محاسبه آهنگ انتقالات فرآیند مخلوط شدگی استرک در اتمهای اگزوتیک

سیدمحمد متونلی، سامیه شیخیان عزیزی
دانشگاه مازندران، دانشکده علوم پایه، گروه فیزیک هسته‌ای

چکیده
در این مقاله، آهنگ انتقالات فرآیند مخلوط شدگی استرک را برای اگزوتیک دوترومیون، دوترومیون پایوی، دوترومیونی و دوترومیونی SCM بررسی می‌کنیم. در این راستا ارتباط مخلوط شدگی استرک با استفاده از مدل بورلی-لون و مدل بورسی شده است. به‌منظور استفاده به دقت‌ترین نتایج، داده‌های تجربی ارائه شده برای بیای و انتقال در حالت‌های 1S و 2P اتم‌های اگزوتیک مورد بحث با کار گرفته شد است. نتایج حاصل از محاسبات نشان می‌دهد، در حضور چگالی‌های مختلف از دوترومیون در حالت‌های اولیه مختلف، اتم اگزوتیک دوترومیون مونو اهندگی انتقال چشگیری نسبت به دیگر اتم‌های اگزوتیک دارد.

مقدمه
هنگامی که نریت میون، پایو، گانول و نتیج پرتوی از منابع الکترونی اتم دوترومیون عبور می‌کنند، جایگزین الکترونی به می‌شود. به‌این ترتیب اتم اگزوتیک در بالاترین حالت بالارگیخته، شکل می‌گیرد [1, 2]. این بالاترین حالت برای اتم دوترومیونی، دوترومیون پایوی، دوترومیونی و دوترومیونی SCM پرتوی برابر با 1۵/۲، 1۶/۳، 3۱ و 3۶ مشاهده شده است [3]. عبور این اتم‌های اگزوتیک از میدان الکتریکی اتم دوترومیون سبب تشکیل اثر استرک بین n حالت‌های ان می‌شود. نریت پایو، گانول و نتیج پرتوی دوترومیون در QCD بسیار مدور نواحیده، به‌هیچ‌گونه اثر استرک در اتم‌های اگزوتیک مشکل‌ز دیگر نیست. به‌مرور برهمکنش‌های فوق‌هستی اتمی دوترومیونی و اتحاد به‌جمع‌شدن این دو اتم به‌مرور برهمکنش‌های فوق‌هستی اتمی دوترومیونی دوترومیون نمایش داده می‌شود [4]. بنابراین قرار می‌دهد m = 0 این است. برای حالت‌های با v ≥ 0 m اندازه‌ای بزرگ بازده یا آشیع اینک، ارتباط دوترومیون شدگی استرک و گزینه‌های با v ≥ 0 m بررسی کرده [5]. در این مقاله مسایلی بر آن است تا با استفاده از مدل بورلی-لون، نظریات مدل SCM و با انتخاب مناسب‌ترین چگالی می‌بیند. آهنگ انتقال فرآیند مخلوط شدگی استرک را در حالت‌های اولیه مختلف بررسی می‌کند.

واژه‌های کلیدی: فرآیند مخلوط شدگی استرک، اتم اگزوتیک، آهنگ انتقال، مدل بورلی-لون.

نویسنده: سناریو: motavali@umz.ac.ir

دریافت: 09/09/2018
نپر: 124
تاریخ ارسال: 09/09/2018

77
محاسبات

فرآیند مخلوط شدگی استارک سریع‌ترین فرآیند برخوردی است که در آن اتم خانی اگزوتیک، در مکانی که میدان الکتریکی قدر به مخلوط‌سازی زیر ترازها با \( n \) پلسان است، در مولکول BA هدف نفوذ می‌کند [7]:

\[
\left( \begin{array}{cc}
\Delta d & D \\
\end{array} \right)_{2m} + D \rightarrow \left( \begin{array}{cc}
\Delta d & D \\
\end{array} \right)_{2m} + D \\
\Delta n = 0, \Delta l = \pm 1
\]

(1)

پارامتر \( A \) برای لوله‌ی مذکور، به‌هیک‌که در نیروی میوت، پلاژن، کانیون و آنزیم پروتئین اشاره دارد. بررسی فرآیند مخلوط شدگی استارک نیازمند بررسی احتمال انتقال بین حالتهای تبهمگن است. نظر به اینکه این احتمال انتقال با حالت مدوله شرودینگر و در نظر گرفتن انتقال بین حالتهای تبهمگی مشخص می‌شود، بحث مدل میان ثابت و مدل میدان دورانی در این راستا بسیار مورد توجه است. مدل مدوله شرودینگر وابسته به زمان برای مختصات داخلی اتم اگزوتیک عبارت است از:

\[
i \frac{d}{dt} |\Psi(t)\rangle = [H_0 + E(t)x] |\Psi(t)\rangle
\]

(2)

عملگر انرژی غیراختلالی \( E(t) \) میدان الکتریکی ایجاد شده با ماده‌هایی می‌باشد و خالی که

\[
i \frac{d}{dt} \langle \beta | \Psi(t) \rangle = \frac{\sum}{\alpha} \left[ E(t) \langle \beta | \alpha \rangle \right] i \partial \langle \beta | dx |\alpha \rangle |\Psi(t)\rangle
\]

(3)

به‌خلال نشان‌های دلیل این مدل، برای \( n^2 \) حالت از هر \( n \) با شرایط نوین و \( m \) بحثی با پیوند بین مختصات کروی، بست، آن در مختصات سه‌بعدی مورد توجه قرار می‌گیرد. حال چنانچه ویژه حالت‌ها در مختصات سه‌بعدی وار، \( \langle \beta | = \langle n_1, m | \) و \( \langle \alpha | = \langle n_2, m | \) را در نظر بگیریم، معادله

\[
i \frac{d}{dt} \langle n_1, m | \Psi(t) \rangle = \sum_{n_2} \langle n_1, m | \Psi(t) \rangle \langle n_2, m | \Psi(t) \rangle = V_{n_1, m}(t) \delta_{n_1, n_2} \langle n_2, m | \Psi(t) \rangle = V_{n_1, m}(t) \langle n_1, m | \Psi(t) \rangle
\]

(4)

در این رابطه \( V_{n_1, m}(t) \) بیان‌گر انرژی پتانسیل اتم اگزوتیک تحت تاثیر میدان الکتریکی اتم هدف است که بعنوان معرفی می‌شود [11]:

\[
V_{n_1, m}(t) = \frac{3}{2} E(t)n(2m_1 - n + |m| + 1)
\]

(5)

در رابطه فوق با ترکیب بیان‌گر عدد کوانتومی اصلی و مغناطیسی هستند. قابل ذکر است که همواره برای اعداد کوانتومی سه‌بعدی، \( m_1, m_2 \) و \( m_1 + m_2 + |m| + 1 = n \) باشد.

\[
V_{n_1, m}(t) = \begin{cases}
\frac{3}{2} E(t)n(2m_1 - n + |m| + 1) & \text{برای عدد کوانتومی}} \\
\frac{3}{2} E(t)n(2m_1 - n + |m| + 1) & \text{برای عدد کوانتومی}}
\end{cases}
\]

(6)

به‌صورتی که وجود دارد \( m_1, m_2 \) و \( n \) برای ست م anlamı‌ها، محدوده بی‌ستای (R) \( R = \rho \sec \theta \) می‌باشد. بیانگر زاویه بین محور عمود بر راستای میدان با دو حرکت اتم اگزوتیک است. از آن دیده و در جمله پایه آن بر این رابطه است.
به این ترتیب با حل معادله شرودینگر، احتمال انتقال اتم اگزوتیک در برخورد با اتم دوترویوم، تحت پارامتر برخورد، معادل این رابطه است:

\[ P(\rho, l, l', m) = \left| \sum_{n_{l-1}} (l, m | n_{l-1}, m) e^{-\frac{i}{\hbar} \frac{1}{2}(2n_{l-1} - n + |n_{l-1}| + 1)e^{-2\rho \sec \theta} + 2e^{2\rho \sec \theta} + \rho \sec \theta} \right|^2 \]

که در رابطه مذکور \( \rho \) سرعت اتم اگزوتیک است. بنابراین با در نظر گرفتن تابع معرفی شده باوسیله لتون-بته، (\( \zeta(\rho) \)، بصورت:

\[ \zeta(\rho) = \frac{1}{\pi} \int_0^{\infty} e^{-2\rho \sec \theta} (1 + 2\rho \sec \theta + 2\rho^2 (\sec \theta)^2) d\theta \]

و همچنین با در نظر گرفتن تقريب \( 2n_{l-1} - n + |n_{l-1}| + 1 \approx 2n_{l-1} \) رابطه کلی برای احتمال انتقال بسته می‌آید:

\[ P(\rho, l, l', m) = \left| \sum_{n_{l-1}} (l, m | n_{l-1}, m) e^{-\frac{i}{\hbar} \frac{1}{2}(2n_{l-1} - n + |n_{l-1}| + 1)e^{-2\rho \sec \theta} + 2e^{2\rho \sec \theta} + \rho \sec \theta} \right|^2 \]

با محاسبه این احتمال در \( m = 0 \) (\( \rho(0, 0, 0) \approx 0.1 \)) و تعییم آن به محل بوری لنون، اینگونه انتقال فرآیند مخالف شدگی استارک بدين صورت آراگه می‌شود:

\[ \lambda_{l-1}^{St} = K_{stk} N \nu \rho^2 \]

\[ \lambda_{l-1}^{St} = K_{stk} N \nu \rho^2 \]

\[ n, \rho \leq \rho_{0} \]

\[ \text{در روابط فوق پارامتر} \rho_{0} \text{ پارامتر است که در آن بهارهای اکرودهای} \rho_{0} \text{ با} \lambda_{stk} \text{ در وابسته‌نگی با برخورد هایی بر اساس پارامتری است که در حضور این برخورد‌ها به‌سیاری مورد توجه است} \]

\[ \zeta(\rho_{0}) = \frac{v \mu}{2n^2} \]

\[ \text{با توجه به اینکه ذرات پایون، کانون آنتی بروتون تحت اثر برخی‌ها و اثرات پلازامیون خلا و انتشار متناهی هستند} \text{قرار می‌گیرند، محاسبه اینگونه انتقال در حضور این برخورد‌ها بسیار مورد توجه است} \]

\[ \lambda_{l-1}^{St} = K_{stk} N \nu \rho^2 \]

\[ n, \rho \leq \rho_{0} \]

\[ \lambda_{l-1}^{St} = K_{stk} N \nu \rho^2 \]

\[ \text{در این رابطه} \rho_{0} \text{ پارامتر برخوردی مؤثری است که از حل معادله} \lambda_{stk} \text{ به‌دست می‌آید؛ درحالیکه آهنگ مخالف شدگی استارک برای گذار} \text{(P} \rightarrow S) \text{ S} \rightarrow \text{P} \text{ اینگونه صورت آراگه می‌شود:}

\[ \lambda_{S}^{St} = 3 \lambda_{S}^{St} = K_{stk} N \nu \rho^2 \]

\[ \rho_{0} = \text{Max}(R_{1}, R_{2}) \]

\[ \text{در معادلات مذکور پارامترهای} R_{1} \text{ و} R_{2} \text{ با انتخاب با حل دو معدل هزینه زیر محاسبه می‌شود:} \]

\[ \text{محاسبه اینگونه انتقالات در اتم‌های اگزوتیک} \]

\[ E(t) = \frac{Z_{eff}}{\mu} = \left[ 1 - \int_{0}^{\infty} R_{n}^{l} l^2 r^2 dr \right]^{l} + \left[ 1 - \int_{0}^{\infty} e^{-2R_{n} l^2 r^2 dr} \right]^{l} = e^{-2R_{n} l^2 r^2 dr} \]
محاسبه آنلگ انتقالات فرآیند مخلوط‌شده‌گی استارک در اتم‌های آگزوتیک

\[ \frac{1}{\frac{N}{S}} = 0.58\alpha + \frac{1}{2R} \nu e^{-2R} \]

\[ \frac{v^2}{\frac{N}{S} \nu_{eff}} = \frac{1}{\rho^2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-4p^2\sec^2\theta} (1 + 2p^2\sec^2\theta + 2p^2\sec^2\theta) \sec^2\theta \theta d\theta \]

در رابطه فوق معادل با جرم کاهش‌ی اتم آگزوتیک است. در روابط (17) و (18) تغییر انرژی مؤثر و میزان جنب در هر یک از حالت‌ها از این روابط محاسبه می‌شود:

\[ |E_{1S}|_{eff} = \frac{\Delta E_{1S}}{n^3} \]

\[ \Gamma_{abs} = \frac{\Gamma_{1S}}{n^3} \]

در رابطه (19) تغییر انرژی مؤثر در حالت یابر، که با استفاده از این رابطه محاسبه می‌شود:

\[ |E_{1S}|_{eff} = \left( (\Delta E_{1S})_{strong} + (\Delta E_{1S})_{vp} + (\Delta E_{1S})_{fs} - i \Gamma_{1S} \right) \frac{2(\Delta E_{1S})_{p}, (\Delta E_{1S})_{p}, (\Delta E_{1S})_{avg}}{2} \]

که بر حسب پیامدهای انتقال انرژی‌ها و حالت‌های ناشی از انتقال انرژی‌ها در انجام تشیع و نتایج حاصل در حالت یابر است. لازم به ذکر است که تمام روابط بالا در سیستم واحد انجام، \( m_e = e = h = a_0 = 1 \) ارائه شده‌اند.

بحث و نتیجه‌گیری

در این مقاله، آنلگ انتقال فرآیند مخلوط‌شده‌گی استارک را به‌ویژه چگالی‌های مختلفی از محفظ دوتروم خالص، برای اتم‌های آگزوتیک دوتروم میونی، دوتروم پایوی، دوتروم کانوئی و دوتروم آنتی پروتونی محاسبه کرده‌ایم. در رابطه استفاده از مناسب‌ترین داده‌های تجربی ارائه شده برای یابن و انتقال در حالت پایه این انتقال ارائه می‌گردد. در اینجا، تغییر انرژی استارک در اتم‌های آگزوتیک از دو مقدار این داده‌ها، در جدول 1 ارائه شده است. در شکل 1 آنلگ انتقال فرآیند مخلوط‌شده‌گی استارک در اتم‌های آگزوتیک بر حسب چگالی دوتروم نمایش داده شده است. نتایج حاصل از این محاسبات نشان‌دهنده است که آنلگ انتقال فرآیند مخلوط‌شده‌گی استارک در تمامی اتم‌های آگزوتیک مورد بحث با آنتی چگالی دوتروم و آنتی پروتونی، دوتروم پایوی و دوتروم کانوئی، دوتروم آنتی پروتونی دو ساختار ثابتی آن‌ها انتقال را دارد. بدین ترتیب با نظر گرفتن بالاترین چگالی SCM، \( N = \ell(L.H.D) \) و هنگام تخت پر مورد توجه است، آنلگ انتقال فرآیند مخلوط‌شده‌گی استارک را در حالت‌های اولیه مختلف، محاسبه و نتایج حاصل از محاسبات را در شکل 2 نشان می‌دهد. محاسبات نشان می‌دهد، تمامی اتم‌های آگزوتیک مورد بحث در حالت‌های اولیه بالاتر، آنلگ انتقال پیش‌تر را نسبت به حالت‌های اولیه پاییزه دارد؛ به‌طوریکه هر یک از اتم‌های آگزوتیک دوتروم میونی، دوتروم پایوی، دوتروم کانوئی و دوتروم آنتی پروتونی به‌ترتیب در بالاترین حالت
محاسبه انتقالات فرآیند مخلوطشگی اتومربک در اتمهای آگزروتیک

اولیه خود، آهنگ انتقال معادل با \( \lambda = 5.458 \times 10^{13} \text{ s}^{-1} \), \( \lambda = 1.357 \times 10^{14} \text{ s}^{-1} \), \( \lambda = 1.329 \times 10^{14} \text{ (sec}^{-1} \text{)} \) دارند.

جدول 1. داده‌های آزمایش‌گاهی به‌نها و انتقال حالت‌های \( 1 \) و \( 2 \) برای اتمهای آگزروتیک

<table>
<thead>
<tr>
<th>Atom</th>
<th>( \Gamma_{1S}^{abs} )</th>
<th>( \Gamma_{2P}^{abs} )</th>
<th>( \Delta E_{ig} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \pi^+ d )</td>
<td>1.02(eV)</td>
<td>---</td>
<td>-2.43(eV)</td>
</tr>
<tr>
<td>( \bar{K}^+ d )</td>
<td>880(eV)</td>
<td>0.046(eV)</td>
<td>-693(eV)</td>
</tr>
<tr>
<td>( \bar{P}_d )</td>
<td>1100(eV)</td>
<td>489(meV)</td>
<td>-1050(eV)</td>
</tr>
</tbody>
</table>

شکل 1. مقایسه آهنگ انتقالات فرآیند مخلوط شدگی استارک بر حسب چگالی در اتمهای آگزروتیک

\[ T = 1 \text{eV} \quad \bar{P}_d \quad \bar{K}^+ d \quad \pi^+ d \quad \mu^+ d \]

شکل 2. مقایسه آهنگ انتقالات فرآیند مخلوط شدگی استارک بر حسب حالت‌های اولیه

\[ N = 1 \text{L.H.D.} \quad \text{و} \quad T = 1 \text{eV} \quad \bar{P}_d \quad \bar{K}^+ d \quad \pi^+ d \quad \mu^+ d \]

منابع