Abstract

Let \((R, \mathfrak{m})\) be a Noetherian local ring, \(\mathfrak{a}\) an ideal of \(R\) and \(M\) a finitely generated \(R\)-module. We investigate some properties of formal local cohomology modules with respect to a Serre subcategory. We provide a common language to indicate some properties of formal local cohomology modules.

1. Introduction

Throughout this paper \((R, \mathfrak{m})\) is a commutative Noetherian local ring, \(\mathfrak{a}\) an ideal of \(R\) and \(M\) is a finitely generated \(R\)-module. For an integer \(i \in \mathbb{N}_0\), \(H^i_\mathfrak{a}(N)\) denotes the \(i\)-th local cohomology module of \(M\) with respect to \(\mathfrak{a}\) as introduced by Grothendieck (cf. [1], [2]).

We shall consider the family of local cohomology modules \(\{H^i_\mathfrak{m}\left(\frac{M}{\mathfrak{a}^nM}\right)\}_{n \in \mathbb{N}}\) for a non-negative integer \(i \in \mathbb{N}_0\). With natural homomorphisms, this family forms an inverse system. Schenzel introduced the \(i\)-th formal local cohomology of \(M\) with respect to \(\mathfrak{a}\) in the form of \(f^i_\mathfrak{a}(M) := \varprojlim_{n \in \mathbb{N}} H^i_\mathfrak{m}\left(\frac{M}{\mathfrak{a}^nM}\right)\), which is the \(i\)-th cohomology module of the \(\mathfrak{a}\)-adic completion of the Čech complex \(\check{\mathcal{C}}(\mathfrak{x}) \otimes_R M\), where \(\mathfrak{x}\) denotes a system of elements of \(R\) such that \(\text{Rad}(\mathfrak{x}, R) = \mathfrak{m}\) (see [3, Definition 3.1]). He defines the formal grade as \(\text{f.grade}(\mathfrak{a}, M) = \inf \{i \in \mathbb{N}_0 \mid f^i_\mathfrak{a}(M) \neq 0\}\). For any ideal \(\mathfrak{a}\) of \(R\) and finitely generated \(R\)-module \(M\) the following statements hold:

(i) (See [3, Theorem 3.11]). If \(0 \to M' \to M \to M'' \to 0\) is a short exact sequence of finitely generated \(R\)-modules, then there is the following long exact sequence:

\[
\cdots \to f^i_\mathfrak{a}(M') \to f^i_\mathfrak{a}(M) \to f^i_\mathfrak{a}(M'') \to \cdots
\]

Keywords: Local cohomology, Formal local cohomology, Serre subcategory, Formal grade, Formal cohomological dimension.

Received: 26 Feb 2012 Revised 18 Dec 2013

Corresponding author: taheri@khu.ac.ir
(ii) (See [3, Theorem 1.3]). \(f.\ grade(a, M) \leq \dim(M) - cd(a, M) \); some properties of formal local cohomology have been presented in [3, 4, 5 and 6].

Throughout this paper \(S \) denotes a Serre subcategory of the category of \(R \)-modules and \(R \)-homomorphisms (we recall that a class \(S \) of \(R \)-modules is a Serre subcategory of the category of \(R \)-modules and \(R \)-homomorphisms if \(S \) is closed under taking submodules, quotients and extensions).

Our paper contains three sections. In Section 2, we shall define the formal grade of \(a \) with respect to \(M \) in \(S \) as the infimum of the integers \(i \) such that \(f_a^i(M) \notin S \) and is denoted by \(f.\ grade_S(a, M) \). (See definition 2.1). Then we shall obtain some properties of this notion. We show that if \(\Gamma_a(M) \) is a pure submodule of \(M \), then \(\Hom_R(\frac{R}{m}, f_a^i(\Gamma_a(M))) \) and \(\Hom_R(\frac{R}{m}, f_a^{i-1}(\frac{M}{\Gamma_a(M)})) \) belong to \(S \), where \(t = f.\ grade_S(a, M) \).

In Section 3, we shall define the formal cohomological dimension of \(a \) with respect to \(M \) in \(S \) as the supremum of the integers \(i \) such that \(f_a^i(M) \notin S \) and is denoted by \(f.\ cd_S(a, M) \). (See definition 3.1). The main result of this section is that if \(f_a^i(M) \in S \) and \(H_m^i(M) \in S \) for all \(i > t \), then \(\frac{R}{a} \otimes_R f_a^i(M) \) belongs to \(S \).

2. The formal grade of a module in a Serre subcategory

Definition 2.1. The formal grade of \(a \) with respect to \(M \) in \(S \) is the infimum of the integers \(i \) such that \(f_a^i(M) \notin S \) and is denoted by \(f.\ grade_S(a, M) \).

Proposition 2.2. Let \((R, m)\) be a local ring and \(a \) be an ideal of \(R \). If \(0 \to L \to M \to N \to 0 \) is an exact sequence of finitely generated \(R \)-modules, then the following statements hold.

(a) \(f.\ grade_S(a, M) \geq \min\{f.\ grade_S(a, L), f.\ grade_S(a, N)\} \).

(b) \(f.\ grade_S(a, L) \geq \min\{f.\ grade_S(a, M), f.\ grade_S(a, N) + 1\} \).

(c) \(f.\ grade_S(a, N) \geq \min\{f.\ grade_S(a, L) - 1, f.\ grade_S(a, M)\} \).

Proof. According to [3, Theorem 3.11], the above short exact sequence induces the following long exact sequence.

\[\cdots \to f_a^{i-1}(N) \to f_a^i(L) \to f_a^i(M) \to f_a^i(N) \to f_a^{i+1}(L) \to \cdots \]

So, the result follows.
Corollary 2.3. If $\underline{x} = x_1, ..., x_n$ is a regular M-sequence, then $f.\text{grade}_S \left(a, \frac{M}{\Sigma M} \right) \geq f.\text{grade}_S (a, M) - n$.

Proof. Consider the following exact sequence ($n \in \mathbb{N}$)
\[
0 \to M \xrightarrow{x_n} (x_1, ..., x_n)M \xrightarrow{nats} M \to (x_1, ..., x_n)M \to 0
\]
whenever $n = 1$ by $(x_1, ..., x_n)M$ we mean 0.

Corollary 2.4. Let a and b be ideals of R. Then

(a) $f.\text{grade}_S (a \cap b, M) \geq \min \{f.\text{grade}_S (a, M), f.\text{grade}_S (b, M), f.\text{grade}_S ((a, b), M) + 1 \}$.

(b) $f.\text{grade}_S ((a, b), M) \geq \min \{f.\text{grade}_S (a \cap b, M) - 1, f.\text{grade}_S (a, M), f.\text{grade}_S (b, M) \}$.

Proof. For all $n \in \mathbb{N}$ there is a short exact sequence as follows:
\[
0 \to \frac{M}{a^nM} \to \frac{M}{(a \cap b)^nM} \oplus \frac{M}{b^nM} \to \frac{M}{(a^n, b^n)M} \to 0.
\]
By using [3,Theorem 5.1], the above exact sequence induces the following long exact sequence.
\[
\cdots \to \lim_{\to \left(M \right)} \frac{H^i_m(M)}{(a \cap b)^nM} \oplus \lim_{\to \left(M \right)} \frac{H^i_m(M)}{a^nM} \oplus \lim_{\to \left(M \right)} \frac{H^i_m(M)}{b^nM} \to \lim_{\to \left(M \right)} \frac{H^i_m(M)}{(a \cap b)^nM} \to \cdots
\]
So by using an argument similar to that of Proposition 2.2, the result follows.

Corollary 2.5. Assume that M is a finitely generated R-module and N_1 and N_2 are submodules of M. Then considering the exact sequence $0 \to \frac{M}{N_1 \cap N_2} \to \frac{M}{N_1} \oplus \frac{M}{N_2} \to \frac{M}{N_1 + N_2} \to 0$ we shall have

(a) $f.\text{grade}_S (a, \frac{M}{N_1 \cap N_2}) \geq \min \{f.\text{grade}_S (a, \frac{M}{N_1}), f.\text{grade}_S (a, \frac{M}{N_2}), f.\text{grade}_S (a, \frac{M}{N_1 + N_2}) - 1\}$.

(b) $f.\text{grade}_S (a, \frac{M}{N_1 \cap N_2}) \geq \min \{f.\text{grade}_S (a, \frac{M}{N_1}), f.\text{grade}_S (a, \frac{M}{N_2}), f.\text{grade}_S (a, \frac{M}{N_1 + N_2}) - 1\}$.

Theorem 2.6. Let a be an ideal of a local ring (R, m), M be a finitely generated R-module and L be a pure submodule of M. Then $f.\text{grade}_S (a, L) \geq f.\text{grade}_S (a, M)$ where S is a Serre subcategory of the category of R-modules and R-homomorphisms. In particular, $\inf \{ \inf \left(H^i_m(L) \in S \right) \} \geq \inf \{ \inf \left(H^i_m(M) \notin S \right) \}$.

339
Proof. Let L be a pure submodule of M. So $\frac{L}{a^nL} \to \frac{M}{a^nM}$ is pure for each $n \in \mathbb{N}$. Now according to [8, Corollary 3.2 (a)], $H^i_m\left(\frac{L}{a^nL}\right) \to H^i_m\left(\frac{M}{a^nM}\right)$ is injective. Since inverse limit is a left exact functor, $f^i_a(L)$ is isomorphic to a submodule of $f^i_a(M)$. Consequently, $f.g._S(a, L) \geq f.g._S(a, M)$. If $a = 0$ then, $f.g._S(0, M) = \inf \{i | H^i_m(M) \notin S\}$ and the result follows.

Corollary 2.7. If $0 \to L \to M \to N \to 0$ is a pure exact sequence of finitely generated R-modules, then $\min \{f.g._S(a, L), f.g._S(a, N) + 1\} \geq f.g._S(a, M)$.

Proof. Since L is a pure submodules of M, as a result of the previous theorem, $f.g._S(a, L) \geq f.g._S(a, M)$. Hence we must prove that $f.g._S(a, N) + 1 \geq f.g._S(a, M)$. We assume that $i < f.g._S(a, M)$ and we show that $i < f.g._S(a, N) + 1$. Consider the following long exact sequence.

$$\ldots \to f^{i-1}_a(M) \to f^i_a(N) \to f^i_a(L) \to f^i_a(M) \to f^i_a(N) \to \ldots \ (*)$$

If $i < f.g._S(a, M)$, then $f^i_a(M), f^{i-1}_a(M), \ldots, f^0_a(L) \in S$. On the other hand, since $i < f.g._S(a, L), f^i_a(L) \in S$. Hence, it follows from $(*)$ that $f^i_a(N), \ldots, f^{i-1}_a(N) \in S$ and so $i - 1 < f.g._S(a, N)$.

Theorem 2.8. Let (R, m) be a local ring, a be an ideal of R, S be a Serre subcategory of the category of R-modules and R-homomorphisms and $M \in S$ be a finitely generated R-module such that $\Gamma_a(M)$ is a pure submodule of M. Then $\text{Hom}_R\left(\frac{R}{a^t}, f_a^i(\Gamma_a(M))\right) \in S$, where $t = f.g._S(a, M)$.

Proof. Due to the previous theorem, $f.g._S(a, \Gamma_a(M)) \geq f.g._S(a, M)$. If $f.g._S(a, \Gamma_a(M)) > f.g._S(a, M)$, then the result is obvious. Accordingly, we assume that $f.g._S(a, \Gamma_a(M)) = f.g._S(a, M)$. We know that $\text{Supp}(\Gamma_a(M)) \subseteq \text{Var}(a)$. By using [4, Lemma 2.3], $f^i_a(\Gamma_a(M)) \equiv H^i_m(\Gamma_a(M))$ for all $i \geq 0$. So, if $j < f.g._S(a, M)$, then $f^j_a(\Gamma_a(M)) \equiv H^j_m(\Gamma_a(M)) \in S$ and $\text{Ext}_R^k\left(\frac{R}{m}, H^j_m(\Gamma_a(M))\right) \in S$ for all $k \geq 0$ and $j < f.g._S(a, M)$. Moreover $\text{Ext}_R^k\left(\frac{R}{m}, \Gamma_a(M)\right) \in S$, because $\Gamma_a(M) \in S$. Consequently, according to [7, Theorem 2.2], $\text{Hom}_R\left(\frac{R}{m}, H^m_m(\Gamma_a(M))\right) \in S$, where $t = f.g._S(a, M)$.

Corollary 2.9 With the same notations as Theorem 2.8, let $X \in S$ be a submodule of $f_a^i(\Gamma_a(M))$, where $t = f.g._S(a, M)$. Then $\text{Hom}_R\left(\frac{R}{m}, \frac{f_a^i(\Gamma_a(M))}{X}\right) \in S$.

Proof. Consider the long exact sequence:
In accordance with the previous theorem $\Hom_R \left(\frac{R}{m}, f_t^a(\Gamma_a(M)) \right) \rightarrow \Hom_R \left(\frac{R}{m}, \frac{f_t^a(\Gamma_a(M))}{x} \right) \rightarrow \Ext^1_R \left(\frac{R}{m}, X \right) \rightarrow 0$. Moreover $\Ext^1_R \left(\frac{R}{m}, X \right) \in S$. It follows from the exact sequence (*) that $\Hom_R \left(\frac{R}{m}, \frac{f_t^a(\Gamma_a(M))}{x} \right) \in S$.

Theorem 2.10. Suppose that a is an ideal of (R, m) and $M \in S$ is a finitely generated R-module such that $\Gamma_a(M)$ is a pure submodule of M. Then $\Hom_R \left(\frac{R}{m}, f^{t-1}_a \left(\frac{M}{\Gamma_a(M)} \right) \right) \in S$, where $t = f \cdot \text{grade}_S(a, M)$.

Proof. One has $f \cdot \text{grade}_S(a, \Gamma_a(M)) \geq f \cdot \text{grade}_S(a, M)$, by Theorem 2.6. Now, the exact sequence $0 \to \Gamma_a(M) \to M \to \frac{M}{\Gamma_a(M)} \to 0$ induces the following long exact sequence:

$$\ldots \to f^{t-1}_a(\Gamma_a(M)) \xrightarrow{\alpha} f^{t-1}_a(M) \xrightarrow{\beta} f^{t-1}_a \left(\frac{M}{\Gamma_a(M)} \right) \xrightarrow{\gamma} f^{t-1}_a(\Gamma_a(M)) \xrightarrow{\delta} \ldots \quad (*)$$

Using the exact sequence (*), we obtain the short exact sequence $0 \to \text{Im}(\beta) \to f^{t-1}_a(M) \to \text{Im}(\gamma) \to 0$. Since $f^{t-1}_a(M) \in S$, $\text{Im}(\beta) \in S$ and $\text{Im}(\gamma) \in S$.

Furthermore, we have the exact sequence $0 \to \text{Im}(\xi) \to H^t_m(\Gamma_a(M)) \to \text{Im}(\varphi) \to 0$ which induces the following long exact sequence:

$$0 \to \Hom_R \left(\frac{R}{m}, \text{Im}(\xi) \right) \to \Hom_R \left(\frac{R}{m}, H^t_m(\Gamma_a(M)) \right) \to \ldots.$$

Thus $\Hom_R \left(\frac{R}{m}, \text{Im}(\xi) \right) \in S$. Finally, by considering the short exact sequence $0 \to \text{Im}(\gamma) \to f^{t-1}_a \left(\frac{M}{\Gamma_a(M)} \right) \to \text{Im}(\xi) \to 0$ we can conclude that $\Hom_R \left(\frac{R}{m}, f^{t-1}_a \left(\frac{M}{\Gamma_a(M)} \right) \right) \in S$.

Theorem 2.11. Suppose that R is complete with respect to the a–adic topology and $M \in S$ be a finitely generated R-module and t a positive integer such that $f_t^a(M) \in S$ for all $i < t$. Then $\Hom_R \left(\frac{R}{m}, f_t^a(M) \right) \in S$.

Proof. We use induction on t. Let $t=0$. Consider the following isomorphisms.

$$\Hom \left(\frac{R}{m}, f_0^a(M) \right) \cong \lim_{\leftarrow n} \Hom \left(\frac{R}{m}, H^0_n(\frac{M}{a^n M}) \right) \cong \lim_{\leftarrow n} \Hom \left(\frac{R}{m}, \frac{M}{a^n M} \right) \cong \Hom \left(\frac{R}{m}, \lim_{\leftarrow n} \frac{M}{a^n M} \right) \cong \Hom \left(\frac{R}{m}, M \right)$$
It is clear that $\text{Hom}_R(\frac{R}{m}, M) \in S$. So by the above isomorphisms, we deduce that

$$\text{Hom}_R(\frac{R}{m}, f^1_a(M)) \in S.$$

Suppose that $t>0$ and the result is true for all integer i less than t. Set $N := I_m(M)$. Then $f^i_a(M) \cong f^i_a(M/N)$ for all $i > 0$, and so we may assume that $\text{depth}_R(M) > 0$. There is an M-regular element $x \in m$. The exact sequence $0 \to M \xrightarrow{x} M \to \frac{M}{xM} \to 0$ induces the following long exact sequence:

$$\cdots \to f^{t-2}_a(M) \xrightarrow{x} f^{t-2}_a(M) \xrightarrow{f} f^{t-2}_a(\frac{M}{xM})$$

$$\to f^{t-1}_a(M) \xrightarrow{x} f^{t-1}_a(M) \xrightarrow{g} f^{t-1}_a(\frac{M}{xM})$$

$$\to f^t_a(M) \xrightarrow{x} f^t_a(M) \xrightarrow{h} \cdots. \quad (*)$$

Using the exact sequence $(*)$ we obtain the short exact sequence

$$0 \to f^{t-1}_a(M)_{\text{xf}} \to f^t_a(M)_{\text{xf}} \to (0 : x) \to 0.$$

Now, this exact sequence induces the following long exact sequence:

$$0 \to \text{Hom}_R(\frac{R}{m}, f^{t-1}_a(M)) \to \text{Hom}_R(\frac{R}{m}, f^t_a(M)) \to \text{Hom}_R(\frac{R}{m}, (0 : x)) \to$$

$$\text{Ext}_R^1(\frac{R}{m}, f^{t-1}_a(M)) \to \cdots. \quad (**)$$

By using $(*)$, $f^i_a(M) \in S$ for all $i < t - 1$. Therefore by the induction hypothesis $\text{Hom}_R(\frac{R}{m}, f^{t-1}_a(M)) \in S$. Furthermore $\text{Ext}_R^1(\frac{R}{m}, f^{t-1}_a(M)) \in S$ because $f^{t-1}_a(M) \in S$. Thus in accordance with $(**)$, $\text{Hom}_R(\frac{R}{m}, (0 : x)) \in S$. Since $x \in m$ according to [9,10.86] we have the following isomorphisms.

$$\text{Hom}_R(\frac{R}{m}, (0 : x)) \cong \text{Hom}_R(\frac{R}{m}, \text{Hom}_R(\frac{R}{xR}, f^t_a(M))) \cong$$

$$\text{Hom}_R(\frac{R}{m} \otimes_R \frac{R}{xR}, f^t_a(M)) \cong \text{Hom}_R(\frac{R}{m}, f^t_a(M)).$$

Consequently $\text{Hom}_R(\frac{R}{m}, f^t_a(M)) \in S$.

342
3. The formal cohomological dimension in a Serre subcategory

We recall from [3, Theorem 1.1] that for a finitely generated R-module M, $\sup \{ i \in \mathbb{N}_0 | f^i_a(M) \neq 0 \} = \dim \left(\frac{M}{aM} \right)$.

Definition 3.1. The formal cohomological dimension of M with respect to a in S is the supremum of the integers i such that $f^i_a(M) \in S$ and is denoted by $f.c.d._S(a, M)$.

Theorem 3.2. Suppose that S is a Serre subcategory of the category of R-modules and R-homomorphisms and L and N are two finitely generated R-modules such that $\text{Supp}_R(L) \subseteq \text{Supp}_R(N)$. Then $f.c.d._S(a, L) \leq f.c.d._S(a, N)$.

Proof. It is enough to prove that $f^i_a(L) \in S$ for all $i > f.c.d._S(a, N)$ and all finitely generated R-module L such that $\text{Supp}_R(L) \subseteq \text{Supp}_R(N)$. We use descending induction on i. For all $i > \dim \left(\frac{L}{aL} \right) + f.c.d._S(a, N)$, $f^i_a(L) = 0 \in S$. Let $i > f.c.d._S(a, N)$ and the result is proved for $i + 1$. By Gruson’s theorem, there is a chain $0 = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_l = L$ of submodules of L such that $\frac{L_i}{L_{i-1}}$ is a homomorphic image of a direct sum of finitely many copies of N. Consider the exact sequence $0 \to L_{i-1} \to L_i \to \frac{L_i}{L_{i-1}} \to 0 \quad (i = 0, 1, \ldots, l)$. We may assume that $l = 1$. The exact sequence $0 \to K \to \bigoplus_{j=1}^t N \to L \to 0$ where K is a finitely generated R-module induces the following long exact sequence:

$$\cdots \to f^i_a(\bigoplus_{j=1}^t N) \to f^i_a(L) \to f^{i+1}_a(K) \to \cdots \quad (*)$$

Based on the induction hypothesis $f^{i+1}_a(K) \in S$. Moreover $f^i_a(\bigoplus_{j=1}^t N) = \bigoplus_{j=1}^t f^i_a(N) \in S$ for all $i > f.c.d._S(a, N)$, hence it follows from the exact sequence $(*)$ that $f^i_a(L) \in S$.

The next example shows that even if $\text{Supp}_R(M) = \text{Supp}_R(N)$, then it may not true that $f\text{-grade}_S(a, M) = f\text{-grade}_S(a, N)$.

Example 3.3. (See [4, Example 4.3 (i)]) Let (R, \mathfrak{m}) be a 2 dimensional complete regular local ring, $\mathcal{S} = 0$ and \mathfrak{a} be an ideal of R with $\dim \left(\frac{R}{\mathfrak{a}} \right) = 1$. Then by using [5, Theorem 1.1], $f\text{-grade}_S(a, R) = 1$ and $f\text{-grade}_S(\frac{R}{\mathfrak{a}}) = 0$. Set $M := R \oplus \frac{R}{\mathfrak{m}}$. Then $\text{Supp}_R(M) = \text{Supp}_R(R)$. But $f\text{-grade}_S(a, M) = \inf \left\{ f\text{-grade}_S(a, R), f\text{-grade}_S(\frac{R}{\mathfrak{m}}) \right\} = 0$.

Corollary 3.4. For all $x \in a \cdot f.c.d._S(a, M) \geq f.c.d._S(a, \frac{M}{xM})$.

Corollary 3.5. Suppose that $0 \to L \to M \to N \to 0$ is an exact sequence of finitely generated R-modules. Then $f.c.d._S(a, M) = \max \{ f.c.d._S(a, L), f.c.d._S(a, N) \}$.
Proof. Since $\text{Supp}_R(M) = \text{Supp}_R(L) \cup \text{Supp}_R(N)$ by referring to Theorem 3.2 we deduce that $f \cdot c_{d_S}(a, M) \geq f \cdot c_{d_S}(a, L)$ and $f \cdot c_{d_S}(a, M) \geq f \cdot c_{d_S}(a, N)$. Therefore $f \cdot c_{d_S}(a, M) \geq \max \{f \cdot c_{d_S}(a, L), f \cdot c_{d_S}(a, N)\}$.

Next we prove that $\max \{f \cdot c_{d_S}(a, L), f \cdot c_{d_S}(a, N)\} \geq f \cdot c_{d_S}(a, M)$.

Let $i > \max \{f \cdot c_{d_S}(a, L), f \cdot c_{d_S}(a, N)\}$. Then $f^i_a(N), f^i_a(L) \in S$ and from the exact sequence $f^i_a(L) \to f^i_a(M) \to f^i_a(N)$ we conclude that $f^i_a(M) \in S$. Thus, $\max\{f \cdot c_{d_S}(a, L), f \cdot c_{d_S}(a, N)\} \geq f \cdot c_{d_S}(a, M)$.

We recall that the cohomological dimension of an R-module M with respect to an ideal a of R in S is defined as

$$c_{d_S}(a, M) := \sup \{i \in \mathbb{N} | H^i_a(M) \notin S\}.$$

The following lemma shows that when we considering the Artinianness of $f^i_a(M)$, we can assume that M is a-torsion-free.

Lemma 3.6. Suppose that a is an ideal of a local ring (R, m) and t be a non-negative integer. If $H^i_m(M) \in S$ for all $i \geq t$, then the following are equivalent:

(a) $f^i_a(M) \in S$ for all $i \geq t$.
(b) $f^i_a\left(\frac{M}{\Gamma_a(M)}\right) \in S$ for all $i \geq t$.

Proof. According to the hypothesis $t > c_{d_S}(m, M)$. On the other hand $\text{Supp}_R(\Gamma_a(M)) \subseteq \text{Supp}_R(M)$. So by referring to [7, Theorem 3.5], $c_{d_S}(m, \Gamma_a(M)) \leq c_{d_S}(m, M)$. Thus, $t > c_{d_S}(m, \Gamma_a(M))$ and $H^i_m(\Gamma_a(M)) \in S$ for all $i \geq t$. Now, consider the following long exact sequence:

$$\cdots \to f^i_a(\Gamma_a(M)) \to f^i_a(M) \to f^i_a\left(\frac{M}{\Gamma_a(M)}\right) \to f^{i+1}_a(\Gamma_a(M)) \to \cdots. (\ast)$$

According to [4, Lemma 2.3] $f^i_a(\Gamma_a(M)) \cong H^i_m(\Gamma_a(M))$. By using the hypothesis $f^i_a(\Gamma_a(M)) \in S$ for all $i \geq t$. So it follows from the exact sequence (\ast) that $f^i_a(M) \in S$ if and only if $f^i_a\left(\frac{M}{\Gamma_a(M)}\right) \in S$ for all $i \geq t$.

Theorem 3.7. Let (R, m) be a local ring and $M \in S$ be a finitely generated R-module of dimension d such that $c_{d_S}(m, M) \leq f \cdot c_{d_S}(a, M)$. Then $\frac{f^i_a(M)}{a f^i_a(M)} \in S$ where $t = f \cdot c_{d_S}(a, M)$.

Proof. We use induction on $d = \dim (M)$. If $d = 0$, then $\dim\left(\frac{M}{aM}\right) = 0$. Accordingly to [3, Theorem 1.1], $f^i_a(M) = 0$ for all $i > 0$.

344
Moreover $f^0_a(M) \cong M \in S$. By definition $H^i_m(M) \in S$ for all $i > t$. Therefore from the above lemma we can assume that M is a-torsion-free and there is an M-regular element $x \in a$. Consider the long exact sequence:

$$\cdots \to f^i_a(M) \xrightarrow{x} f^i_a(M) \xrightarrow{f} f^i_a(M) \xrightarrow{g} f^{i+1}_a(M) \xrightarrow{h} \cdots. \tag{*}$$

By using the hypothesis $f^i_a(M) \in S$ for all $i > t$ (because $t = f \cdot \text{cd}_S(a, M)$). So using the above long exact sequence $f^i_a(M) \in S$ for all $i > t$. By induction hypothesis, $\frac{f^i_a(M)}{af^i_a(M)} \in S$ because $\dim\left(\frac{M}{xM}\right) = \dim(M) - 1$.

Afterwards from the exact sequence (\textit{*}) we get the following short exact sequence.

$$0 \to \text{Im}(f) \to f^t_a\left(\frac{M}{xM}\right) \to \text{Im}(g) \to 0.$$

So we obtain the following long exact sequence:

$$\cdots \to \text{Tor}^R_1\left(\frac{R}{a}, \text{Im}(g)\right) \to \text{Im}(f) \to f^t_a\left(\frac{M}{xM}\right) \to \frac{\text{Im}(g)}{af^t_a(M)} \to 0.$$

Since $f^t_a(M) \in S$ and $\text{Im}(g)$ is a submodule of $f^{t+1}_a(M)$, we deduce that $\text{Tor}^R_1\left(\frac{R}{a}, \text{Im}(g)\right) \in S$. On the other hand, $\frac{f^t_a(M)}{af^t_a(M)} \in S$. Therefore, $\frac{\text{Im}(f)}{af^t_a(M)} \in S$ by the above long exact sequence.

Now, consider the following long exact sequence.

$$\frac{f^t_a(M)}{af^t_a(M)} \xrightarrow{x} f^t_a(M) \xrightarrow{f} f^t_a(M) \xrightarrow{g} f^{t+1}_a(M) \xrightarrow{h} \cdots.$$

So, $\frac{f^t_a(M)}{af^t_a(M)} \cong \frac{\text{Im}(f)}{af^t_a(M)}$ because $x \in a$. Consequently, $\frac{f^t_a(M)}{af^t_a(M)} \in S$.

Proposition 3.8. For a finitely generated R-module M,

$$f \cdot \text{cd}_S(a, M) = \max\{f \cdot \text{cd}_S(a, R_P) | P \in \text{Ass}_R(M)\}.$$

Proof. Set $N := \bigoplus_{P \in \text{Ass}_R(M)} R_P$. Then $\text{Supp}_R(M) = \text{Supp}_R(N)$. So, by Theorem 3.2 and Corollary 3.5, $f \cdot \text{cd}_S(a, M) = f \cdot \text{cd}_S(a, N) = \max\{f \cdot \text{cd}_S(a, R_P) | P \in \text{Ass}_R(M)\}$.

Proposition 3.9. Assume that a is an ideal of the local ring (R, m). Then $\text{Hom}_R\left(\frac{R}{m}, f^0_a(M)\right) \in S$ if and only if $\text{Hom}_R\left(\frac{R}{m}, M\right) \in S$.

Proof. It is enough to consider the following isomorphisms

$$\text{Hom}_R\left(\frac{R}{m}, f^0_a(M)\right) \cong \text{Hom}_R\left(\frac{R}{m}, f^0_a(M)\right) \cong \text{Hom}_R\left(\frac{R}{m}, M\right) \cong \text{Hom}_R\left(\frac{R}{m}, M\right).$$
Acknowledgements

The authors would like to thank the referees for their helpful comments.

References