Formal Local Cohomology Modules and Serre Subcategories

A. Kianezhad; Science and Research Branch, Islamic Azad University
A. J. Taherizadeh*; Kharazmi University
A. Tehranian; Science and Research Branch, Islamic Azad University

Abstract

Let \((R, \mathfrak{m})\) be a Noetherian local ring, \(\mathfrak{a}\) an ideal of \(R\) and \(M\) a finitely generated \(R\)-module. We investigate some properties of formal local cohomology modules with respect to a Serre subcategory. We provide a common language to indicate some properties of formal local cohomology modules.

1. Introduction

Throughout this paper \((R, \mathfrak{m})\) is a commutative Noetherian local ring, \(\mathfrak{a}\) an ideal of \(R\) and \(M\) is a finitely generated \(R\)-module. For an integer \(i \in \mathbb{N}_0\), \(H^i_{\mathfrak{a}}(N)\) denotes the \(i\)-th local cohomology module of \(M\) with respect to \(\mathfrak{a}\) as introduced by Grothendieck (cf. [1], [2]).

We shall consider the family of local cohomology modules \(\{H^i_{\mathfrak{m}}(\frac{M}{\mathfrak{a}^nM})\}_{n \in \mathbb{N}}\) for a non-negative integer \(i \in \mathbb{N}_0\). With natural homomorphisms; this family forms an inverse system. Schenzel introduced the \(i\)-th formal local cohomology of \(M\) with respect to \(\mathfrak{a}\) in the form of \(f^i_{\mathfrak{a}}(M) := \lim_{n \in \mathbb{N}} H^i_{\mathfrak{m}}(\frac{M}{\mathfrak{a}^nM})\), which is the \(i\)-th cohomology module of the \(\mathfrak{a}\)-adic completion of the Čech complex \(\check{\mathcal{C}}^* \otimes_R M\), where \(\check{\mathcal{C}}^*\) denotes a system of elements of \(R\) such that \(\text{Rad}\left(\check{\mathcal{C}}^*, R\right) = \mathfrak{m}\) (see [3, Definition 3.1]). He defines the formal grade as \(f.\text{grade}(\mathfrak{a}, M) = \inf \{i \in \mathbb{N}_0 \mid f^i_{\mathfrak{a}}(M) \neq 0\}\). For any ideal \(\mathfrak{a}\) of \(R\) and finitely generated \(R\)-module \(M\) the following statements hold:

(i) (See [3, Theorem 3.11]). If \(0 \to M' \to M \to M'' \to 0\) is a short exact sequence of finitely generated \(R\)-modules, then there is the following long exact sequence:

\[\cdots \to f^i_{\mathfrak{a}}(M') \to f^i_{\mathfrak{a}}(M) \to f^i_{\mathfrak{a}}(M'') \to \cdots \]

Keywords: Local cohomology, Formal local cohomology, Serre subcategory, Formal grade, Formal cohomological dimension.

Received: 26 Feb 2012 Revised 18 Dec 2013

*Corresponding author: taheri@khu.ac.ir
(ii) (See [3, Theorem 1.3]). $f.\text{grade}(a, M) \leq \dim(M) - cd(a, M)$; some properties of formal local cohomology have been presented in [3, 4, 5 and 6].

Throughout this paper S denotes a Serre subcategory of the category of R-modules and $R-$homomorphisms (we recall that a class S of R-modules is a Serre subcategory of the category of R-modules and R-homomorphisms if S is closed under taking submodules, quotients and extensions).

Our paper contains three sections. In Section 2, we shall define the formal grade of a with respect to M in S as the infimum of the integers i such that $f^{i}_{a}(M) \notin S$ and is denoted by $f.\text{grade}_{S}(a, M)$. (See definition 2.1). Then we shall obtain some properties of this notion. We show that if $\Gamma_{a}(M)$ is a pure submodule of M, then $\text{Hom}_{R}(\frac{R}{m}, f^{i}_{a}(\Gamma_{a}(M)))$ and $\text{Hom}_{R}(\frac{R}{m}, f^{t}_{a}(\frac{M}{\Gamma_{a}(M)}))$ belong to S, where $t = f.\text{grade}_{S}(a, M)$.

In Section 3, we shall define the formal cohomological dimension of a with respect to M in S as the supremum of the integers i such that $f^{i}_{a}(M) \notin S$ and is denoted by $f.\text{cd}_{S}(a, M)$. (See definition 3.1). The main result of this section is that if $f^{i}_{a}(M) \in S$ and $H^{i}_{m}(M) \in S$ for all $i > t$, then $\frac{R}{a} \otimes_{R} f^{i}_{a}(M)$ belongs to S.

2. The formal grade of a module in a Serre subcategory

Definition 2.1. The formal grade of a with respect to M in S is the infimum of the integers i such that $f^{i}_{a}(M) \notin S$ and is denoted by $f.\text{grade}_{S}(a, M)$.

Proposition 2.2. Let (R, m) be a local ring and a be an ideal of R. If $0 \to L \to M \to N \to 0$ is an exact sequence of finitely generated R-modules, then the following statements hold.

(a) $f.\text{grade}_{S}(a, M) \geq \min\{f.\text{grade}_{S}(a, L), f.\text{grade}_{S}(a, N)\}$.

(b) $f.\text{grade}_{S}(a, L) \geq \min\{f.\text{grade}_{S}(a, M), f.\text{grade}_{S}(a, N) + 1\}$.

(c) $f.\text{grade}_{S}(a, N) \geq \min\{f.\text{grade}_{S}(a, L) - 1, f.\text{grade}_{S}(a, M)\}$.

Proof. According to [3, Theorem 3.11], the above short exact sequence induces the following long exact sequence.

$$\cdots \to f^{i-1}_{a}(N) \to f^{i}_{a}(L) \to f^{i}_{a}(M) \to f^{i}_{a}(N) \to f^{i+1}_{a}(L) \to \cdots$$

So, the result follows.
Corollary 2.3. If \(x = x_1, \ldots, x_n \) is a regular \(M \)-sequence, then \(f. \text{grade}_S \left(a, \frac{M}{\sum M} \right) \geq f. \text{grade}_S (a, M) - n \).

Proof. Consider the following exact sequence \((n \in \mathbb{N})\)

\[
0 \rightarrow \frac{M}{(x_1, \ldots, x_{n-1})M} \rightarrow \frac{M}{(x_1, \ldots, x_n)M} \rightarrow \frac{M}{(x_1, \ldots, x_n)M} \rightarrow 0
\]
whenever \(n = 1 \) by \((x_1, \ldots, x_{n-1})M\) we mean 0.

Corollary 2.4. Let \(a \) and \(b \) be ideals of \(R \). Then
(a) \(f. \text{grade}_S (a \cap b, M) \geq \min \{ f. \text{grade}_S (a, M), f. \text{grade}_S (b, M), f. \text{grade}_S ((a, b), M) + 1 \} \).

(b) \(f. \text{grade}_S ((a, b), M) \geq \min \{ f. \text{grade}_S (a \cap b, M) - 1, f. \text{grade}_S (a, M), f. \text{grade}_S (b, M) \} \).

Proof. For all \(n \in \mathbb{N} \) there is a short exact sequence as follows:

\[
0 \rightarrow \frac{M}{a^nM} \rightarrow \frac{M}{a^nM} \oplus \frac{M}{b^nM} \rightarrow \frac{M}{(a^n, b^n)M} \rightarrow 0.
\]

By using [3, Theorem 5.1], the above exact sequence induces the following long exact sequence.

\[
\cdots \rightarrow \lim_{n \in \mathbb{N}} H^i_m \left(\frac{M}{(a^n b^n)M} \right) \rightarrow \lim_{n \in \mathbb{N}} H^i_m \left(\frac{M}{a^nM} \right) \oplus \lim_{n \in \mathbb{N}} H^i_m \left(\frac{M}{b^nM} \right) \rightarrow \lim_{n \in \mathbb{N}} H^i_m \left(\frac{M}{(a b)^nM} \right) \rightarrow \cdots
\]

So by using an argument similar to that of Proposition 2.2, the result follows.

Corollary 2.5. Assume that \(M \) is a finitely generated \(R \)-module and \(N_1 \) and \(N_2 \) are submodules of \(M \). Then considering the exact sequence \(0 \rightarrow \frac{M}{N_1 \cap N_2} \rightarrow \frac{M}{N_1} \oplus \frac{M}{N_2} \rightarrow \frac{M}{N_1 + N_2} \rightarrow 0 \) we shall have

(a) \(f. \text{grade}_S \left(a, \frac{M}{N_1 \cap N_2} \right) \geq \min \{ f. \text{grade}_S (a, \frac{M}{N_1}), f. \text{grade}_S (a, \frac{M}{N_2}), f. \text{grade}_S (a, MN2), f. \text{grade}_S (a, MN1), f. \text{grade}_S (a, MN2 + 1) \} \).

(b) \(f. \text{grade}_S \left(a, \frac{M}{N_1 + N_2} \right) \geq \min \{ f. \text{grade}_S (a, \frac{M}{N_1}), f. \text{grade}_S (a, \frac{M}{N_2}) - 1, f. \text{grade}_S (a, MN1), f. \text{grade}_S (a, MN2) \} \).

Theorem 2.6. Let \(a \) be an ideal of a local ring \((R, m)\), \(M \) be a finitely generated \(R \)-module and \(L \) be a pure submodule of \(M \). Then \(f. \text{grade}_S (a, L) \geq f. \text{grade}_S (a, M) \) where \(S \) is a Serre subcategory of the category of \(R \)-modules and \(R \)-homomorphisms. In particular, \(\inf \{ i | H^i_m(L) \notin S \} \geq \inf \{ i | H^i_m (M) \notin S \} \).
Proof. Let L be a pure submodule of M. So $\frac{L}{a^nL} \to \frac{M}{a^nM}$ is pure for each $n \in \mathbb{N}$. Now according to [8, Corollary 3.2 (a)], $H^i_m \left(\frac{L}{a^nL} \right) \to H^i_m \left(\frac{M}{a^nM} \right)$ is injective. Since inverse limit is a left exact functor, $f^i_a(L)$ is isomorphic to a submodule of $f^i_a(M)$. Consequently, $f.\text{grade}_S(a, L) \geq f.\text{grade}_S(a, M)$. If $a = 0$ then, $f.\text{grade}_S(0, M) = \inf \{ i | H^i_m(M) \not\in S \}$ and the result follows.

Corollary 2.7. If $0 \to L \to M \to N \to 0$ is a pure exact sequence of finitely generated R-modules, then $\min \{ f.\text{grade}_S(a, L), f.\text{grade}_S(a, N) + 1 \} \geq f.\text{grade}_S(a, M)$.

Proof. Since L is a pure submodules of M, as a result of the previous theorem, $f.\text{grade}_S(a, L) \geq f.\text{grade}_S(a, M)$. Hence we must prove that $f.\text{grade}_S(a, N) + 1 \geq f.\text{grade}_S(a, M)$. We assume that $i < f.\text{grade}_S(a, M)$ and we show that $i < f.\text{grade}_S(a, N) + 1$. Consider the following long exact sequence.

$$\cdots \to f^{i-1}_a(M) \to f^i_a(N) \to f^i_a(L) \to f^i_a(M) \to f^i_a(N) \to \cdots \ (*)$$

If $i < f.\text{grade}_S(a, M)$, then $f^i_a(M), f^{i-1}_a(M), \ldots, f^0_a(M), f^0_a(L) \in S$. On the other hand, since $i < f.\text{grade}_S(a, M) \leq f.\text{grade}_S(a, L), f^0_a(L) \in S$. Hence, it follows from $(*)$ that $f^i_a(N), \ldots, f^{i-1}_a(N) \in S$ and so $i - 1 < f.\text{grade}_S(a, N)$.

Theorem 2.8. Let (R, m) be a local ring, a be an ideal of R, S be a Serre subcategory of the category of R-modules and R-homomorphisms and $M \in S$ be a finitely generated R-module such that $\Gamma_a(M)$ is a pure submodule of M. Then $\text{Hom}_R \left(\frac{R}{a}, f^i_a(\Gamma_a(M)) \right) \in S$, where $t = f.\text{grade}_S(a, M)$.

Proof. Due to the previous theorem, $f.\text{grade}_S(a, \Gamma_a(M)) \geq f.\text{grade}_S(a, M)$. If $f.\text{grade}_S(a, \Gamma_a(M)) > f.\text{grade}_S(a, M)$, then the result is obvious. Accordingly, we assume that $f.\text{grade}_S(a, \Gamma_a(M)) = f.\text{grade}_S(a, M)$. We know that $\text{Supp}(\Gamma_a(M)) \subseteq \text{Var}(a)$. By using [4, Lemma 2.3], $f^i_a(\Gamma_a(M)) \cong H^i_m(\Gamma_a(M))$ for all $i \geq 0$. So, if $j < f.\text{grade}_S(a, M)$, then $f^j_a(\Gamma_a(M)) \cong H^j_m(\Gamma_a(M)) \in S$ and $\text{Ext}_R^k \left(\frac{R}{m}, H^j_m(\Gamma_a(M)) \right) \in S$ for all $k \geq 0$ and $j < f.\text{grade}_S(a, M)$. Moreover $\text{Ext}_R^i \left(\frac{R}{m}, \Gamma_a(M) \right) \in S$, because $\Gamma_a(M) \in S$. Consequently, according to [7, Theorem 2.2], $\text{Hom}_R \left(\frac{R}{m}, H^i_m(\Gamma_a(M)) \right) \in S$, where $t = f.\text{grade}_S(a, M)$.

Corollary 2.9 With the same notations as Theorem 2.8, let $X \subseteq S$ be a submodule of $f^i_a(\Gamma_a(M))$, where $t = f.\text{grade}_S(a, M)$. Then $\text{Hom}_R \left(\frac{R}{m}, \frac{f^i_a(\Gamma_a(M))}{X} \right) \in S$.

Proof. Consider the long exact sequence:
In accordance with the previous theorem $\text{Hom}_R\left(\frac{R}{m}, f^t_\alpha(\Gamma_a(M))\right) \to \text{Hom}_R\left(\frac{R}{m}, \frac{f^t_\alpha(\Gamma_a(M))}{X}\right) \to \text{Ext}^1_R\left(\frac{R}{m}, X\right)$. (*)

Theorem 2.10. Suppose that a is an ideal of (R, m) and $M \in S$ is a finitely generated R-module such that $\Gamma_a(M)$ is a pure submodule of M. Then $\text{Hom}_R\left(\frac{R}{m}, f^{t-1}_\alpha\left(\frac{M}{\Gamma_a(M)}\right)\right) \in S$, where $t = f.\, \text{grade}_S(a, M)$.

Proof. One has $f.\, \text{grade}_S(a, \Gamma_a(M)) \geq f.\, \text{grade}_S(a, M)$, by Theorem 2.6. Now, the exact sequence $0 \to \Gamma_a(M) \to M \to \frac{M}{\Gamma_a(M)} \to 0$ induces the following long exact sequence:

$$\cdots \to f^{t-1}_\alpha\left(\Gamma_a(M)\right) \xrightarrow{\alpha} f^{t-1}_\alpha(M) \xrightarrow{\beta} \frac{M}{\Gamma_a(M)} \xrightarrow{\gamma} f^{t-1}_\alpha(M) \xrightarrow{\xi} f^{t-1}_\alpha\left(\Gamma_a(M)\right) \xrightarrow{\varphi} \cdots \tag{*}$$

Using the exact sequence (*), we obtain the short exact sequence $0 \to \text{Im}(\beta) \to f^{t-1}_\alpha(M) \to \text{Im}(\gamma) \to 0$. Since $f^{t-1}_\alpha(M) \in S$, $\text{Im}(\beta) \in S$ and $\text{Im}(\gamma) \in S$. Furthermore, we have the exact sequence $0 \to \text{Im}(\xi) \to H^t_m(\Gamma_a(M)) \to \text{Im}(\varphi) \to 0$ which induces the following long exact sequence:

$$0 \to \text{Hom}_R\left(\frac{R}{m}, \text{Im}(\xi)\right) \to \text{Hom}_R\left(\frac{R}{m}, H^t_m(\Gamma_a(M))\right) \to \cdots.$$

Thus $\text{Hom}_R\left(\frac{R}{m}, \text{Im}(\xi)\right) \in S$. Finally, by considering the short exact sequence $0 \to \text{Im}(\gamma) \to f^{t-1}_\alpha\left(\frac{M}{\Gamma_a(M)}\right) \to \text{Im}(\xi) \to 0$ we can conclude that $\text{Hom}_R\left(\frac{R}{m}, f^{t-1}_\alpha\left(\frac{M}{\Gamma_a(M)}\right)\right) \in S$.

Theorem 2.11. Suppose that R is complete with respect to the a-adic topology and $M \in S$ be a finitely generated R-module and t a positive integer such that $f^t_a(M) \in S$ for all $i < t$. Then $\text{Hom}_R\left(\frac{R}{m}, f^t_a(M)\right) \in S$.

Proof. We use induction on t. Let $t=0$. Consider the following isomorphisms.

$$\text{Hom}_R\left(\frac{R}{m}, f^0_a(M)\right) \cong \lim_{\leftarrow n} \text{Hom}_R\left(\frac{R}{m}, H^0_a\left(\frac{M}{a^nM}\right)\right) \cong \lim_{\leftarrow n} \text{Hom}_R\left(\frac{R}{m}, \frac{M}{a^nM}\right),$$

$$\cong \text{Hom}_R\left(\frac{R}{m}, \lim_{\leftarrow n} \frac{M}{a^nM}\right) \cong \text{Hom}_R\left(\frac{R}{m}, M^\wedge\right) \cong \text{Hom}_R\left(\frac{R}{m}, M\right).$$
It is clear that $\text{Hom}_R \left(\frac{M}{m}, M \right) \in S$. So by the above isomorphisms, we deduce that $\text{Hom}_R \left(\frac{M}{m}, f^i_a(M) \right) \in S$.

Suppose that $t > 0$ and the result is true for all integer i less than t. Set $N := f^i_a(M)$. Then $f^i_a(M) \cong f^i_a \left(\frac{M}{N} \right)$ for all $i > 0$, and so we may assume that $\text{depth}_R(M) > 0$. There is an M-regular element $x \in m$. The exact sequence $0 \to M \to M \to \frac{M}{xM} \to 0$ induces the following long exact sequence:

$$\cdots \to f^{t-2}_a(M) \xrightarrow{x} f^{t-2}_a(M) \xrightarrow{f} f^{t-2}_a \left(\frac{M}{xM} \right) \to f^{t-1}_a(M) \xrightarrow{x} f^{t-1}_a(M) \xrightarrow{g} f^{t-1}_a \left(\frac{M}{xM} \right) \to f^t_a(M) \xrightarrow{h} \cdots. \ (*)$$

Using the exact sequence $(*)$ we obtain the short exact sequence

$$0 \to f^{t-1}_a \left(\frac{M}{x f^{t-1}_a(M)} \right) \to f^t_a \left(\frac{M}{xM} \right) \to (0 : x) \to 0.$$

Now, this exact sequence induces the following long exact sequence:

$$0 \to \text{Hom}_R \left(\frac{R}{m}, f^{t-1}_a(M) \right) \to \text{Hom}_R \left(\frac{R}{m}, f^t_a \left(\frac{M}{xM} \right) \right) \to \text{Hom}_R \left(\frac{R}{m}, (0 : x) \right) \to \text{Ext}_R^1 \left(\frac{R}{m}, f^{t-1}_a(M) \right) \to \cdots. (**)$$

By using $(*)$, $f^i_a \left(\frac{M}{xM} \right) \in S$ for all $i < t - 1$. Therefore by the induction hypothesis $\text{Hom}_R \left(\frac{R}{m}, f^{t-1}_a(M) \right) \in S$. Furthermore $\text{Ext}_R^1 \left(\frac{R}{m}, f^{t-1}_a(M) \right) \in S$ because $f^{t-1}_a(M) \in S$. Thus in accordance with $(**)$, $\text{Hom}_R \left(\frac{R}{m}, (0 : x) \right) \in S$. Since $x \in m$ according to [9,10.86] we have the following isomorphisms.

$$\text{Hom}_R \left(\frac{R}{m}, (0 : x) \right) \cong \text{Hom}_R \left(\frac{R}{m}, \text{Hom}_R \left(\frac{R}{xM}, f^t_a(M) \right) \right) \cong \text{Hom}_R \left(\frac{R}{m} \otimes_R \frac{R}{xM}, f^t_a(M) \right) \cong \text{Hom}_R \left(\frac{R}{m}, f^t_a(M) \right).$$

Consequently $\text{Hom}_R \left(\frac{R}{m}, f^t_a(M) \right) \in S$.

342
3. The formal cohomological dimension in a Serre subcategory

We recall from [3,Theorem 1.1] that for a finitely generated R-module M, \[\text{sup} \{ i \in \mathbb{N}_0 | f^i_a(M) \neq 0 \} = \text{dim} \left(\frac{M}{aM} \right). \]

Definition 3.1. The formal cohomological dimension of M with respect to a in S is the supremum of the integers i such that $f^i_a(M) \notin S$ and is denoted by $f \cdot \text{cd}_S(a, M)$.

Theorem 3.2. Suppose that S is a Serre subcategory of the category of R-modules and R-homomorphisms and L and N are two finitely generated R-modules such that $\text{Supp}_R(L) \subseteq \text{Supp}_R(N)$. Then $f \cdot \text{cd}_S(a, L) \leq f \cdot \text{cd}_S(a, N)$.

Proof. It is enough to prove that $f^i_a(L) \in S$ for all $i > f \cdot \text{cd}_S(a, N)$ and all finitely generated R-module L such that $\text{Supp}_R(L) \subseteq \text{Supp}_R(N)$. We use descending induction on i. For all $i > \text{dim} \left(\frac{L}{aL} \right) + f \cdot \text{cd}_S(a, N)$, $f^i_a(L) = 0 \notin S$. Let $i > f \cdot \text{cd}_S(a, N)$ and the result is proved for $i + l$. By Gruson’s theorem, there is a chain $0 = L_0 \subset L_1 \subset \ldots \subset L_l = L$ of submodules of L such that $\frac{L_i}{L_{i-1}}$ is a homomorphic image of a direct sum of finitely many copies of N. Consider the exact sequence $0 \to L_{i-1} \to L_i \to \frac{L_i}{L_{i-1}} \to 0$ ($i = 0, l, \ldots, l$). We may assume that $l = l$. The exact sequence $0 \to K \to \bigoplus_{j=i}^l N \to L \to 0$ where K is a finitely generated R-module induces the following long exact sequence:

\[\cdots \to f^i_a(\bigoplus_{j=i}^l N) \to f^i_a(L) \to f^{i+1}_a(K) \to \cdots \text{(*)} \]

Based on the induction hypothesis $f^{i+1}_a(K) \in S$. Moreover $f^i_a(\bigoplus_{j=i}^l N) = a f^i_a(N) \in S$ for all $i > f \cdot \text{cd}_S(a, N)$. Hence it follows from the exact sequence (*) that $f^i_a(L) \in S$.

The next example shows that even if $\text{Supp}_R(M) = \text{Supp}_R(N)$, then it may not true that $f \cdot \text{grade}_S(a, M) = f \cdot \text{grade}_S(a, N)$.

Example 3.3. (See [4, Example 4.3 (i)]) Let (R, m) be a 2 dimensional complete regular local ring, $S = 0$ and a be an ideal of R with $\text{dim} \left(\frac{R}{a} \right) = 1$. Then by using [5,Theorem 1.1], $f \cdot \text{grade}_S(a, R) = 1$ and $f \cdot \text{grade}_S \left(a, \frac{R}{m} \right) = 0$. Set $M := R \oplus \frac{R}{m}$. Then $\text{Supp}_R(M) = \text{Supp}_R(R)$.

Then $f \cdot \text{grade}_S(a, M) = \inf \left\{ f \cdot \text{grade}_S(a, R), f \cdot \text{grade}_S \left(a, \frac{R}{m} \right) \right\} = 0$.

Corollary 3.4. For all $x \in a \cdot f \cdot \text{cd}_S(a, M) \geq f \cdot \text{cd}_S \left(a, \frac{M}{xM} \right)$.

Corollary 3.5. Suppose that $0 \to L \to M \to N \to 0$ is an exact sequence of finitely generated R-modules. Then $f \cdot \text{cd}_S(a, M) = \max \left\{ f \cdot \text{cd}_S(a, L), f \cdot \text{cd}_S(a, N) \right\}$.

343
Proof. Since $\text{Supp}_R(M) = \text{Supp}_R(L) \cup \text{Supp}_R(N)$ by referring to Theorem 3.2 we deduce that $f \cdot \text{cd}_S(\mathfrak{a}, M) \geq f \cdot \text{cd}_S(\mathfrak{a}, L)$ and $f \cdot \text{cd}_S(\mathfrak{a}, M) \geq f \cdot \text{cd}_S(\mathfrak{a}, N)$. Therefore $f \cdot \text{cd}_S(\mathfrak{a}, M) \geq \max \{ f \cdot \text{cd}_S(\mathfrak{a}, L), f \cdot \text{cd}_S(\mathfrak{a}, N) \}$.

Next we prove that $\max \{ f \cdot \text{cd}_S(\mathfrak{a}, L), f \cdot \text{cd}_S(\mathfrak{a}, N) \} \geq f \cdot \text{cd}_S(\mathfrak{a}, M)$.

Let $i > \max \{ f \cdot \text{cd}_S(\mathfrak{a}, L), f \cdot \text{cd}_S(\mathfrak{a}, N) \}$. Then $f^i_\mathfrak{a}(N), f^i_\mathfrak{a}(L) \in S$ and from the exact sequence $f^i_\mathfrak{a}(L) \rightarrow f^i_\mathfrak{a}(M) \rightarrow f^i_\mathfrak{a}(N)$ we conclude that $f^i_\mathfrak{a}(M) \in S$. Thus, $\max \{ f \cdot \text{cd}_S(\mathfrak{a}, L), f \cdot \text{cd}_S(\mathfrak{a}, N) \} \geq f \cdot \text{cd}_S(\mathfrak{a}, M)$.

We recall that the cohomological dimension of an R-module M with respect to an ideal \mathfrak{a} of R in S is defined as

$$\text{cd}_S(\mathfrak{a}, M) := \sup \{ i \in \mathbb{N} \mid H^i_\mathfrak{a}(M) \notin S \}.$$

The following lemma shows that when we considering the Artinianness of $f^i_\mathfrak{a}(M)$, we can assume that M is \mathfrak{a}-torsion-free.

Lemma 3.6. Suppose that \mathfrak{a} is an ideal of a local ring (R, \mathfrak{m}) and t be a non-negative integer. If $H^i_\mathfrak{m}(M) \in S$ for all $i \geq t$, then the following are equivalent:

(a) $f^i_\mathfrak{a}(M) \in S$ for all $i \geq t$.

(b) $f^i_\mathfrak{a}\left(\frac{M}{\Gamma_\mathfrak{a}(M)}\right) \in S$ for all $i \geq t$.

Proof. According to the hypothesis $t > \text{cd}_S(\mathfrak{m}, M)$. On the other hand $\text{Supp}_R(\Gamma_\mathfrak{a}(M)) \subseteq \text{Supp}_R(M)$. So by referring to [7, Theorem 3.5], $\text{cd}_S(\mathfrak{m}, \Gamma_\mathfrak{a}(M)) \leq \text{cd}_S(\mathfrak{m}, M)$. Thus, $t > \text{cd}_S(\mathfrak{m}, \Gamma_\mathfrak{a}(M))$ and $H^i_\mathfrak{m}(\Gamma_\mathfrak{a}(M)) \in S$ for all $i \geq t$. Now, consider the following exact sequence:

$$\cdots \rightarrow f^i_\mathfrak{a}(\Gamma_\mathfrak{a}(M)) \rightarrow f^i_\mathfrak{a}(M) \rightarrow f^i_\mathfrak{a}\left(\frac{M}{\Gamma_\mathfrak{a}(M)}\right) \rightarrow f^{i+1}_\mathfrak{a}(\Gamma_\mathfrak{a}(M)) \rightarrow \cdots \ast$$

According to [4, Lemma 2.3] $f^i_\mathfrak{a}(\Gamma_\mathfrak{a}(M)) \cong H^i_\mathfrak{m}(\Gamma_\mathfrak{a}(M))$. By using the hypothesis $f^i_\mathfrak{a}(\Gamma_\mathfrak{a}(M)) \in S$ for all $i \geq t$. So it follows from the exact sequence (\ast) that $f^i_\mathfrak{a}(M) \in S$ if and only if $f^i_\mathfrak{a}\left(\frac{M}{\Gamma_\mathfrak{a}(M)}\right) \in S$ for all $i \geq t$.

Theorem 3.7. Let (R, \mathfrak{m}) be a local ring and $M \in S$ be a finitely generated R-module of dimension d such that $\text{cd}_S(\mathfrak{m}, M) \leq f \cdot \text{cd}_S(\mathfrak{a}, M)$. Then $f^i(\mathfrak{m}, M) \in S$ where $t = f \cdot \text{cd}_S(\mathfrak{a}, M)$.

Proof. We use induction on $d = \dim(M)$. If $d = 0$, then $\dim\left(\frac{M}{\mathfrak{a}M}\right) = 0$. Accordingly to [3, Theorem 1.1], $f^i_\mathfrak{a}(M) = 0$ for all $i > 0$.

344
Moreover $f_a^t(M) \cong M \in S$. By definition $H^i_m(M) \in S$ for all $i > t$. Therefore from the above lemma we can assume that M is a-torsion-free and there is an M-regular element $x \in a$. Consider the long exact sequence:

$$\cdots \to f_a^t(M) \xrightarrow{x} f_a^t(M) \xrightarrow{f} \frac{M}{xM} \xrightarrow{g} f_a^{i+1}(M) \xrightarrow{h} \cdots (*)$$

By using the hypothesis $f_a^i(M) \in S$ for all $i > t$ (because $t = f \cdot cd_S(a, M)$). So using the above long exact sequence $f_a^i\left(\frac{M}{xM}\right) \in S$ for all $i > t$. By induction hypothesis, $\frac{f_a^i\left(\frac{M}{xM}\right)}{af_a^i\left(\frac{M}{xM}\right)} \in S$ because $\dim\left(\frac{M}{xM}\right) = \dim(M) - 1$.

Afterwards from the exact sequence $(*)$ we get the following short exact sequence.

$$0 \to \text{Im}(f) \to f_a^t\left(\frac{M}{xM}\right) \to \text{Im}(g) \to 0$$

So we obtain the following long exact sequence.

$$\cdots \to \text{Tor}_1^R\left(\frac{R}{a}, \text{Im}(g)\right) \to \frac{\text{Im}(f)}{a\text{Im}(f)} \to \frac{f_a^t\left(\frac{M}{xM}\right)}{af_a^t\left(\frac{M}{xM}\right)} \to \frac{\text{Im}(g)}{a\text{Im}(g)} \to 0.$$

Since $f_a^t(M) \in S$ and $\text{Im}(g)$ is a submodule of $f_a^{i+1}(M)$, we deduce that $\text{Tor}_1^R\left(\frac{R}{a}, \text{Im}(g)\right) \in S$. On the other hand, $\frac{f_a^i\left(\frac{M}{xM}\right)}{af_a^i\left(\frac{M}{xM}\right)} \in S$. Therefore, $\frac{\text{Im}(f)}{a\text{Im}(f)} \in S$ by the above long exact sequence.

Now, consider the following long exact sequence.

$$\frac{f_a^t(M)}{af_a^t(M)} \xrightarrow{x} \frac{f_a^t(M)}{af_a^t(M)} \xrightarrow{f} \frac{\text{Im}(f)}{a\text{Im}(f)} \to 0.$$

So, $\frac{f_a^t(M)}{af_a^t(M)} \cong \frac{\text{Im}(f)}{a\text{Im}(f)}$ because $x \in a$. Consequently, $\frac{f_a^t(M)}{af_a^t(M)} \in S$.

Proposition 3.8. For a finitely generated R-module M,

$$f \cdot cd_S(a, M) = \max \{f \cdot cd_S\left(a, \frac{R}{P}\right) | P \in \text{Ass}_R(M)\}.$$

Proof. Set $N := \bigoplus_{P \in \text{Ass}_R(M)} \frac{R}{P}$. Then $\text{Supp}_R(M) = \text{Supp}_R(N)$. So, by Theorem 3.2 and Corollary 3.5, $f \cdot cd_S(a, M) = f \cdot cd_S(a, N) = \max \{f \cdot cd_S\left(a, \frac{R}{P}\right) | P \in \text{Ass}_R(M)\}$.

Proposition 3.9. Assume that a is an ideal of the local ring (R, m). Then $\text{Hom}_R\left(\frac{R}{m}, f_a^0(M)\right) \in S$ if and only if $\text{Hom}_R\left(\frac{R}{m}, \tilde{M}^a\right) \in S$.

Proof. It is enough to consider the following isomorphisms

$$\text{Hom}_R\left(\frac{R}{m}, f_a^0(M)\right) \cong \bigoplus_{i \in \mathbb{N}} \text{Hom}_R\left(\frac{R}{m}, H_0^i(M/\mathfrak{a}^nM)\right) \cong \bigoplus_{i \in \mathbb{N}} \text{Hom}_R\left(\frac{R}{m}, M/\mathfrak{a}^nM\right) \cong \text{Hom}_R\left(\frac{R}{m}, \tilde{M}^a\right).$$
Acknowledgements

The authors would like to thank the referees for their helpful comments.

References