899999999961 | 1.3899999549451 - 139
0.4 | 1.5599999983122 | 1.5599999999930 | 1.5599999199024 1553726 156
0.5 | 1.7499999973628 | 1.7499999999891 | 1.7499998748475 - 175
0.6 | 1.9599999962024 | 1.9599999999842 | 1.9599998197805 1.945884 1.96
0.7 | 2.1899999948310 | 2.1899999999786 | 1.1899997547012 - 2.19
0.8 | 2.4399999932487 | 2.4399999999720 | 2.4399996796097 2.414905 2.44
0.9 | 2.7099999914554 | 2.7099999999646 | 2.7099995945060 - 271
Example 5: Consider the nonlinear Fredholm integral equation [18]
1
y(t)=e""t - IO el=2s (y(s))3 ds, 0<t<1, (26)

where the exact solution is Yy (t)=e". This example is solved by using the method
described in section 6 with (m =3,k =2,4). The comparison among approximate
solutions of the present method and the method in [18] with the exact solution is shown
in Table 6. As it is shown in this table, with increasing the values of m and k
(specially m), the accuracy of results increased as well and also BMS functions for the

less basis function have high accuracy compared with the Haar wavelets [18].
Table6: Numerical results for Example 5.

BMS functions
t m=3 Me]tcho?(f);z[m] Exact solution
k=2 k=4 ork=

0.1 | 1.105261984 | 1.105179330 1.107217811 1.105170918
0.2 | 1.221558509 | 1.221409056 1.218102916 1.221402757
0.3 | 1.350030409 | 1.349865461 | 1.341165462 1.349858806
0.4 | 1.491958550 | 1.491836034 | 1.474918603 1.491824696
0.5 | 1.649038709 | 1.648739647 1.667402633 1.648721268
0.6 | 1.822268942 | 1.822132669 1.833861053 1.822118797
0.7 | 2.014009496 | 2.013763091 | 2.016679830 2.013752703
0.8 | 2.225823852 | 2.225551897 2.217456630 2.225540923
0.9 | 2.459823796 | 2.459621801 2.437978177 2.459603104

Example 6: Consider the nonlinear Fredholm integral equation [15]

1
y(t) = exp()t +1— jo (t+s)e¥¥ds, 0<t<l, 27)

where the exact solution is y (t)=t. We solve this example by using the method
described in section 6 with (m=2k =510) and (m =4,k =5). The comparison
among absolute errors of the present method and method in [15] is shown in Table 7. As

this table depicts, with increasing the values of mand k (specially m), the accuracy of
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results increased as well and also BMS functions have high accuracy compared with the

Chebyshev polynomials [15] (with the same degree).

Table7: Numerical results for Example 6.

BMS functions Method of [15]
t m=2 m=4

k=5 k=10 k=5 N=3 N=5
0.0 | 1.1 E-006 | 8.3 E-008 | 2.8 E-009 | 1.0 E-006 | 2.3 E-005
0.2 | 9.7E-007 | 7.7 E-008 | 3.4 E-009 | 3.2 E-004 | 3.1 E-005
0.4 | 8.2E-007 | 7.0 E-008 | 4.0 E-009 | 2.6 E-004 | 1.7 E-005
0.6 | 6.6 E-007 | 6.3 E-008 | 4.6 E-009 | 2.1 E-004 | 7.5 E-006
0.8 | 5.0 E-007 | 5.6 E-008 | 5.2 E-009 | 1.8 E-004 | 2.1 E-005

Conclusions

In this article, the methods of approximate solution of linear and nonlinear Fredholm
integral equations by utilizing BMS functions were presented. In the presented methods,
dual operational matrix of these functions were used for resolving the equations. Since
this matrix comprises, many zeros elements, it can bring about a numerical accurate
result with high reliability of achieving the desired results and these methods are very
attractive. With solving six examples, the methods were evaluated and as tables 1 to 7
show, with increasing the quantities of mand k (particularly m) the error drops to

zero rapidly.
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