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On Weak McCoy Rings 

 
E. Hashemi : Shahrood University of Technology   

 

Abstract 

In this note we introduce the notion of weak McCoy rings as a generalization of McCoy 

rings, and investigate their properties. Also we show that, if R  is a semi-commutative ring, 

then R  is weak McCoy if and only if ][xR  is weak McCoy. 

 

1. Introduction 

Throughout this paper, all rings are associative with identity. For a commutative ring 

R , McCoy [10] obtained the following result: If 0)()( =xgxf for some non-zero poly-

nomials ][)(),( xRxgxf ∈ , then 0)( =cxf for some non-zero Rc ∈ . According to Nielsen 

[12], a ring R  is called right McCoy whenever polynomials )(xf , }0{][)( −∈ xRxg  

satisfy 0)()( =xgxf , there exists a non-zero Rr ∈  such that 0)( =rxf . Left McCoy 

rings are defined similarly. If a ring is both left and right McCoy, we say that the ring is 

a McCoy ring. It is well known that commutative rings are always McCoy rings [10], 

but it is not true for non-commutative rings (see [12]).  

Recall that a ring R  is called: 

reduced if  002 =�= aa , for all Ra ∈ , 

reversible if 00 =�= baab , for all Rba ∈, , 

symmetric if 00 =�= acbabc , for all  Rcba ∈,, , 

semi-commutative if 00 =�= aRbab , for all Rba ∈, . 

The following implications hold: 
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reduced � symmetric �  reversible �  semi-commutative. 

Reversible rings are McCoy rings by [12]. But the converse is not true; there exists a 

non-reversible McCoy ring (see [12]). 

Motivated by the above, as a generalization of McCoy rings, in this paper we 

introduce the notion of weak McCoy rings and investigate their properties and extend 

several known results relating to McCoy rings to a general setting. 

For a ring  R , we denote by )(Rnil  the set of all nilpotent elements of R , by )(* RN  

the prime radical of R  and by )(RM n , )(RU n  and )(RLn  the nn ×  matrix ring over 

R , the nn ×  upper and lower triangular matrix rings over R  respectively.  

 

2. On Weak McCoy rings 

Definition2.1. We say R  is a weak McCoy ring if ])[()()( xRnilxgxf ∈  implies 

])[()( xRnilcxf ∈ , for some non-zero Rc ∈ , where )(xf  and )(xg  are non-zero 

polynomials in ][xR .  

Remark  2.2. Since ab  is nilpotent if and only if ba  is nilpotent in a ring, hence the 

definition of weak McCoy rings is left-right symmetric.  

Proposition 2.3.  McCoy rings are weak McCoy.  

Proof. Let R  be a McCoy ring and ])[()()( xRnilxgxf ∈  for  non-zero  polynomials 

)(xf , )(xg ∈ ][xR . Then there exists 1, ≥nm , such that 0))()(())()(( == mn
xfxgxgxf , 

and 0))()((,))()(( 11 ≠−− mn xfxgxgxf . If 0)()( =xgxf  or 0)()( =xfxg , then the result 

follows from the definition of McCoy rings. Assume )()(0)()( xfxgxgxf ≠≠  and 

)()())()()()()(())()((0 xhxfxgxfxfxgxfxgxf n === � .  

If 0)()()()()( ≠= xgxfxfxgxh � , then 0)( =cxf  for some non-zero Rc ∈ , since 

R  is McCoy.  

Let .0))()()(())()()()()(()( 1 === −n
xgxfxgxgxfxgxfxgxh � Since 0))()(( 1 ≠−n

xgxf  

and R is McCoy, there exists Rd ∈≠0  such that 0)( =dxg . Therefore 0)( =cxf  or 
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0)( =dxg  for some non-zero Rdc ∈, . Hence ])[()( xRnilcxf ∈  or ])[()( xRnilxdg ∈  

for some non-zero Rdc ∈, . Therefore R  is weak McCoy.  

Proposition 2.4. Let R  be a ring. Then )(RU n and )(RLn  are weak McCoy for each 

2≥n . 

Proof. Clearly ])[(])[( xRUxRU nn ≅  and for each ]),[(
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  Hence 

)(RUn  is weak McCoy. By a similar argument one can show that )(RLn  is weak 

McCoy.  

Proposition 2.5. Let R and S  be rings and SR M  a bimodule.  Then �
�

�
�
�

�

S

MR

0
 is a weak 

McCoy ring. 

Proof. Similarly, as used in Proposition 2.4 one can prove it.  

     The following example shows that )(RUn  and )(RM n  are neither left nor right 

McCoy for some 2≥n .  

Example 2.6. Let R  be a ring. We show that )(4 RU  and )(4 RM  are neither right nor 

left McCoy. Let            xxf
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A . Hence 0=A  and  )(4 RU  

and )(4 RM  are not right McCoy. If 0)( =xBg  for some )(4 RMB ∈ , then by a similar 

way as above, we can show 0=B . Therefore )(4 RU  and )(4 RM  are not left McCoy. 

Definition 2.7.  A ring R  is called right Ore if given Rba ∈,  with b  regular there exist 

Rba ∈11,  with 1b  regular such that 11 baab = . It is well-known that R  is a right Ore ring 

if and only if the classical right quotient ring of R  exists. We use )(RC  to denote the 

set of all regular elements in R .   

Theorem 2.8.  Let R  be a right Ore ring with its classical right quotient ring Q .  If R  

is weak McCoy then Q  is weak McCoy.  

Proof. Let �
=

−=≠
m

i

i

i xuaxF
0

1)(0  and �
=

−=≠
n

j

j

j xvbxG
0

1)(0  with )(,,, RCvuRba ji ∈∈  

such that ]).[()()( xQnilxGxF ∈  

Case1. 0)()( =xGxF  or  0)()( =xFxG . Assume  that  0)()( =xGxF . Since R  is right 

Ore, there exists Rb j ∈
'

 and )(1 RCu ∈  such that 
1

1

'1 −− = ubbu jj  for nj ,,1�= . Let 

�
=

=
m

i

i

i xaxf
0

)( and �
=

=
n

j

j

j xbxg
0

'
)( .Then .0)()( =xgxf Since R is weak McCoy, there exists 

Rc∈≠0  with ])[(])[()( xQnilxRnilcxf ⊆∈ . Hence ])[()()()( 1 xQnilcxfucuxfucxF ∈== −
. 

If ,0)()( =xFxG then by a similar argument we can show that ])[()( xQnilvdxG ∈ for 

some non-zero Rd ∈ .  
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Case2. 0)()( ≠xGxF and 0)()( ≠xFxG . Since ])[()()( xQnilxGxF ∈ , there exists 2≥n  

such that 0))()(( =nxGxF  and 0))()(( 1 ≠−nxGxF . Let )()())()(( xHxFxGxF n = . If 

0)( ≠xH , then by a similar argument as above there exists  )(RC∈α , Rr ∈  such that 

])[()( xQnilrxF ∈α . Now assume 0)()()()()()(

1

==

−

���� ����� ��
�

n

xGxFxGxFxGxH . Since 

0))()(( 1 ≠−nxGxF  and  R  is weak McCoy, then by Case 1, there exists  )(RC∈β  , 

Rs ∈  such that .0)( =sxG β  Therefore Q  is  weak McCoy. 

According to Bell [2], a ring R  is called semi-commutative if 0=ab  implies 

0=aRb . We say an ideal I is a semi-commutative ideal, if IR /  is a semi-commutative 

ring.  

Lemma 2.9. Let R  be a semi-commutative ring. If 0
21

=kccc �  for some Rci ∈ , then  

0
321

=kRcRcRcc � .   

Proof. By induction, let kkk ccc
11 −− =' . Then 0121

=−kccc '�  and by induction assumption, 

we have 
kkk cRcRcRccRcRcRcc

13211321
0 −− == �� ' . Hence, for all ∈x

1321 −kRcRcRcc � , 

we have 0=kxc . It follows by hypothesis that 0=kxRc . Thus 0
321

=kRcRcRcc � , as 

desired. 

Lemma 2.10 (4, Lemma 2.5). Let R  be a semi-commutative ring. Then )(Rnil  is a 

semi-commutative  ideal of  R . 

Proof. Let )(, Rnilba ∈ . Then mn
ba ==0  for some 0≥nm, . Each term of the expansion 

of 
1+++ nm

ba )(  has the form =:x )()( 1111 ++++ nmnm jiji
baba � where }{, 0�Nji sr ∈ .   Since 

1

11

112211
++=+=++++++ ��

==

++++ nmjijijiji
m

s

s

n

r

rnmnm )()()( � , either ni
n

r

r ≥�
=1

 or  

mj
m

s

s ≥�
=1

. If ni
n

r

r ≥�
=1

, then 0121 =++nmiii
aaa � .Thus 01111 =++++ )()( nmnm jiji

baba � , by Lemma 

2.9.  If ni
n

r

r <�
=1

, then mj
m

s

s ≥�
=1

. Thus 0121 =++ nmjjj
bbb � and so 0)()( 1111 =++++ nmnm jiji

baba � ,  

by Lemma 2.9.  Hence 0
1 =+ ++nmba )( .  

Now suppose that 0=n
a  and Rr ∈ . Then nn raar )()( ==0 , by Lemma 2.9. Thus 

)(Rnil  is an ideal of R .  
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Since )(/ RnilR  is a reduced ring, hence it is a semi-commutative ring. Therefore  

)(Rnil  is a semi-commutative  ideal of  R . 

Lemma 2.11. Let R  be a semi-commutative ring. Then ])[(])[( xRnilxRnil = .  

Proof.  Let ]).[(....)( 0 xRnilxaaxf
n

n ∈++=  Then 0)( =kxf , for some integer  

0≥k . Hence 0=
k

na , and that )(Rnilan ∈ . There exists ][)(),( xRxhxg ∈  such that 

nn

kn

n

k
axhxgaxaaxf )()()...()( 1

10 ++++= −

− . Since ])[( xRnil  is an ideal of ][xR  and 

],)[()(,)(),( xRnilxfaxhxga
k

nn ∈  we have  ])[()...( 1

10 xRnilxaa
kn

n ∈++ −

− . Hence 

)(1 Rnila
k

n ∈−  and that  )(1 Rnilan ∈− . Continuing this process yields ).(,...,0 Rnilaa n ∈  

Therefore ])[(])[( xRnilxRnil ⊆ .  

Now, let ])[(....)( 0 xRnilxaaxf
n

n ∈++= . Then 0=im

ia , for some positive integer 

im . Let 10 +++= nmmk � . Then ))()(())()(())(( 1011101

1010
nkkkn in

n

iiin

n

iik
xaxaaxaxaaxf ����= , 

where ,10 =++ nrr ii �  for kr �,1=  and 10 ≤≤ rsi . Each coefficient of kxf )(  is a sum 

of such elements ))()(( 101

0
ni

n

i
aa �=γ ))()(( 0

0
nkk i

n

i
aa �� , where 10 =++ nrr ii � .  

It can be easily checked that there exists  },,{ 0 nk aaa �∈  such that ttkt mii ≥++�1 . 

Since 0=tm

ta  and R  is semi-commutative, 0=γ . Thus 0))(( =kxf  and  

])[(])[( xRnilxRnil ⊆ . Therefore  ])[(])[( xRnilxRnil = .  

Lemma  2.12 . Let R  be a semi-commutative ring. Then ]])[[(])][[( yxRnilyxRnil = .  

Proof.  By Lemma 2.11, ])[( xRnil  is an ideal of ][xR . Since ])[(/][ xRnilxR  is a 

reduced ring, hence ])[( xRnil  is a semi-commutative ideal of ][xR ,  and  that 

])][[(]])[[( yxRnilyxRnil ⊆ .  

Now, let �
=

=
m

i

i

i yfyF
0

)( ])][[( yxRnil∈ , where �
=

=
ip

s

s

isi xaf
0

][xR∈ . Then 0)( =nyF , 

for some positive integers n . As in the proof of [1], let �= ifnk deg ,  where the 

degree is as polynomial in x  and the degree of zero polynomial is taken to be 0 .  Then 

0))(( =nkxF  and the set of coefficients of )( kxF  is equal to the set of all coefficients 

of if , mi ≤≤0 . Hence by Lemma 2.11, )(Rnila ij ∈  for all ji,  and that ])[( xRnilf i ∈ , 

for each i . Thus ]])[[()( yxRnilyF ∈ . Therefore  ]])[[(])][[( yxRnilyxRnil = .  
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If R  is semi-commutative, then ][xR  may not be semi-commutative,  by  [5, 

Example 2]). Here we will show that if R  is semi-commutative, then R  is weak 

McCoy if and only if ][xR  is weak McCoy. 

Theorem 2.13.  If R  is a semi-commutative ring, then ][xR  is a weak McCoy ring if 

and only if R  is weak McCoy.  

Proof. Suppose that R  is a weak McCoy ring. Let �
=

=
m

i

i

itftF
0

)( , �
=

=
n

j

j

jtgtG
0

)( be 

non-zero polynomials in ]][[ txR  such that ])][[()()( txRniltGtF ∈ , where �
=

=
ip

s

s

isi xaf
0

, 

�
=

=
jq

t

t

jtj xbg
0

][xR∈ . As in the proof of [1], let � �+= ji gfk degdeg , where the 

degree is as polynomial in x  and the degree of zero polynomial is taken to be 0 . Then 

�
=

=
m

i

ik

i

k
xfxF

0

)( , �
=

=
n

j

jk

j

k
xgxG

0

)( ][xR∈ , and the set of coefficients of the )( kxF  is 

(respectively )( kxG ) equal to the set of all coefficients of if , mi ≤≤0  (respectively 

jg , nj ≤≤0 ). Since 0))()(( =ptGtF , for some 1≥p , and x  commutes with 

elements of R , 0))()(( =pkk xGxF . Since R  is weak McCoy, there is Rr ∈≠0  such 

that ])[()( xRnilrxF k ∈  and )(Rnilrais ∈ , ])[( xRnilrf i ∈ for mi ≤≤0 , ips ≤≤0  by 

Lemma 2.11. Hence ])][[()( txRnilrtF ∈ , by Lemma 2.12. Therefore R[x] is weak 

McCoy. 

Now suppose ][xR  is a weak McCoy ring and ]).][[(])[()()( txRniltRniltgtf ⊆∈  Since 

][xR  is weak McCoy, there exists ][)(0 xRxh ∈≠  such that ]).][[()()( txRnilxhtf ∈  

Let ][)( 0 xRxaaxh
n

n ∈++= �  ( 00 ≠a ). Then ])[()( 0 tRnilatf ∈ , since 

nk

nk

kk
xkxkatfxhtf +++= �10))(())()((  with ][,,1 tRkk nk ∈� . Therefore  R  is weak 

McCoy. 

Theorem 2.14. Let R  be a ring and ∆  a multiplicatively closed subset of R  consisting 

of central regular elements. Then R  is weak McCoy if and only if R1−∆  is weak 

McCoy.  

 [
 D

ow
nl

oa
de

d 
fr

om
 js

ci
.k

hu
.a

c.
ir

 o
n 

20
24

-0
5-

09
 ]

 

                             7 / 10

https://jsci.khu.ac.ir/article-1-1334-en.html


On Weak McCoy Rings                                                                                                               E. Hashemi 

 

 56

Proof. If R  is is a weak McCoy ring, then by a similar way as used in Theorem 2.8, one 

can show that R1−∆  is weak McCoy.  

Conversely, let R1−∆  be a weak McCoy ring.  Let  �
=

=
m

i

i

ixaxf
0

)(  and �
=

=
n

j

j

j xbxg
0

)(  

be non-zero polynomials of ][xR  such that ])[()()( xRnilxgxf ∈ . Since  R1−∆  is weak 

McCoy, ]))[(())(( 11
xRnilcxf

−− ∆∈α for some non-zero Rc 11 −− ∆∈α . Thus 

])[()( xRnilcxf ∈  and R  is weak McCoy.  

Corollary 2.15. Let R  be a ring. Then ][xR  is weak McCoy if and only if ],[ 1−xxR  is 

weak McCoy.  

Proof. Clearly ,....},,1{ 2xx=∆  is a multiplicatively closed subset of ][xR  consisting of 

central regular elements and ],[][ 11 −− =∆ xxRxR . Hence the proof follows from 

Theorem 2.14.  

Theorem 2.16. The classes of weak McCoy rings are closed under direct limits.  

Proof. Let },{ ijiR α=Α  be a direct system of weak McCoy rings iR  for Ii ∈  and ring 

homomorphisms jiij RR →:α  for each ji ≤  with 1)1( =ijα , where I  is a directed 

partially ordered set. Let iRR lim=  be the direct limit of A  with  RRii →:	  and 

iijj 		 =α . We show that R  is weak McCoy ring. Let Rba ∈, . Then 

)(),( jjii bbaa 		 ==  for some Iji ∈,  and there is Ik ∈  such that kjki ≤≤ , . 

Define ))()(( jjkiikk baba αα +=+ 	  and )),()(( jjkiikk baab αα	=  where )( iik aα , 

)( jjk bα ∈ kR . Then R  forms a ring with )(0 oi	=  and )1(1 i	= . Let ][, xRgf ∈  be 

non-zero polynomials such that ])[( xRnilfg ∈ . There is Ik ∈  such that ][, xRgf k∈ . 

Hence ])[( xRnilfg k∈ . Since kR  is weak McCoy, there exists kk Rc ∈≠0  such 

that ])[( xRnilfc kk ∈ . If )( kk cc 	= , then ])[( xRnilfc ∈ with non-zero c . Therefore  R  

is weak McCoy.  

Proposition 2.17. (1) Let R  be a ring. If there exists a non-zero ideal I  of R  such that 

])[(][ xRnilxI ⊆ , then  R  is weak McCoy. 
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(2) Every non-semiprime ring is weak McCoy. 

(3) Let R  be a ring with a non-zero nilpotent ideal. Then )(RMatn  ( 2≥n ) is weak 

McCoy.  

Proof. (1) Let ][0 xRf ∈≠ . If ][xIf ∈ , then ])[( xRnilfr ∈  for all Rr ∈ . If ][xIf ∉  

then ])[(][ xRnilxIfs ⊆∈ for all non-zero Is ∈ . Thus R  is weak McCoy. 

(2) Let R  be a ring with 0≠)(* RN . Since ])[(])[(])[( ** xRnilxRNxRN ⊆=≠0 ,  R  is 

weak McCoy by (1). 

     (3) Since )(RMatn  is non-semiprime, hence by (1) )(RMatn  is weak McCoy. 
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