پخش محوری شیبه‌سازی عدید فرآیند انتقال جرم اکسیژن در بسترهاي موتوری انسان

عظمی امین عطانی؛
دانشگاه صنعتی خواجه نصیرالدین طوسی، دانشکده ریاضی، گروه ریاضی کاربردی

چکیده
در این پژوهش به شیبه‌سازی عدید فرآیند انتقال جرم اکسیژن در بسترهاي موتوری انسان با در نظر گرفتن جمله پخش محوری پرداخته شده است. معادله شیبه‌سازی عدید مدل‌های جریان دیفرانسیل با مشتق‌های نامان از نوع هم‌وقت نفوذ است که در مسائل مهندسی زیستی کاربرد فراوان دارد و گشت و گذش عده‌ای در مسائل الیا مزی سیالات مدارهای الکتریکی در کابل‌ها و مسائل انتقال جرم است. حال تحلیل‌ای این نوع معادله‌های پیچیده است. بنابراین حل این حالت حرارتی در اینجا مورد بررسی قرار گرفت. این پرونده در این پژوهش به صورت صورتی در اینجا مورد بررسی قرار گرفت. این پرونده در اینجا مورد بررسی قرار گرفت. این پرونده در اینجا مورد بررسی قرار گرفت.

خاص پایش داده شود و برای ای این منظر از روش تفاضلات متناهی استفاده شده است.

مقدمه
در پژوهش‌های قبلی، مدل ریاضی نامان از فرآیند انتقال جرم اکسیژن در بسترهاي موتوری انسان ارائه شد. فرمول‌های این نوع از مسائل، مطرح به معادله دیفرانسیل پارادایم‌های ستفروی و استادی به زبان شده و برای حل عددی آن از روش تفاضلات متناهی استفاده شده است [1] [1]. این نوع پژوهش، در مسائل بیومهانسی مانند انتشار مواد نیز کاربرد فراوان دارد [12]. در این پژوهش، مدل ریاضی نامان از فرآیند انتقال جرم اکسیژن در بسترهاي موتوری انسان را که شامل جمله پخش محوری عدید است در نظر می‌گیریم و به حل عددی این معادله بعروس تفاضلات متناهی می‌پردازیم. در ادامه، با راه روزی سازگاری، پایداری و هیبردی از معادلات تفاضلی مختلفی که با استفاده از روش‌های صریح استفاده و ضمنا لاترون به استاده می‌آید، متمرکز می‌کنیم.

مدل ریاضی مسئله
معادله مربوط به انتقال جرم اکسیژن در بسترهاي موتوری انسان وابسته به معادلات هم‌وقت نفوذ نامان است. فرض شده است که موتوری محیطی دوی‌بردی به ضخامت \(a \) باشد. در این صورت معادله

\[
t = \frac{\text{تیمک}}{\text{تیمک}}
\]

ا\(\text{تیمک} \) است.}

\[
t = \frac{\text{تیمک}}{\text{تیمک}}
\]

واژه‌های کلیدی: معادله دیفرانسیل با مشتق‌های نامان، روش تفاضلات متناهی، روش صریح استاده، روش ضمینه لاترون، سازگاری، پایداری، هیبردی

دربانات: ۹۰/۵/۱۲

ataei@kntu.ac.ir

779
پخش محوری سیم‌سازی علی فراید انتقال جرم اکسیژن در بسترها موربگ انسان

\[c_r + uc_y = D \left(c_{x\alpha} + c_{y\alpha} \right), \quad 0 \leq x \leq 1, 0 \leq y \leq 1, t > 0 \quad (1) \]

در بستر موربگ، جریان لایه‌ای است و فرض می‌شود که هر جریان از سوی دیگر از سرعت متوسط حرکت کند و ضریب ماده اکسیژن هم مقدار ثابت \(D = 2/3 \) باشد. در نظر گرفته شده است. جملات اول و دوم در سمت چپ معادله (1) بترتیب تعیین علائم در واحد زمان و انتقال به سبب هدف را نشان می‌دهند و جملات سمت راست معادله (1) هم تفاسیر مولکولی در جهت افقی و محوری را منظور می‌کند. معادله (1) تحت شرایط مزیت و اولیه به‌صورت زیر می‌باشد:

(i) شرایط مرزی

- چگالی شار در طول خط قرینگی (تقان) صفر است:

\[c_x(0, y, t) = 0, \quad \forall t, 0 < y \leq 1 \quad (2) \]

- در دیواره محور افقی داریم:

\[c(1, y, t) = 1, \quad \forall t, 0 < y \leq 1 \quad (3) \]

- در ورود محوری داریم:

\[c(x, 0, t) = 0, \quad \forall t, 0 \leq x \leq 1 \quad (4) \]

- و در دیواره محوری برای چگالی شار داریم:

\[c_y(x, 1, t) = 1, \quad \forall t, 0 \leq x \leq 1 \quad (5) \]

(ii) شرایط اولیه

- برای شرایط اولیه در نظر می‌گیریم:

\[c(x, y, 0) = 0, \quad x > 0, y > 0 \quad (6) \]

دستورالعمل حل مشکل به روش تفاضلات متناهی

برای بهکار بردن روش تفاضلات متناهی، ناحیه مورد نظر را به اندارهای دقت \(\Delta x \) و \(\Delta v \) به ترتیب در جهت‌های \(x \) و \(y \) تقسیم می‌کنیم. با این هر یک از نقاط شبکه به‌دین تفاوت تناسب داده می‌شوند:

\[
\begin{align*}
\Delta x &= i \Delta t, \\
\Delta y &= j \Delta t, \\
\Delta t &= k \Delta t, \\
\end{align*}
\]

که در آن \(n = 1 \) و \(m = 1 \) می‌باشد. در روش تفاضلات متناهی، با بهکار بردن تفاضلات متناهی پیشرو، پرتو و مرکزی برای هر مشتق پاره‌ای در معادله (1)، معادلات تفاضلی مختلفی به‌دست می‌آوریم که حل تقریبی از معادله (1) را نتیجه میدهند. در این پژوهش، با بهکار بردن این معادلات تفاضلی، سازگاری و پایداری این معادلات را در نظر می‌گیریم زیرا ارتباط مهمی بین سازگاری یک روش تفاضل متناهی پایدار و هیپرگرافی آن به حل معادله دیفرانسیل پاره‌ای مربوط وجود دارد.
 قضیه هابرلز چاکس[13] بیان می‌کند که اگر یک تقریب تفاضلی سطحی به مقدار اولیه خطا خوش وضع، سازگار باشد آنگاه پایداری برای هیگرای آزم و کافی است. دو محوریتی که برای این قضیه

بیکار می‌رود و باید بطور دقیق با آن توجه شود، این است که اول، مقدار اولیه پایداری خوش وضع باشد؛

یعنی حل معادله باقی بطور یکنواخت به داده‌های اولیه وابسته باشد و دوم، قضیه فقط برای مسائل خطی بکار می‌رود. ویژگی مهم از معادلات خطي این است که مجموعه ای از جواب‌های مرز و جواب‌های از معادله است و به این اثبات مشکل معادله تفاضلی سطحی را مشخص می‌کند که

معادله دیفرانسیل داده شده برای تقریب می‌زنند. این قضیه اهمیت چشمگیری دارد. زیرا تا حدا پایداری روش تفاضلی سطحی را توانسته و ارث‌که با مدل معادله داده شده سازگار باشد را آسان می‌کند. معمولاً اینکه برای روش تفاضلی سطحی حل معادله مربوط به گزاره این می‌دهد، خیلی مشکل است. قضیه هم ارزی لاکس بگشته از

این نیاز هیگرایی را ثابت می‌کند.

در اینجا از تقریب تفاضلات منتاپی برای حل عددی معادله هموق نیومنانی شامل جمله پخش محوری از

معادله (1) استفاده می‌کنیم و معادله مورد نظر خطي خوش وضع است، این برای ابتا سازگاری و

پایداری تقریبی تفاضلات منتاپی از معادله (1) کافی است.

Namash معادله تفاضلی با استفاده از روش صریح استانده

یک نقطه پاره‌ای t در نقطه (i,j,k) با فرمول تفاضلات منتاپی بیضو و c در نقطه (i,j,k+1) با فرمول تفاضلات منتاپی بررو و مشتق مرتبه دوم در x و y هم در نقطه (i,j,k) با فرمول تفاضلات منتاپی مرکزی

تقریب زده می‌شوند. با استفاده از روش صریح استانده (14) [15]:

\[\frac{1}{\Delta t} (c_{i,j}^{k+1} - c_{i,j}^{k}) + \frac{u}{\Delta y} (c_{i+1,j}^{k+1} - c_{i,j}^{k+1}) = \frac{D}{(\Delta x)^2} \left[c_{i-1,j}^{k} - 2c_{i,j}^{k} + c_{i+1,j}^{k} \right] + \frac{D}{(\Delta y)^2} \left[c_{i,j-1}^{k} - 2c_{i,j}^{k} + c_{i,j+1}^{k} \right] \]

با قرار دادن

\[q = \frac{D \Delta t}{(\Delta x)^2} = \frac{D \Delta t}{(\Delta y)^2} \]

و

\[p = \frac{u \Delta t}{\Delta y} \]

با استادی، داریم

\[\left(1 + p\right)c_{i,j}^{k+1} = qc_{i+1,j}^{k+1} + (1-\varphi q)c_{i,j}^{k+1} + qc_{i-1,j}^{k+1} + pc_{i,j+1}^{k+1} + q \left[c_{i,j}^{k+1} - c_{i,j}^{k+1} \right] \]

\[\varphi = 0, 1, \ldots, n-1, \quad j = 1, 2, \ldots, m, \quad k = 0, 1, 2, \ldots \]

که

با بگناشان در شرایط مرزی و اولیه داریم:

- با توجه به معادله (3) برای هر i و k داریم

\[L_{i,j}^{k} = 1 \]

(8)

- با توجه به معادله (3) برای هر i و k داریم

\[\varphi = 0, 1, 2, \ldots \]

(8)

L^1 . Lax's equivalence theorem

181

معنی این عضویت

\[c_{i,j}^k = 0 \]

در این پژوهش برای حل عددی \(m = 10 \) در نظر گرفته شده است، بنابراین با استفاده از تقیی تفاضلات مرزی و با توجه به معادله (5) برای هر \(k \) و \(i \) می‌باشد:

\[\frac{c_{i+1,j}^k - c_{i,j}^k}{\Delta x} = 1 \]

که در نتیجه برای جمله \(c_{i,j}^k \) به استاد می‌باشد:

\[c_{i,j}^k = c_{i,j}^{k-1} + \frac{1}{2} \]

که از جمله \(c_{i,j}^k \) در حل عددی معادلات استفاده می‌شود.

و با توجه به معادله (6) برای هر \(k \) و \(i \) می‌باشد:

\[c_{i,j}^k = \frac{1}{\Delta x} \left(c_{i,j}^{k+1} - c_{i,j}^{k-1} \right) \]

برای تقریب شرط مرزی (2)، سه تقیی تفاضلی مختلف را در نظر می‌گیریم:

- (i) تقریب شرط مرزی مشتق با استفاده از فرمول تفاضلات متناهی مرزی با استفاده از فرمول تفاضلات متناهی مرزی دوم برای تقریب شرط مرزی (2) می‌باشد:

\[\frac{1}{\Delta x} \left(c_{i,j}^{k+1} - c_{i,j}^{k-1} \right) = 0 \]

که در نتیجه برای هر \(k \) و \(i \) می‌باشد:

\[c_{i,j}^k = c_{i,j}^{k-1} \]

با قرار دادن \(i = n = 0 \) در معادله (7) و حفظ جمله \(c_{i,j}^k \) با استفاده از رابطه (13) می‌باشد:

\[(1 + p) c_{i,j}^{k+1} = (1 - 2q) c_{i,j}^k + 2q c_{i,j}^{k-1} + p c_{i,j}^{k+1} + q \left[c_{i,j}^{k+1} + c_{i,j}^{k-1} \right] \]

حال با قرار دادن \(i = n - 1 \) در معادله (7) و با استفاده از رابطه (8) می‌باشد:

\[(1 + p) c_{n-i,j}^{k+1} = q c_{n-i,j}^k + (1 - 2q) c_{n-i,j}^{k-1} + p c_{n-i,j}^{k+1} + q \left[c_{n-i,j}^{k+1} + c_{n-i,j}^{k-1} \right] + d \]

ابنون با استفاده از معادلات (7), (14) و (15) این شکل ماتریسی را می‌توان به استاد آورد:

\[(1 + p) c_{i,j}^{k+1} = A c_{i,j}^k + p c_{i,j}^{k+1} + q \left[c_{i,j}^{k+1} + c_{i,j}^{k-1} \right] + d, \]

که ماتریس مربوط به فاصله از مرتبه \(n \) است و بعدها به صورت معرفی می‌شود:

\[A = \begin{bmatrix}
 q & 1-	au q & q & 0 \\
 q & 1-	au q & q & 0 \\
 \vdots & \ddots & \ddots & \ddots \\
 \tau q & 0 & q & 1-	au q \\
 \tau q & 0 & q & 1-	au q \\
\end{bmatrix} \]

\(782 \)
هم بردارهای ستونی از مرتبه n هستند که به نشان‌گذاری می‌شوند: $c_{j,k}$، و d

$$d = [q_1, q_2, \ldots, q_p] \quad ; \quad c_{j,k} = [c_{j,k,1}, c_{j,k,2}, \ldots, c_{j,k,p}]$$

(1) تقریب شرط مرزی مشتق با استفاده از فرمول تفاوت‌های پیشرو

با دو عدد بردن فرمول تفاوت‌های پیشرو برای تقریب شرط مرزی (2) داریم:

$$\frac{1}{\Delta t} (c_{j,k}^{k+1} - c_{j,k}^k) = 0.$$

که در نتیجه به نام‌ها هر j و k داریم:

$$c_{j,k}^k = c_{j,k}^k$$

(16) با قرار دادن $i=n$ در معادله (7) و حذف جمله $c_{j,k}^k$ با استفاده از رابطه (16) داریم:

$$\begin{pmatrix} 1 + p \end{pmatrix} c_{j,k}^{k+1} = \left(1 - \tau q_1 \right) c_{j,k}^k + q c_{j,k}^k + p c_{j,k}^{k+1} + q \left[c_{j-1,k}^{k+1} + c_{j+1,k}^{k+1} \right]$$

(17) و برای مشابه رابطه (15) را برای $i<n$ داریم. معادلات (7)، (15) و (17) در شکل ماتریسی به نشان‌گذاری می‌شوند:

$$\begin{pmatrix} 1 + p \end{pmatrix} c_{j,k}^{k+1} = \begin{pmatrix} A_{j,k} + p c_{j-1,k}^{k+1} + q \left[c_{j-1,k}^{k+1} + c_{j+1,k}^{k+1} \right] + d \end{pmatrix}$$

که ماتریس‌های A و d به همان شکل قبلی تعیین شده‌اند. ماتریس A به هم با تبدیل (1-3) به (1-2) و q به سطر اول از ماتریس A معرفی شده در (1) بازیافت می‌شود.

(11) تقریب شرط مرزی مشتق با استفاده از فرمول تفاوت‌های متناهی پیشرو

با دو عدد بردن فرمول تفاوت‌های پیشرو برای تقریب شرط مرزی (2) داریم:

$$\frac{1}{\Delta t} (c_{j,k}^{k+1} - c_{j,k}^k) = 0.$$

که در نتیجه به نام‌ها هر j و k داریم:

$$c_{j,k}^k = c_{j,k}^k$$

(18) با قرار دادن $i=n$ در معادله (7) و حذف جمله $c_{j,k}^k$ با استفاده از رابطه (18) داریم:

$$\begin{pmatrix} 1 + p \end{pmatrix} c_{j,k}^{k+1} = \left(1 - \tau q_1 \right) c_{j,k}^k + q c_{j,k}^k + p c_{j,k}^{k+1} + q \left[c_{j-1,k}^{k+1} + c_{j+1,k}^{k+1} \right]$$

(19) و برای مشابه رابطه (15) را برای $i<n$ داریم. معادلات (7)، (15) و (19) در شکل ماتریسی به نشان‌گذاری می‌شوند:

$$\begin{pmatrix} 1 + p \end{pmatrix} c_{j,k}^{k+1} = \begin{pmatrix} A_{j,k} + p c_{j-1,k}^{k+1} + q \left[c_{j-1,k}^{k+1} + c_{j+1,k}^{k+1} \right] + d \end{pmatrix}$$

که ماتریس‌های A و d به همان شکل قبلی تعیین شده‌اند. ماتریس A به هم با تبدیل (1-3) به (1-2) و q به سطر اول از ماتریس A معرفی شده در (1) بازیافت می‌شود.

بردارهای ستونی از همان مرتبه هستند که به نشان‌گذاری می‌شوند:
\[
d = \begin{bmatrix}
 \cdots \cdots \\
 q
\end{bmatrix} ; \quad c_{i,k+1} = \begin{bmatrix}
 c_{i,j}^{k+1}, c_{i,j+1}^{k+1}, \ldots, c_{i,j+j-1}^{k+1}
\end{bmatrix}
\]

در این بخش، بعد از حل دستگاه و بخش آوردن مقادیر \(c_{i,j}^{k+1}\)، قرار می‌دهیم: \(c_{i,j}^{k+1} = c_{i,j}^{k+1}\).

1. روش حل عدید

با توجه به معادلات تفاضلی بسته آمده در هر یک از سه حالت (i) و (ii)، \(c_{i,j}^{k+1}\) را با استفاده از مقادیر معمول در زمان‌های قبلی با آغاز \(k\) برای کردن یعنی یک‌گذر همه مقادیر \(c\) در یک سطح زمانی محاسبه شده و سپس محاسبات برای سطوح زمانی بعدی تكرار شده است. این فرآیند ادامه می‌یابد تا زمانی که:

\[
\sum_{i=m}^{n} \sum_{j=m}^{n} \left| c_{i,j}^{k+1} - c_{i,j}^{k} \right| < \varepsilon
\]

نتایج مربوط به معادلات تفاضلی بسته آمده در حالت‌های (ii) و (iii) در جدول‌های 1 و 2 نشان داده شده است.

2. بررسی خطای برتری و سازگاری

معادله تفاضلی مربوط به معادله (1) را که در بخش 4 بیان شد، در نظر می‌گیریم:

\[
F_{i,j}^k(c) = \frac{1}{\Delta x} (c_{i+1,j}^{k+1} - c_{i,j}^{k+1}) + \frac{u}{\Delta y} (c_{i,j+1}^{k+1} - c_{i,j}^{k+1}) - \frac{D}{(\Delta x)^2} [c_{i+1,j}^{k+1} - c_{i,j}^{k+1} + \frac{r}{2} c_{i,j}^{k+1}]
\]

\[
T_{i,j}^k = c_i + s(r') + O(s(r)) + O(r(s) + O(h^3))
\]

\[
T_{i,j}^k = c_i + uc_y + D(c_{i+1,j}^{k+1} + c_{i,j}^{k+1}) + O(s(r) + O(h^3))
\]

و با نیای این داریم:

\[
T_{i,j}^k = O(s(r) + O(h^3))
\]

و وقتی \(h \rightarrow 0\), \(r \rightarrow 0\), \(s \rightarrow 0\) آن گاه داریم که:

3. بررسی پایداری

شکل ماتریسی از معادله تفاضلی معرفی شده در بخش 4 را در نظر می‌گیریم:

\[
(1 + p)c_{j,k+1} = Ac_{j,k} + pc_{j-k,k+1} + q[c_{j-1,k} + c_{j+1,k}] + d
\]
به عنوان مثال، در بخش ۴ معرفی شده است که معادله (۲۰) داریم:

\[c_{j,k+1} = B c_{j,k} + p'(c_{j-1,k} + q(c_{j-1,k} + c_{j+1,k})) + f \]

که در آن \(f = d_1 (1 + p)^{-1}, q' = q (1 + p)^{-1}, p' = p (1 + p)^{-1}, B = A (1 + p)^{-1} \).

با توجه به معادله (۱۱)، در اینجا یک شرط پیاده‌سازی مناسب را برای معادله تفاصلی دنبال می‌کنیم. برای در نظر گرفتن یک اختلال کوچک در رای \(c_{j,k} \) به صورت:

\[e_{j,k} = c_{j,k} - c_{j,k}^* \]

با قرار دادن \(k = 0 \) در معادله (۲۱) داریم:

\[c_{j,0} = B c_{j,0} + p' c_{j-1,0} + q'(c_{j+1,0} + c_{j-1,0}) + f \]

با قرار دادن \(j = 0 \) در معادله (۲۲) داریم:

\[c_{0,0} = B c_{0,0} + p' c_{0,0} + q'(c_{0,0} + c_{0,0}) + f \]

برای معادله (۲۲) با توجه به رابطه (۲۲) به‌دست می‌آوریم:

\[c_{0,0} - c_{0,0}^* = B(c_{0,0} - c_{0,0}^*) + p'(c_{0,0} - c_{0,0}^*) + q'c_{0,0} - c_{0,0}^*] + f - f \]

و در نتیجه داریم:

\[e_{0,0} = c_{0,0} - c_{0,0}^* \]

به‌دلیل اینکه در \(k = 0 \) مقادیر \(c \) معلوماند، بنابراین برای هر \(k \) داریم:

\[e_{j,k} = 0 \]

پس برای معادله (۲۵) به‌دست می‌آوریم:

\[e_{j,k} = B e_{j,k} + p' e_{j,k} \]

حال در معادله (۲۳) قرار می‌دهیم \(j = 2 \) و داریم:

\[c_{0,2} = B c_{0,2} + p' c_{0,2} + q'(c_{0,2} + c_{0,2}) + f \]

و برای معادله (۲۴) با توجه به معادله (۲۱) داریم:

\[c_{0,2} - c_{0,2}^* = B(c_{0,2} - c_{0,2}^*) + p'(c_{0,2} - c_{0,2}^*) + q'c_{0,2} - c_{0,2}^*] + f - f \]

و بنابراین:

\[e_{0,2} = B e_{0,2} + p' e_{0,2} + q'[e_{0,2} + e_{0,2}] = B e_{0,2} + p' B e_{0,2} + p' q' e_{0,2} + q'[e_{0,2} + e_{0,2}] \]

با استقرار ریاضی روز زدایی:

\[785 \]
اکنون، از طرف طرف رابطه (27)، با نیاز به خاصیت نرم داریم:

\[
\| e_{j,k+1} \| \leq \| B \| \| e_{j,k} \| + (p')^{j-k} \| B \| \| e_{j-k} \| + \sum_{\ell=s}^{j-k} \| B \| (p')^{\ell-k} \| q' \| \| e_{j-\ell} \| + \sum_{\ell=s}^{j-k} \| B \| (p')^{\ell-k} \| q' \| \| e_{j-\ell} \| + \sum_{\ell=s}^{j-k} \| B \| (p')^{\ell-k} \| q' \| \| e_{j-\ell} \| + \sum_{\ell=s}^{j-k} \| B \| (p')^{\ell-k} \| q' \| \| e_{j-\ell} \| + \sum_{\ell=s}^{j-k} \| B \| (p')^{\ell-k} \| q' \| \| e_{j-\ell} \|
\]

توضیح، در نتیجه بالاست می‌آوریم:

\[
\| e_{j,k+1} \| \leq \| B \| + \| q' \| \sum_{n=s}^{\infty} (p')^{n} \| e_{k} \|
\]

و با نیاز به این توضیح درباره نرم ماتریسی، برای (28) می‌توان نوشت:

\[
\| e_{j,k+1} \| \leq \| B \| + \| q' \| \sum_{n=s}^{\infty} (p')^{n} \| e_{k} \|
\]

که در این نتیجه بالاست می‌آوریم:

\[
\| e_{j,k+1} \| \leq \| B \| + \| q' \| \sum_{n=s}^{\infty} (p')^{n} \| e_{k} \|
\]

و با فرمول بازگشتی برای (31) خواهیم داشت:

\[
\| e_{j,k+1} \| \leq \| B \| + \| q' \| \sum_{n=s}^{\infty} (p')^{n} \| e_{k} \|
\]
نمایش معادله تفاضلی با استفاده از روش کلاسیک ضمنی لاترونن

معادله تفاضلی روش لاترونن برای حل تقریبی از معادله (1) به صورت است [18]، [19]:

\[
\frac{1}{\Delta t} \left(c_{i,j}^{k+1} - c_{i,j}^k \right) + \frac{u}{\Delta y} \left(c_{i,j}^{k+1} - c_{i,j-1}^{k+1} \right) = \frac{D}{\Delta x} \left(c_{i,j}^{k+1} - c_{i,j+1}^{k+1} + c_{i,j-1}^{k+1} \right) + \frac{D}{\Delta y} \left(c_{i,j}^{k+1} - c_{i-1,j}^{k+1} + c_{i+1,j}^{k+1} \right)
\]

با قرار دادن:

\[
q = \frac{D\Delta t}{\Delta y} \quad \text{و} \quad p = \frac{u\Delta t}{\Delta y}
\]

\[
-qc_{i-1,j}^{k+1} + (1 + p + q) c_{i,j}^{k+1} - qc_{i+1,j}^{k+1} = (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1}
\]

حال‌با توجه به تقریب‌های تفاضلی مختلف، که برای شرط مرزی (2) در بخش 2 در نظر گرفته شد، برای معادله تفاضلی (32) این حال‌ها را در نظر می‌گیریم:

\[
(i) \quad (1 + p + q)c_{i,j}^{k+1} - qc_{i,j}^{k+1} = (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1}
\]

\[
(ii) \quad (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1}
\]

\[A_{c_{i,j}^{k+1}} = (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1} + d_n
\]

\[A_{c_{i,j}^{k+1}} = (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1} + d_n
\]

\[A_{c_{i,j}^{k+1}} = (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1} + d_n
\]

\[A_{c_{i,j}^{k+1}} = (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1} + d_n
\]

\[A_{c_{i,j}^{k+1}} = (1 - q)c_{i,j}^k + q\left[c_{i,j-1}^{k+1} + c_{i,j+1}^{k+1} \right] + pc_{i,j}^{k+1} + d_n
\]
در معادله (36) قرار می‌دهیم \(i = n \) و با استفاده از رابطه (16) داریم:

\[
(1 + p + q)c_{j,+}^{k+1} - qc_{j,j}^{k+1} = (1 - q)c_{j,j}^{k} + q\left[c_{j+1,j}^{k} + c_{j,j}^{k+1}\right] + pc_{j,j}^{k+1}
\] \hspace{1cm} (37)

و با توجه به رابطه (35) را برای \(i = n - 1 \) داریم. اکنون با استفاده از معادلات (33)، (35) و (36) داریم:

\[
A_{c_{j,k+1}} = (1 - q)c_{j,k}^{n} + q\left[c_{j+1,k}^{n} + c_{j,k}^{n+1}\right] + pc_{j,k}^{n+1} + d
\] \hspace{1cm} (38)

و ماتریس \(A \) همان ماتریس \(A \) است با این تفاوت که از مرتبه \(n - 1 \) است. بردارهای \(c_{j,k+1}^{n} \) و \(d \) هم اکنون با استفاده از معادلات (36) و (37) به سرعت به دست می‌آید.

در این بخش بعد از حل دستگاه و بدست آوردن مقدار \(c_{j,k}^{n} \) بردار \(c_{j,k}^{n+1} \) به سرعت به دست می‌آید.

1. روش حل عددی

در هر یک از سه حالت (i)، (ii) و (iii) که در بخش 5 مطرح شد، دستگاهی از معادلات جبری خطی به دنبال صورت به‌دست آمده است:

\[
A_{c_{j,k+1}} = (1 - q)c_{j,k}^{n} + q\left[c_{j+1,k}^{n} + c_{j,k}^{n+1}\right] + pc_{j,k}^{n+1} + d
\] \hspace{1cm} (38)

چنین دستگاهی برای حل تغییرات تکنیکی عددی است. بنابراین می‌توان این دستگاه را به‌طور مستقیم با استفاده از روش حل‌یافتن گوس برای یک زمان داده شده حل کرد. در حالت کلی می‌توان این دستگاه را با استفاده از روش‌های تکرار نقطه‌ای [20]، مانند روش گوس-سایدل و روش فوق تغییر نقطه‌ای حل کرد. این روش‌ها دقت زیادی را برای مقدار \(c \) در هر نقطه شبکه ایجاد می‌کنند. این دقت مربوط به مقدار \(c_{j,k}^{n+1} \) است که در معادله استفاده شده مجهول است.

788
یک روش تکرار سطحی، تکرارهای متوالی را به شکلی پیدا می‌کند که به‌طور کلی به عنوان مجموعه‌ای از معادلات جبری ساده به صورت سی‌ویک رفت. استفاده از الگوریتم توماس را اجازه می‌دهد [21]. در اینجا روش تکرار سطحی برای حل دستگاهی از معادلات جبری به روش‌های استفاده شده در تکرارهای متولی استفاده می‌شود. در روش تکرار سطحی برای بدست آمدن مقادیر \(c \) از معادله \((38) \) در سطح زمانی (\(k+1 \))، ام از تکرارهای بعدی مقادیر \(c \) در نقطه سطحی \(y=y \) استفاده می‌شود که با افزایش زمان

\[
Ac_{i,j} = (1-q)c_{i,j} + q\left[c_{i,j-1} + c_{i,j+1}\right] + pc_{i,j} + d
\]

(39)

با قرار دادن \(k=0 \) در معادله (39) داریم:

\[
Ac_{i,j} = (1-q)c_{i,j} + q\left[c_{i,j-1} + c_{i,j+1}\right] + pc_{i,j} + d
\]

(40)

با قرار دادن \(k=1 \) در معادله (40) داریم:

\[
Ac_{i,j} = (1-q)c_{i,j} + q\left[c_{i,j-1} + c_{i,j+1}\right] + pc_{i,j} + d
\]

(41)

مقادیر \(c_{i,j} \) و \(c_{i,j} \) باید به شرایط اولیه و مرزی که قبل آن‌ها مشخص شد صورت گیرد و فقط مقادیر \((m-n) \)

مجهول. در حقیقت دستگاهی از معادله و \(m \) مجهول (که \(m \) متغیر داریم و \(n \) متغیر سطحی) از معادله (39) سطح زمانی است. با حل این دستگاه با الگوریتم توماس، مقادیر بردار \(1 \) به‌دست می‌آید. حال در معادله (39):

\[
Ac_{i,j} = (1-q)c_{i,j} + q\left[c_{i,j-1} + c_{i,j+1}\right] + pc_{i,j} + d
\]

(40)

با قرار دادن \(k=1 \) در معادله (40) داریم:

\[
Ac_{i,j} = (1-q)c_{i,j} + q\left[c_{i,j-1} + c_{i,j+1}\right] + pc_{i,j} + d
\]

(41)

مقادیر \(c_{i,j} \) و \(c_{i,j} \) از بالا بدست آمده و مقادیر \(c_{i,j} \) و \(c_{i,j} \) به شرایط شریانی با یکدیگر مشخص می‌شوند. با بر

این با حل دستگاه سطحی، مقادیر بردار \(c_{i,j} \) مشخص می‌شوند.

حال در معادله (40) \(k=2 \) قرار می‌دهیم و با این داریم:

\[
Ac_{i,j} = (1-q)c_{i,j} + q\left[c_{i,j-1} + c_{i,j+1}\right] + pc_{i,j} + d
\]

(42)
در طرف راست معادله (24)، همه مقدار معلومان و با حل دستگاه سه قطعی، مقدار \(c \) بیشتر می‌آید. در
نهایت مقدار \(c \) در زمان \(t = \tau = z + \Delta t \) برای \(i = 1, 2, \ldots, n \) و \(j = 1, 2, \ldots, n \) به‌دست می‌آید.
اگر فرآیند بالا را با افزایش \(k \) برای \(i = 1, 2, \ldots, n \) ادامه دهیم آن‌گاه در هر سطح زمینی با حلق یک دستگاه سه قطعی از معادلات خطی، می‌توان مقدار \(c \) را محاسبه کرد. به‌عنوان یک یک‌پاره همه مقدار \(c \) در یک سطح زمینی
محاسبه شده‌اند و سپس محاسبات برای سطح‌های زمینی بعدی تکرار شده است. این فرآیند ادامه می‌یابد تا زمانی
که:
\[
\sum_{j=1}^{n} \sum_{i=0}^{n} \left| c_{i,j}^{k+1} - c_{i,j}^k \right| < \varepsilon
\]
که \(\varepsilon \) خطای مجاز است.
نتایج مربوط به معادلات تفاضلی به‌دست آمده از بخش 5 در حالت (ii)، در جدول 3 نشان داده شده است.

2. بررسی خطا بررسی و سازگاری
معادله تفاضلی مربوط به معادله (1) در بخش 5 را در نظر می‌گیریم:
\[
F_{i,j}^k(c) = \frac{1}{\Delta t} \left(c_{i,j}^{k+1} - c_{i,j}^k \right) + \frac{u}{\Delta y} \left(c_{i,j}^{k+1} - c_{i,j-1}^{k+1} \right) - \frac{D}{(\Delta x)^2} \left(c_{i,j}^{k+1} - 2c_{i,j}^{k+1} + c_{i,j-1}^{k+1} \right)
\]
\[- \frac{D}{(\Delta y)^2} \left(c_{i,j}^{k+1} - 2c_{i,j}^{k+1} + c_{i,j+1}^{k+1} \right)
\]
چون \(h = \Delta x, r = \Delta y, s = \Delta t \) و بکار بردن سری به‌خاطر تیلر [14] داریم، \(T_{i,j}^k = F_{i,j}^k(c) \) با این دادن دادن:
\[
T_{i,j}^k = c_{i,j} + \frac{s}{y} c_{i,j} + O(s^0) + u \left(c_{i,j} + \frac{r}{y} c_{i,j} + O(r^0) \right) - D \left(c_{i,j} + \frac{h^2}{\Delta x^2} c_{i,j} + O(h^2) \right)
\]
\[- D \left(c_{i,j} + \frac{r}{y} c_{i,j} + O(r^0) \right)
\]
و با این داریم:
\[
T_{i,j}^k = c_{i,j} + u c_{i,j} - Dc_{i,j} + O(s) + O(r) + O(h^2)
\]
چون \(c \) مقدار دقیق معادله (1) است، از این رو داریم:
\[
T_{i,j}^k = O(s) + O(r) + O(h^2)
\]
\(h \rightarrow 0, r \rightarrow 0 \) اگر داریم که \(h \rightarrow 0, r \rightarrow 0 \) با این دادن معادله تفاضلی معرفی شده با معادله دیفرانسیل (1) سازگار است و خطای از مرتبه \(O(\Delta t + \Delta y^2) \) است.

3. بررسی پایداری
شکل ماتریسی از معادله تفاضلی معرفی شده در بخش 5 را در نظر می‌گیرم:

\[Ac_{j,k+1} = (1 - \tau q) c_{j,k} + q \left[c_{j-1,k} + c_{j+1,k} \right] + pc_{j-1,k+1} + d \]

(43)

كه ماتريس \(A \) و بردارهای \(c_{j,k} \) و \(d \) در بخش 5.4 ماتریسی \(C \) معرفی شده‌اند. حال از (43) داریم:

\[c_{j,k+1} = Bc_{j,k} + C \left[c_{j-1,k} + c_{j+1,k} \right] + Dc_{j-1,k+1} + f \]

(44)

كه \(f = d.A^{-1} \) و \(D = p.A^{-1} \)، \(C = q.A^{-1} \)، \(B = (1 - \tau q).A^{-1} \) هستند.

با توجه به بخش 3.4 داریم:

\[e_{j,k} = c_{j,k} - c_{j,k}^* \]

(45)

در مرتبه مشابهی که در بخش 3.4 دیدیم، داریم:

\[e_{j,k+1} = Be_{j,k} + C \left[e_{j-1,k} + e_{j+1,k} \right] + DBe_{j-1,k} + DC \left[e_{j-1,k} + e_{j+1,k} \right] + D^r Be_{j-1,k} \]

\[+ D^r C \left[e_{j-1,k} + e_{j+1,k} \right] + ... + D^{-r} Be_{j-1,k} + D^{-r} C \left[e_{j-1,k} + e_{j+1,k} \right] + D^{-r} e_{j,k+1} \]

(46)

با فرض اینکه \(e_{j,k+1} \) ماتریس با ستون‌های \(e_{j,k} \) باشد و با یک کار بردن خاصیت نرم‌ها برای (46) داریم:

\[\| e_{j,k+1} \| \leq \| B \| \| e_{j,k} \| + \| C \| \left[\| e_{j-1,k} \| + \| e_{j+1,k} \| \right] + \| D \| \| B \| \| e_{j-1,k} \| \]

\[+ \| D \| \| C \| \left[\| e_{j-1,k} \| + \| e_{j+1,k} \| \right] \]

\[+ ... + \| D \|^{-r} \| B \| \| e_{j-1,k} \| \]

\[+ \| D \|^{-r} \| C \| \left[\| e_{j-1,k} \| + \| e_{j+1,k} \| \right] + \| D \|^{-r} \| e_{j,k+1} \| \]

(47)

حال اگر قرار دهیم \(\| e_{j,k} \| = \max \| e_{j,k} \| \) با توجه به شرط مزی (3) داریم: \(\| e_{j,k} \| = \| e_{j,k} \| \).

به‌دست می‌آوریم:

\[\| e_{k+1} \| \leq \| B \| \sum \| D \| \| e_{k} \| + \| C \| \sum \| D \| \| e_{k} \| \]

(48)

و در نتیجه داریم:

\[\| e_{k+1} \| \leq \left(\| B \| + \| C \| \sum \| D \| \right) \| e_{k} \| \]

حال اگر \(\| D \| < 1 \) آنگاه سری هندسی (38) به‌کار می‌رود و داریم:

\[\| e_{k+1} \| \leq \left(\frac{\| B \| + \| C \| \sum \| D \|}{1 - \| D \|} \right) \| e_{k} \| \]

و با فرآیند بانگنشی داریم:

\[\| e_{k+1} \| \leq \left(\frac{\| B \| + \| C \| \sum \| D \|}{1 - \| D \|} \right)^{k+1} \| e_{k} \| \]

791
پخش محوری شیمی‌سازی عدی فرآیند انتقال جرم اکسیژن در بسترها موبرگ انسان

بنابراین شرط لازم و کافی برای پایداری دستگاه تفاعلانه (33) اینست که:

\[\frac{\|B\| + \|C\|}{\|D\|} < 1 \]

در نتیجه شرط لازم و کافی هگرایی اینست که

\[\|B\| + \|C\| + \|D\| < 1 \]

(39)

تحقیق عددی

در این پژوهش، یک مدل ریاضی نامناسب برای فرآیند انتقال جرم اکسیژن در بسترها موبرگ انسان با افزودن جمله پخش محوری ارائه شده و به دستورالعمل حل وظیفه محاسبه شده و شرایط تفاصلات متاتاپی پرداخته‌یا در باکر بدن روش‌ها و سه حالت بلای تقریب شرط مزی مشتق بروز تفاصلی در نظر گرفته شد. در این تحقیق شرط مزی مشتق به روش تفاصلات متاها مرکزی و سپس به روش تفاصلات متاها پرس و در حالت دوم هم بروز تفاصلات متاها پیشرفت تقریب زده شد. در اولین روش تفاصلی، روش تفاصلی صریح استفاده به کار رفته است و نتایج عددی بدست آمده از این روش در حالت (i) و (ii) تقریب شرط مزی مشتق بیان شده، به‌ترتیب در جدول‌های 1 و 2 این است. این روش در این حالت‌ها، دارای سازگاری و پایداری نسبت به مسئله اصلی است.

روش تفاصلات بعدی که استفاده شده است روش ضمنی لاترونون است که نتایج حل از این روش در حالت (ii) در جدول 3 آمده است. نشان داده شده است که این روش نیز دارای سازگاری و پایداری نسبت به مسئله اصلی است. در تمامی این روش‌های تفاصلی مقادیر 1/0005, Δv = 0/1, Δv = 0/21 دارای هستند. در نهایت گرته شده است.

نتیجه

در این مقاله، یک مدل ریاضی نامناسب برای بررسی فرآیند انتقال اکسیژن در بسترها موبرگ انسان ارائه شد که در آن موبرگ یک شبکه دو بعدی در شکل بودن به دست آمده است. با افزودن جمله پخش محوری به این مدل ریاضی، به شکلی از یک معادله دیفرانسیل پایدار با شرایط اولیه و مزی می‌رسیم که بطور عددی بروز تفاصلات متاتاپی حل شده است. نتایج بدست آمده نشان میدهد که معادلات تفاصلی متفاوتی که در بخش‌های 3 و 5 تشریح شدند، همگی دارای دقت یکسانی هستند که برابر (3) است. برای شرایط پایانی، بیدید که معادلات نمایش داده شده برای هر دو روش بکار رفته پایانند و نتایج به‌خوبی هگرا هستند. به دین سبب برای پایداری مشهور 5/0005 منظور شده است.

فرمول‌بندی تفاصلات متاتاپی به دست‌گاهی از معادلات جبری منجر می‌شود که به تکنیکی برای حل دستگاه نیاز داریم. این دستگاه دارای ماتریس ضرایب سه بعدی است. چنین دستگاهی را با روش‌های تکرار نقطه‌ای خیلی کند است.

792
برای رسیدن به هیگراپی سری‌تر از روش‌های تکرار سطروی استفاده می‌کنیم. این روش‌ها با استفاده از ماتریس ضرایب سه بعدی و الگوریتم توماس به جواب می‌رسند. با استفاده از این تکنیک، دستگاه معادلات در هر سطح برای یک زمان ثابت دارای یک مجهول c خواهند بود که در رایه‌های دیگر می‌شد. معادل با قضیه لاکس، اثبات‌های ریاضی از تکنیک‌های حل عدادی به دست می‌آید. بنابراین سازگاری و پایداری این معادلات بررسی شد.

محاسبات انجام شده برای ۱۰ فاصله زمانی با ۱۰ در جهت مثبت x و ۱۰ در جهت مثبت y و گام زمانی مناسب در جهت t به‌نامه‌ها حتی برای گام‌های زمانی کوچک‌تر هم امکان‌پذیر شده‌اند.

تکنیک شرح داده شده در اینجا می‌تواند برای حل هر سطح در دستگاه خطی از معادلات دیفرانسیل پارادای سهمی هم‌مرغ کننده استفاده شود. به‌علاوه دیده شده است که این تکنیک در حل معادلات شامل جمله پخش محوری نیز به‌خوبی جواب می‌دهد.

بررسی خطای معادله شیب‌سازی شده با استفاده از نرم‌های L, L₂, L∞، L, L₂, L∞،

نتایج عدادی به‌استاد امده در اینجا، با توجه به فرض‌هایی با(u/0, ۲۴، D/0=0، q=0/10)، به‌کار گرفته شده‌اند. این مقادیر اولیه داریم: ۱/۰، q=۰/۱۰.

- در بررسی پایداری، روش صحیح استاده داریم:

\[\begin{align*}
 & \|B\|_{\infty} = 0/745098 \\
 & \|B\|_{1} = 0/744274 \\
 & \|B\|_{\infty} = 0/745098
\end{align*} \]

با نبات این از نتایج مذکور، با توجه به شرط پایداری (۲۳):

\[\begin{align*}
 & \|B\|_{\infty} + \|q\|_{\infty} + p = \frac{0}{99999996} < 1 \\
 & \|B\|_{1} + \|q\|_{1} + p = \frac{0}{99999996} < 1 \\
 & \|B\|_{\infty} + \|q\|_{\infty} + p = \frac{0}{99999996} < 1
\end{align*} \]

تذکر: این نتایج مربوط به حالت (ii) است و برای حالت (iii) نیز به‌مشاهده ثابت می‌شود.

- در روش کلاسیک، در جمله برخورد با توجه به شرط پایداری (۴):

\[\begin{align*}
 & \|B\|_{\infty} = 0/745098; \quad \|C\|_{\infty} = 0/117647; \quad \|D\|_{\infty} = 0/193658 \\
 & \|B\|_{1} = 0/743145; \quad \|C\|_{1} = 0/117338; \quad \|D\|_{1} = 0/193564 \\
 & \|B\|_{\infty} = 0/745098; \quad \|C\|_{\infty} = 0/117647; \quad \|D\|_{\infty} = 0/193678
\end{align*} \]

با توجه به نتایج مذکور داریم:

\[\begin{align*}
 & \|B\|_{\infty} + \|C\|_{\infty} + \|D\|_{\infty} = \frac{0}{99999998} < 1, \\
 & \|B\|_{1} + \|C\|_{1} + \|D\|_{1} = \frac{0}{99999998} < 1, \\
 & \|B\|_{\infty} + \|C\|_{\infty} + \|D\|_{\infty} = \frac{0}{99999998} < 1.
\end{align*} \]

793
جدول ۱: \(I = \frac{1}{10} \); \(\epsilon = \frac{1}{20} \); \(k = 200 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\nu)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

جدول ۲: \(I = \frac{1}{10} \); \(\epsilon = \frac{1}{20} \); \(k = 200 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\nu)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

\[T = \frac{1}{10} \]
منابع

