Formal Local Cohomology Modules and Serre Subcategories

A. Kianezhad; Science and Research Branch, Islamic Azad University
A. J. Taherizadeh*; Kharazmi University
A. Tehranian; Science and Research Branch, Islamic Azad University

Abstract

Let \((R, m)\) be a Noetherian local ring, \(a\) an ideal of \(R\) and \(M\) a finitely generated \(R\)-module. We investigate some properties of formal local cohomology modules with respect to a Serre subcategory. We provide a common language to indicate some properties of formal local cohomology modules.

1. Introduction

Throughout this paper \((R, m)\) is a commutative Noetherian local ring, \(a\) an ideal of \(R\) and \(M\) is a finitely generated \(R\)-module. For an integer \(i \in \mathbb{N}_0\), \(H^i_a(N)\) denotes the \(i\)-th local cohomology module of \(M\) with respect to \(a\) as introduced by Grothendieck (cf. [1], [2]).

We shall consider the family of local cohomology modules \(\{H^i_m\left(\frac{M}{a^nM}\right)\}_{n \in \mathbb{N}}\) for a non-negative integer \(i \in \mathbb{N}_0\). With natural homomorphisms; this family forms an inverse system. Schenzel introduced the \(i\)-th formal local cohomology of \(M\) with respect to \(a\) in the form of \(f^i_a(M) := \lim_{n \to \infty} H^i_m\left(\frac{M}{a^nM}\right)\), which is the \(i\)-th cohomology module of the \(a\)-adic completion of the \(\check{\text{C}}ech\) complex \(\check{\cdot} \otimes_R M\), where \(\check{\cdot}\) denotes a system of elements of \(R\) such that \(\text{Rad}(\check{\cdot}, R) = m\) (see [3, Definition 3.1]). He defines the formal grade as \(f.\text{grade}(a, M) = \inf \{i \in \mathbb{N}_0 | f^i_a(M) \neq 0\}\). For any ideal \(a\) of \(R\) and finitely generated \(R\)-module \(M\) the following statements hold:

(i) (See [3, Theorem 3.11]). If \(0 \to M' \to M \to M'' \to 0\) is a short exact sequence of finitely generated \(R\)-modules, then there is the following long exact sequence:
\[
\cdots \to f^i_a(M') \to f^i_a(M) \to f^i_a(M'') \to \cdots.
\]

Keywords: Local cohomology, Formal local cohomology, Serre subcategory, Formal grade, Formal cohomological dimension.

Received: 26 Feb 2012 Revised 18 Dec 2013

*Corresponding author: taheri@khu.ac.ir
(ii) (See [3, Theorem 1.3]). $f.\ grade (a, M) \leq \dim(M) - cd(a, M)$; some properties of formal local cohomology have been presented in [3, 4, 5 and 6].

Throughout this paper S denotes a Serre subcategory of the category of R-modules and R-homomorphisms (we recall that a class S of R-modules is a Serre subcategory of the category of R-modules and R-homomorphisms if S is closed under taking submodules, quotients and extensions).

Our paper contains three sections. In Section 2, we shall define the formal grade of a with respect to M in S as the infimum of the integers i such that $f^i_a(M) \notin S$ and is denoted by $f.\ grade_S(a, M)$. (See definition 2.1). Then we shall obtain some properties of this notion. We show that if $\Gamma_a(M)$ is a pure submodule of M, then $\text{Hom}_R(\frac{R}{m}, f^t_a(\Gamma_a(M)))$ and $\text{Hom}_R(\frac{R}{m}, f^{t-1}_a(\frac{M}{\Gamma_a(M)}))$ belong to S, where $t = f.\ grade_S(a, M)$.

In Section 3, we shall define the formal cohomological dimension of a with respect to M in S as the supremum of the integers i such that $f^i_a(M) \notin S$ and is denoted by $f.\ cd_S(a, M)$. (See definition 3.1). The main result of this section is that if $f^i_a(M) \in S$ and $H^t_m(M) \in S$ for all $i > t$, then $\frac{R}{a} \otimes_R f^i_a(M)$ belongs to S.

2. The formal grade of a module in a Serre subcategory

Definition 2.1. The formal grade of a with respect to M in S is the infimum of the integers i such that $f^i_a(M) \notin S$ and is denoted by $f.\ grade_S(a, M)$.

Proposition 2.2. Let (R, m) be a local ring and a be an ideal of R. If $0 \to L \to M \to N \to 0$ is an exact sequence of finitely generated R-modules, then the following statements hold.

(a) $f.\ grade_S(a, M) \geq \min\{f.\ grade_S(a, L), f.\ grade_S(a, N)\}$.

(b) $f.\ grade_S(a, L) \geq \min\{f.\ grade_S(a, M), f.\ grade_S(a, N) + 1\}$.

(c) $f.\ grade_S(a, N) \geq \min\{f.\ grade_S(a, L) - 1, f.\ grade_S(a, M)\}$.

Proof. According to [3, Theorem 3.11], the above short exact sequence induces the following long exact sequence.

$$\cdots \to f^{i-1}_a(N) \to f^i_a(L) \to f^i_a(M) \to f^i_a(N) \to f^{i+1}_a(L) \to \cdots.$$

So, the result follows.
Corollary 2.3. If $\underline{x} = x_1, ..., x_n$ is a regular M-sequence, then $f.\text{grade}_S\left(\frac{a}{\sum M}\right) \geq f.\text{grade}_S(\alpha, M) - n$.

Proof. Consider the following exact sequence $(n \in \mathbb{N})$

$$0 \rightarrow \frac{M}{(x_1, \ldots, x_{n-1})M} \xrightarrow{x_n} \frac{M}{(x_1, \ldots, x_{n})M} \xrightarrow{\text{nat.}} \frac{M}{(x_1, \ldots, x_n)M} \rightarrow 0$$

whenever $n = 1$ by $(x_1, ..., x_{n-1})M$ we means 0.

Corollary 2.4. Let a and b be ideals of R. Then

(a) $f.\text{grade}_S(a \cap b, M) \geq \min\{f.\text{grade}_S(a, M), f.\text{grade}_S(b, M), f.\text{grade}_S((a, b), M) + 1\}$.

(b) $f.\text{grade}_S((a, b), M) \geq \min\{f.\text{grade}_S(a \cap b, M) - 1, f.\text{grade}_S(a, M), f.\text{grade}_S(b, M)\}$.

Proof. For all $n \in \mathbb{N}$ there is a short exact sequence as follows:

$$0 \rightarrow \frac{M}{a^nM \cap b^nM} \rightarrow \frac{M}{a^nM} \oplus \frac{M}{b^nM} \rightarrow \frac{M}{(a^n, b^n)M} \rightarrow 0.$$

By using [3, Theorem 5.1], the above exact sequence induces the following long exact sequence.

$$\ldots \rightarrow \lim_{n \in \mathbb{N}} H^1_m\left(\frac{M}{(a \cap b)^nM}\right) \rightarrow \lim_{n \in \mathbb{N}} H^1_m\left(\frac{M}{a^nM}\right) \oplus \lim_{n \in \mathbb{N}} H^1_m\left(\frac{M}{b^nM}\right) \rightarrow \lim_{n \in \mathbb{N}} H^1_m\left(\frac{M}{(a, b)^nM}\right) \rightarrow \ldots.$$

So by using an argument similar to that of Proposition 2.2, the result follows.

Corollary 2.5. Assume that M is a finitely generated R-module and N_1 and N_2 are submodules of M. Then considering the exact sequence $0 \rightarrow \frac{M}{N_1 \cap N_2} \rightarrow \frac{M}{N_1} \oplus \frac{M}{N_2} \rightarrow \frac{M}{N_1 + N_2} \rightarrow 0$ we shall have

(a) $f.\text{grade}_S\left(a, \frac{M}{N_1 \cap N_2}\right) \geq \min\{f.\text{grade}_S(a, \frac{M}{N_1}), f.\text{grade}_S(a, \frac{M}{N_2}), f.\text{grade}_S(a, MN2), f.\text{grade}_S(a, MN1 + N2 + 1)\}$.

(b) $f.\text{grade}_S\left(a, \frac{M}{N_1 + N_2}\right) \geq \min\{f.\text{grade}_S\left(a, \frac{M}{N_1}\right) - 1, f.\text{grade}_S\left(a, \frac{M}{N_2}\right), f.\text{grade}_S(a, MN1), f.\text{grade}_S(a, MN2)\}$.

Theorem 2.6. Let a be an ideal of a local ring (R, \mathfrak{m}), M be a finitely generated R-module and L be a pure submodule of M. Then $f.\text{grade}_S(a, L) \geq f.\text{grade}_S(a, M)$ where S is a Serre subcategory of the category of R-modules and R-homomorphisms. In particular, $\inf \{i | H^i_m(L) \notin S\} \geq \inf \{i | H^i_m(M) \notin S\}$.
Proof. Let \(L \) be a pure submodule of \(M \). So \(\frac{L}{a^nL} \to \frac{M}{a^nM} \) is pure for each \(n \in \mathbb{N} \). Now according to [8, Corollary 3.2 (a)], \(H^i_m \left(\frac{L}{a^nL} \right) \to H^i_m \left(\frac{M}{a^nM} \right) \) is injective. Since inverse limit is a left exact functor, \(f^i_m(L) \) is isomorphic to a submodule of \(f^i_m(M) \). Consequently \(f.g. grade_S(a,L) \geq f.g. grade_S(a,M) \). If \(a = 0 \) then \(f.g. grade_S(0,M) = \inf \{ |H^i_m(M) \notin S \} \) and the result follows.

Corollary 2.7. If \(0 \to L \to M \to N \to 0 \) is a pure exact sequence of finitely generated \(R \)-modules, then \(\min \{ f.g. grade_S(a,L), f.g. grade_S(a,N) + 1 \} \geq f.g. grade_S(a,M) \).

Proof. Since \(L \) is a pure submodules of \(M \), as a result of the previous theorem, \(f.g. grade_S(a,L) \geq f.g. grade_S(a,M) \). Hence we must prove that \(f.g. grade_S(a,N) + 1 \geq f.g. grade_S(a,M) \). We assume that \(i < f.g. grade_S(a,M) \) and we show that \(i < f.g. grade_S(a,N) + 1 \). Consider the following long exact sequence.

\[
... \to f^i_a^{-1}(M) \to f^i_a^{-1}(N) \to f^i_a(L) \to f^i_a(M) \to f^i_a(N) \to ... \, (**)
\]

If \(i < f.g. grade_S(a,M) \), then \(f^i_a(M), f^i_a(M), ..., f^1_a(M) \in S \). On the other hand, since \(i < f.g. grade_S(a,N) \leq f.g. grade_S(a,L), f^i_a(L), ..., f^2_a(L) \in S \). Hence, it follows from (**) that \(f^i_a(N), ..., f^i_a(N) \in S \) and so \(i - 1 < f.g. grade_S(a,N) \).

Theorem 2.8. Let \((R, m) \) be a local ring, \(a \) be an ideal of \(R \), \(S \) be a Serre subcategory of the category of \(R \)-modules and \(R \)-homomorphisms and \(M \in S \) be a finitely generated \(R \)-module such that \(\Gamma_a(M) \) is a pure submodule of \(M \). Then \(\text{Hom}_R \left(\frac{R}{a}, f^i_a(\Gamma_a(M)) \right) \in S \), where \(t = f.g. grade_S(a,M) \).

Proof. Due to the previous theorem, \(f.g. grade_S(a, \Gamma_a(M)) \geq f.g. grade_S(a,M) \). If \(f.g. grade_S(a, \Gamma_a(M)) > f.g. grade_S(a,M) \), then the result is obvious. Accordingly, we assume that \(f.g. grade_S(a, \Gamma_a(M)) = f.g. grade_S(a,M) \). We know that \(\text{Supp}(\Gamma_a(M)) \subseteq \text{Var}(a) \). By using [4, Lemma 2.3], \(f^i_a(\Gamma_a(M)) \cong H^i_m(\Gamma_a(M)) \) for all \(i \geq 0 \). So, if \(j < f.g. grade_S(a,M) \), then \(f^j_a(\Gamma_a(M)) \cong H^j_m(\Gamma_a(M)) \in S \) and \(\text{Ext}^k_R \left(\frac{R}{m}, H^j_m(\Gamma_a(M)) \right) \in S \) for all \(k \geq 0 \) and \(j < f.g. grade_S(a,M) \). Moreover \(\text{Ext}^i_R \left(\frac{R}{m}, \Gamma_a(M) \right) \in S \), because \(\Gamma_a(M) \in S \). Consequently, according to [7, Theorem 2.2],

\[
\text{Hom}_R \left(\frac{R}{m}, H^i_m(\Gamma_a(M)) \right) \in S \), where \(t = f.g. grade_S(a,M) \).
\]

Corollary 2.9 With the same notations as Theorem 2.8, let \(X \in S \) be a submodule of \(f^i_a(\Gamma_a(M)) \), where \(t = f.g. grade_S(a,M) \). Then \(\text{Hom}_R \left(\frac{R}{m}, \frac{f^i_a(\Gamma_a(M))}{X} \right) \in S \).

Proof. Consider the long exact sequence:
In accordance with the previous theorem $\text{Hom}_R \left(\frac{R}{m}, f_{a}^{t}(\Gamma_{a}(M)) \right) \rightarrow \text{Ext}_R^{1} \left(\frac{R}{m}, X \right) \rightarrow \text{Ext}_R^{1} \left(\frac{R}{m}, X \right)$. Moreover $\text{Ext}_R^{1} \left(\frac{R}{m}, X \right) \in S$. It follows from the exact sequence (*) that $\text{Hom}_R \left(\frac{R}{m}, \frac{f_{a}^{t}(\Gamma_{a}(M))}{x} \right) \in S$.

Theorem 2.10. Suppose that a is an ideal of (R, m) and $M \in S$ is a finitely generated R-module such that $\Gamma_{a}(M)$ is a pure submodule of M. Then $\text{Hom}_R \left(\frac{R}{m}, f_{a}^{t-1} \left(\frac{M}{\Gamma_{a}(M)} \right) \right) \in S$, where $t = f. \text{grade}_{S}(a, M)$.

Proof. One has $f. \text{grade}_{S}(a, \Gamma_{a}(M)) \geq f. \text{grade}_{S}(a, M)$, by Theorem 2.6. Now, the exact sequence $0 \rightarrow \Gamma_{a}(M) \rightarrow M \rightarrow \frac{M}{\Gamma_{a}(M)} \rightarrow 0$ induces the following long exact sequence:

$$\cdots \rightarrow f_{a}^{t-1} \left(\Gamma_{a}(M) \right) \rightarrow \frac{\beta}{f_{a}^{t-1} \left(M \right)} \rightarrow \frac{\gamma}{f_{a}^{t-1} \left(\frac{M}{\Gamma_{a}(M)} \right)} \rightarrow f_{a}^{t} \left(\Gamma_{a}(M) \right) \rightarrow \cdots \rightarrow \frac{\psi}{\ldots} \rightarrow \frac{\xi}{\ldots} \cdots \rightarrow \ldots \rightarrow \frac{\alpha}{\ldots} \rightarrow \frac{\beta}{\ldots} \rightarrow \frac{\gamma}{\ldots} \rightarrow \frac{\xi}{\ldots} \rightarrow \frac{\psi}{\ldots} \rightarrow \cdots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots$$

Using the exact sequence (*), we obtain the short exact sequence $0 \rightarrow \text{Im}(\beta) \rightarrow f_{a}^{t-1} \left(M \right) \rightarrow \text{Im}(\gamma) \rightarrow 0$. Since $f_{a}^{t-1} \left(M \right) \in S$, $\text{Im}(\beta) \in S$ and $\text{Im}(\gamma) \in S$. Furthermore, we have the exact sequence $0 \rightarrow \text{Im}(\xi) \rightarrow H_{m}^{t} \left(\Gamma_{a}(M) \right) \rightarrow \text{Im}(\varphi) \rightarrow 0$ which induces the following long exact sequence:

$$0 \rightarrow \text{Hom}_R \left(\frac{R}{m}, \text{Im}(\xi) \right) \rightarrow \text{Hom}_R \left(\frac{R}{m}, H_{m}^{t} \left(\Gamma_{a}(M) \right) \right) \rightarrow \cdots.$$

Thus $\text{Hom}_R \left(\frac{R}{m}, \text{Im}(\xi) \right) \in S$. Finally, by considering the short exact sequence $0 \rightarrow \text{Im}(\gamma) \rightarrow f_{a}^{t-1} \left(\frac{M}{\Gamma_{a}(M)} \right) \rightarrow \text{Im}(\xi) \rightarrow 0$ we can conclude that $\text{Hom}_R \left(\frac{R}{m}, f_{a}^{t-1} \left(\frac{M}{\Gamma_{a}(M)} \right) \right) \in S$.

Theorem 2.11. Suppose that R is complete with respect to the a-adic topology and $M \in S$ be a finitely generated R-module and t a positive integer such that $f_{a}^{t} \left(M \right) \in S$ for all $i < t$. Then $\text{Hom}_R \left(\frac{R}{m}, f_{a}^{t} \left(M \right) \right) \in S$.

Proof. We use induction on t. Let $t=0$. Consider the following isomorphisms.

$$\text{Hom}_R \left(\frac{R}{m}, f_{a}^{0}(M) \right) \cong \lim_{\rightarrow} \text{Hom}_R \left(\frac{R}{m}, H_{a}^{0} \left(\frac{M}{a^{i}M} \right) \right) \cong \lim_{\rightarrow} \text{Hom}_R \left(\frac{R}{m}, a^{i}M \right) \cong \text{Hom}_R \left(\frac{R}{m}, M \right).$$

$$\text{Hom}_R \left(\frac{R}{m}, f_{a}^{0}(M) \right) \cong \lim_{\rightarrow} \text{Hom}_R \left(\frac{R}{m}, H_{a}^{0} \left(\frac{M}{a^{i}M} \right) \right) \cong \lim_{\rightarrow} \text{Hom}_R \left(\frac{R}{m}, M \right)$$

341
It is clear that $\text{Hom}_R \left(\frac{R}{m}, M \right) \in S$. So by the above isomorphisms, we deduce that

$$\text{Hom}_R \left(\frac{R}{m}, f^i_a(M) \right) \in S.$$

Suppose that $t > 0$ and the result is true for all integer i less than t. Set $N := f^i_m(M)$. Then $f^i_a(M) \cong \left(\frac{M}{N} \right)$ for all $i > 0$, and so we may assume that $\text{depth}_R(M) > 0$. There is an M-regular element $x \in m$. The exact sequence $0 \rightarrow M \rightarrow M \xrightarrow{x} \frac{M}{mM} \rightarrow 0$ induces the following long exact sequence:

$$\cdots \rightarrow f^{t-2}_a(M) \xrightarrow{x} f^{t-2}_a(M) \xrightarrow{f} f^{t-2}_a \left(\frac{M}{M} \right) \rightarrow f^{t-1}_a(M) \xrightarrow{x} f^{t-1}_a(M) \xrightarrow{g} f^{t-1}_a \left(\frac{M}{M} \right) \rightarrow f^t_a(M) \xrightarrow{x} f^t_a(M) \xrightarrow{h} \cdots. \quad (*)$$

Using the exact sequence $(*)$ we obtain the short exact sequence

$$0 \rightarrow f^{t-1}_a \left(\frac{M}{M} \right) \rightarrow f^t_a \left(\frac{M}{M} \right) \rightarrow (0 : x) \rightarrow 0.$$

Now, this exact sequence induces the following long exact sequence:

$$0 \rightarrow \text{Hom}_R \left(\frac{R}{m}, f^{t-2}_a(M) \right) \rightarrow \text{Hom}_R \left(\frac{R}{m}, f^{t-1}_a \left(\frac{M}{M} \right) \right) \rightarrow \text{Hom}_R \left(\frac{R}{m}, (0 : x) \right) \rightarrow$$

$$\text{Ext}^1_R \left(\frac{R}{m}, f^{t-1}_a \left(\frac{M}{M} \right) \right) \rightarrow \cdots. \quad (**)$$

By using $(*)$, $f^i_a \left(\frac{M}{M} \right) \in S$ for all $i < t - 1$. Therefore by the induction hypothesis $\text{Hom}_R \left(\frac{R}{m}, f^{t-1}_a \left(\frac{M}{M} \right) \right) \in S$. Furthermore $\text{Ext}^1_R \left(\frac{R}{m}, f^{t-1}_a \left(\frac{M}{M} \right) \right) \in S$ because $f^{t-1}_a(M) \in S$. Thus in accordance with $(**)$, $\text{Hom}_R \left(\frac{R}{m}, (0 : x) \right) \in S$. Since $x \in m$ according to [9,10.86] we have the following isomorphisms.

$$\text{Hom}_R \left(\frac{R}{m}, (0 : x) \right) \cong \text{Hom}_R \left(\frac{R}{m}, \text{Hom}_R \left(\frac{R}{xM}, f^t_a(M) \right) \right) \cong$$

$$\text{Hom}_R \left(\frac{R}{m} \otimes_R \frac{R}{xM}, f^t_a(M) \right) \cong \text{Hom}_R \left(\frac{R}{m}, f^t_a(M) \right).$$

Consequently $\text{Hom}_R \left(\frac{R}{m}, f^t_a(M) \right) \in S$.

342
3. The formal cohomological dimension in a Serre subcategory

We recall from [3,Theorem 1.1] that for a finitely generated R-module M,\[
\sup\{i \in \mathbb{N}_0 | f^i_a(M) \neq 0\} = \dim \left(\frac{M}{aM} \right).
\]

Definition 3.1. The formal cohomological dimension of M with respect to a in S is the supremum of the integers i such that $f^i_a(M) \not\in S$ and is denoted by $f.cd_S(a,M)$.

Theorem 3.2. Suppose that S is a Serre subcategory of the category of R-modules and R-homomorphisms and L and N are two finitely generated R-modules such that $\text{Supp}_R(L) \subseteq \text{Supp}_R(N)$. Then $f.cd_S(a,L) \leq f.cd_S(a,N)$.

Proof. It is enough to prove that $f^i_a(L) \in S$ for all $i > f.cd_S(a,N)$ and all finitely generated R-module L such that $\text{Supp}_R(L) \subseteq \text{Supp}_R(N)$. We use descending induction on i. For all $i > \dim \left(\frac{L}{aL} \right) + f.cd_S(a,N)$, $f^i_a(L) = 0 \in S$. Let $i > f.cd_S(a,N)$ and the result is proved for $i + l$. By Gruson’s theorem, there is a chain $0 = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_l = L$ of submodules of L such that $\frac{L_i}{L_{i-l}}$ is a homomorphic image of a direct sum of finitely many copies of N. Consider the exact sequence $0 \to L_{i-l} \to L_i \to \frac{L_i}{L_{i-l}} \to 0$ ($i = 0, l, \ldots, l$). We may assume that $l = l$. The exact sequence $0 \to K \to \bigoplus_{j=i}^l N \to L \to 0$ where K is a finitely generated R-module induces the following long exact sequence:

\[
\cdots \to f^i_a\left(\bigoplus_{j=i}^l N \right) \to f^i_a(L) \to f^{i+1}_a(K) \to \cdots \tag{*}
\]

Based on the induction hypothesis $f^{i+1}_a(K) \in S$. Moreover $f^i_a\left(\bigoplus_{j=i}^l N \right) = \bigoplus_{j=i}^l f^i_a(N) \in S$ for all $i > f.cd_S(a,N)$. Hence it follows from the exact sequence (*) that $f^i_a(L) \in S$.

The next example shows that even if $\text{Supp}_R(M) = \text{Supp}_R(N)$, then it may not true that $f.grade_S(a,M) = f.grade_S(a,N)$.

Example 3.3. (See [4, Example 4.3 (i)]) Let (R, m) be a 2 dimensional complete regular local ring, $S = 0$ and \mathbf{a} be an ideal of R with $\dim \left(\frac{R}{a} \right) = 1$. Then by using [5, Theorem 1.1], $f.grade_S(a,R) = 1$ and $f.grade_S\left(a, \frac{R}{m} \right) = 0$. Set $M := R \oplus \frac{R}{m}$. Then $\text{Supp}_R(M) = \text{Supp}_R(R)$. But $f.grade_S(a,M) = \inf \left\{ f.grade_S(a,R), f.grade_S\left(a, \frac{R}{m} \right) \right\} = 0$.

Corollary 3.4. For all $x \in a \cdot f.cd_S(a,M) \geq f.cd_S\left(a, \frac{M}{xM} \right)$.

Corollary 3.5. Suppose that $0 \to L \to M \to N \to 0$ is an exact sequence of finitely generated R-modules. Then $f.cd_S(a,M) = \max \{ f.cd_S(a,L), f.cd_S(a,N) \}$.

343
Proof. Since $\text{Supp}_R(M) = \text{Supp}_R(L) \cup \text{Supp}_R(N)$ by referring to Theorem 3.2 we deduce that $f. cd_S(a, M) \geq f. cd_S(a, L)$ and $f. cd_S(a, M) \geq f. cd_S(a, N)$. Therefore $f. cd_S(a, M) \geq \max \{f. cd_S(a, L), f. cd_S(a, N)\}$. Next we prove that $\max \{f. cd_S(a, L), f. cd_S(a, N)\} \geq f. cd_S(a, M)$.

Let $i > \max \{f. cd_S(a, L), f. cd_S(a, N)\}$. Then $f^i_a(N), f^i_a(L) \in S$ and from the exact sequence $f^i_a(L) \to f^i_a(M) \to f^i_a(N)$ we conclude that $f^i_a(M) \in S$. Thus, $\max \{f. cd_S(a, L), f. cd_S(a, N)\} \geq f. cd_S(a, M)$.

We recall that the cohomological dimension of an R-module M with respect to an ideal a of R in S is defined as

$$cd_S(a, M) := \sup \{i \in \mathbb{N} \mid H^i(M) \not\in S\}.$$

The following lemma shows that when we considering the Artinianess of $f^i_a(M)$, we can assume that M is a-torsion-free.

Lemma 3.6. Suppose that a is an ideal of a local ring (R, m) and t be a non-negative integer. If $H^i_m(M) \in S$ for all $i \geq t$, then the following are equivalent:

(a) $f^i_a(M) \in S$ for all $i \geq t$.

(b) $f^i_a(M/M_{\Gamma_a(M)}) \in S$ for all $i \geq t$.

Proof. According to the hypothesis $t > cd_S(m, M)$. On the other hand $\text{Supp}_R(\Gamma_a(M)) \subseteq \text{Supp}_R(M)$. So by referring to [7, Theorem 3.5], $cd_S(m, \Gamma_a(M)) \leq cd_S(m, M)$. Thus, $t > cd_S(m, \Gamma_a(M))$ and $H^i_m(M) \in S$ for all $i \geq t$. Now, consider the following long exact sequence:

$$\cdots \to f^i_a(\Gamma_a(M)) \to f^i_a(M) \to f^i_a(M/M_{\Gamma_a(M)}) \to f^{i+1}_a(\Gamma_a(M)) \to \cdots \tag{*}$$

According to [4, Lemma 2.3] $f^i_a(\Gamma_a(M)) \cong H^i_m(\Gamma_a(M))$. By using the hypothesis $f^i_a(\Gamma_a(M)) \in S$ for all $i \geq t$. So it follows from the exact sequence (2) that $f^i_a(M) \in S$ if and only if $f^i_a(M/M_{\Gamma_a(M)}) \in S$ for all $i \geq t$.

Theorem 3.7. Let (R, m) be a local ring and $M \in S$ be a finitely generated R-module of dimension d such that $cd_S(m, M) \leq f. cd_S(a, M)$. Then $f^i_a(M/aM) \in S$ where $t = f. cd_S(a, M)$.

Proof. We use induction on $d = \dim(M)$. If $d = 0$, then $\dim(M/aM) = 0$. Accordingly to [3, Theorem 1.1], $f^i_a(M) = 0$ for all $i > 0$.

344
Moreover $f_a^t(M) \cong M \in S$. By definition $H^i_m(M) \in S$ for all $i > t$. Therefore from the above lemma we can assume that M is \mathfrak{a}-torsion-free and there is an M-regular element $x \in \mathfrak{a}$. Consider the long exact sequence:

$$\cdots \rightarrow f_a^t(M) \rightarrow f_a^t(M) \rightarrow f_a^t(M) \rightarrow f_a^{t+1}(M) \rightarrow \cdots. \tag{*}$$

By using the hypothesis $f_a^i(M) \in S$ for all $i > t$ (because $t = f.\cdots(\mathfrak{a},M)$). So using the above long exact sequence $f_a^i(M) \in S$ for all $i > t$. By induction hypothesis, $\frac{f_a^i(M)}{a f_a^i(M)} \in S$ because $\dim(M) = \dim(M) - 1$.

Afterwards from the exact sequence (*) we get the following short exact sequence:

$$0 \rightarrow \text{Im}(f) \rightarrow f_a^t(M) \rightarrow \text{Im}(g) \rightarrow 0.$$

So we obtain the following long exact sequence.

$$\cdots \rightarrow \text{Tor}_p^R\left(\frac{R}{\mathfrak{a}}, \text{Im}(g)\right) \rightarrow \text{Im}(f) \rightarrow \frac{f_a^t(M)}{a f_a^t(M)} \rightarrow \text{Im}(g) \rightarrow 0.$$

Since $f_a^t(M) \in S$ and Im(g) is a submodule of $f_a^{t+1}(M)$, we deduce that $\text{Tor}_p^R\left(\frac{R}{\mathfrak{a}}, \text{Im}(g)\right) \in S$. On the other hand, $\frac{f_a^t(M)}{a f_a^t(M)} \in S$. Therefore, $\frac{\text{Im}(f)}{\text{Im}(g)} \in S$ by the above long exact sequence.

Now, consider the following long exact sequence.

$$f_a^t(M) \rightarrow f_a^t(M) \rightarrow \text{Im}(f) \rightarrow 0.$$

So, $\frac{f_a^t(M)}{a f_a^t(M)} \cong \frac{\text{Im}(f)}{\text{Im}(g)}$ because $x \in \mathfrak{a}$. Consequently, $\frac{f_a^t(M)}{a f_a^t(M)} \in S$.

Proposition 3.8. For a finitely generated R-module M,

$$f.\cdots(\mathfrak{a},M) = \max \{f.\cdots(\mathfrak{a},\frac{R}{P}) | P \in \text{Ass}_R(M)\}.$$

Proof. Set $N := \bigoplus_{P \in \text{Ass}_R(M)}$. Then $\text{Supp}_R(M) = \text{Supp}_R(N)$. So, by Theorem 3.2 and Corollary 3.5, $f.\cdots(\mathfrak{a},M) = f.\cdots(\mathfrak{a},N) = \max \{f.\cdots(\mathfrak{a},\frac{R}{P}) | P \in \text{Ass}_R(M)\}$.

Proposition 3.9. Assume that \mathfrak{a} is an ideal of the local ring (R, \mathfrak{m}). Then $\text{Hom}_R(\mathfrak{m}, f_a^0(M)) \in S$ if and only if $\text{Hom}_R(\mathfrak{m}, \mathfrak{M}^\mathfrak{a}) \in S$.

Proof. It is enough to consider the following isomorphisms

$$\text{Hom}_R\left(\frac{R}{\mathfrak{m}}, f_a^0(M)\right) \cong \lim_{\mathfrak{n} \in \mathfrak{N}} \text{Hom}_R\left(\frac{R}{\mathfrak{m}}, H^0_m(M)\right) \cong \lim_{\mathfrak{n} \in \mathfrak{N}} \text{Hom}_R\left(\frac{R}{\mathfrak{m}}, M\right) \cong \text{Hom}_R\left(\frac{R}{\mathfrak{m}}, \mathfrak{M}^\mathfrak{a}\right) \cong \text{Hom}_R\left(\frac{R}{\mathfrak{m}}, M\right).$$

345
Acknowledgements

The authors would like to thank the referees for their helpful comments.

References