بررسی سنگ‌شناختی و زئوشیمیایی دولومیت‌های کرتاسه زیرین در جنوب، غرب و شمال اصفهان، ایران مرکزی

چکیده
منطقه بررسی شده در این پژوهش در محدوده جنوب غرب و شمال اصفهان واقع شده است. در این پژوهش به بررسی سنگ‌شناختی و زئوشیمیایی دولومیت‌های کرتاسه‌ای و اولیه دیازنی بررسی شده است. نمونه‌گیری انجام شده است تا درون دلماهای دیازنی و پرکننده جداگانه دیازنی و در مسیر اصلی به کرتاسه دیازنی در شرایط تندیک بتوان دانشگاه و در مراحل اولیه دیازنی، در دسته‌های مورد سنجش قرار گرفت. شکل‌گیری دستگاه‌های

اسمال مرادیان تنشیزی، مصطفی قماشی

دانشگاه سیستان و بلوچستان، گروه زئوشناسی

هادی امیرسولی، دانشگاه کردنیاگر، گروه علوم زمین

واژه‌کلیدی: دولومیت، کرتاسه‌زیرین اصفهان

ghomashi@science.USB.ac.ir

*دسترسی به این پیام به اطلاعات الکترونیکی از طریق: dsi.iran2007@gmail.com

شماره پژوهشی: 09/8/2013

ghomashi@science.usb.ac.ir

Downloaded from jsci.khu.ac.ir at 5:46 IRST on Saturday February 22nd 2020
مقدمه

بطورکلی مکانیزم تکلیف دولومیت را میتوان از فرآیند از فرابیک و اندامه بلورها و از ویژگی‌های روب شناسی، تقریب ایزوتوپی، دما، شوری، ترکیب سیال و شرایط اکسیداسیون و احیاء تشخیص داد [16]. در سال‌های اخیر برای تکلیف انواع مختلف دولومیت‌ها از اندامه بلورها، شکل مرزهای بلوری و ویژگی‌های زئوشیمایی استفاده شده است [2]. در این تحقیق، زئوشیمی و پترولگرافی دولومیت‌های قرانتسی زیرین منطقه اصفهان و بررسی شده است. رسوایی ناحیه بررسی شده از سنجش‌های کریپات و آوار به سن بارمین تشکیل شده‌اند که با نابی‌شنگی بر روی رسوایی‌ها و در زیر رسوایی‌ها کریپات به سه ایسین فرآیند کرده‌اند.

روش بررسی

در این پژوهش برای بررسی چهار رشته‌ای از نهنشت‌های یاد شده در منطقه، کوه صفه (جنوب شهر اصفهان)، اصفهان (برزندزیکی رستمی اصفهان واقع در ۱۵ کیلومتری شیراز)، کلهرود (برزندزیکی رستمی شهرکرد واقع در ۱۰۰ کیلومتری شمال شهر اصفهان) و شمال شهر نجفی طایفه رزاقخانه شده (شکل ۳) و از آن نمونه برداشت شده است. تعداد ۱۵۰ مقیط نازک بس از رنگ‌آزمایی با محلول آلزائرین به روش دیکس‌یود [۲۵] بررسی شده‌اند. برای تعیین فراوانی اجزا تکلیف دهنده در سنگ‌های دولومیتی و آوار از نمونه‌های مقایسه‌ای فولک [۴] استفاده شده است. نمونه‌های سنگ‌های دولومیتی بحرش فولک [۲] و یی‌یی‌یان [۸] انجام شد. برای تشخیص بلوی از میکاس پتی‌یان [۸] و برای مشخص کردن بافت دولومیت‌ها از طبیعتی سایلی و گرگ [۹] و همچنین برای انجام محاسبات زئوشیمایی و تعیین فرمول شیمیایی کانی‌ها از پژوهش‌های دیبر و همکاران [۱۰] استفاده شد. پس از انجام بررسی‌های سنگشناسی، تعداد ۱۹ نمونه برای انجام پژوهش‌های زئوشیمایی انتخاب و از آنها مقاطع نازک صیقلی تهیه شد. این مقاطع برای تجزیه با ریزکارکی الکترونی و عکس‌برداری با میکروسکوپ الکترونی به‌نام یوی‌نی‌آرژوی واقع در دکتر کانادا ارسال شدند.

زمین‌شناسی منطقه

منطقه بررسی شده در یونه ساختاری ایران مرکزی و در فرونشست اراک، اصفهان- شهرضا، واقع شده است. این فرونشست بخشی از زون ساختاری چکمه و همراه با سنگ‌های دگرگونی است که به عنوان [۱۱] آن را حاشیه شمال شرقی کوه‌زاری شکری‌شهر نامیده است. در این محور، سنگ‌های کرتاسه بخشی از سیالی ورق‌های نادریجا را دارند که از شمال شرق به جنوب غرب چوبنا شده‌اند. ولی در منطقه مانند اصفهان، که نتیجه‌شان‌های فشارسی که نشان‌دهنده سیالی ورق‌های کرتاسه‌ای از سنگ‌های کرتاسه پایینی از بالا را می‌نمایند. در [۲۰].

در فروشنست یاد شده، سنگ‌های کرتانه توالی ضخیمی از نهشت‌های شیلی و ماسه‌سنگی را می‌پوشاند که تغییرات سنی آن‌ها از تریاس پسین تا تاروزاسیک میانی است و برای سنگ‌های ناشناخته ایران به گروه شناخته‌کننده معروف. در نواحی مورد بحث، سنگ‌های گروه مشمش دست‌موش دنیزپیکی‌های شبانه و به‌همین دلیل، چین‌خورده‌گی بیشتر‌تری دارد و همگی آن‌ها با سنگ‌های کرتانه، بزرگ‌تر از یک درصد نخورده، از نوع دگرگون‌ساز زاویه‌دار است. داده‌های منطقه‌ای تشخیص‌گر آن است که توالی چین‌خورده‌گی گروه مشمش، هورست‌های رخداد سیری میانی هستند که پس از یک دوره فرسایشی طولانی، با دریای پیترونده کرتانه پیشین یوسیه شدند [١٢].

سید امامی [١٣] کرتانه اصفهان را به عنوان کوهی برای درک بهتر کرتانه در مرکز ایران دانسته است و به عقیده شمیرانی [١٤] بارزترین سکانس کرتانه ایران مرکزی در اصفهان (حاتمانی شمالی شامکوه در جنوب اصفهان) ندهد می‌شود [١٢].

این فروشنست عمداً از کنگلومرا و ماسه سنگ قاعدایی، لایه‌های گذر دولومیتی، سنگ آهن‌های ارتباطی‌داینگی پایینی و بالایی، لایه‌های سنگ آهن لیمین‌دار، شیل‌های بودنی سرام‌سنوی تا سنگ‌های کانپنی‌دار، سنگ‌های این‌وس‌سی (مارن زیستی) تا سنگ‌های زیستی تک‌شکل شده است که با یک دگرگونی‌ساز زاویه‌دار بروی شیل و ماسه سنگ‌های گروه مشمش قرار می‌گیرند [١٢].

موضوع بررسی شده در این تحقیق، در لایه‌های این‌وس‌سی (مارن زیستی) و کنگلومرا ای قاعدایی و قسمت تحتانی آهن‌های ارتباطی‌داینگی پایینی نزدیک‌اکثریت شده و بر اساس ویژگی‌های صحراخی صنن چین‌خورده سنگ‌ریز به‌وسیله کرتانه بررسی شده است (شکل ٢).

پژوهش‌های سنگ‌شناختی

براساس پژوهش‌های سنگ‌شناختی (اندازه بلورها، ویژگی‌های بافتی و شکل مرزهای بلوری)، پنج نوع دولومیت در بررسی شده بيدین شرح از یک‌دیگر تفکیک شدند:

نوع اول (دولومیت‌های خیلی‌ریز تا زیبایر)

این دولومیت‌ها، فراوان‌ترین نوع در تمامی برش‌های بررسی شده است و در قسمت‌های کوه‌زی كان فراوانی یافته گذر دولومیتی مشاهده شده‌اند. آن‌ها خیلی ریز تا زیبایر (۱۵ تا ۶۲ میکرون)، کرم کتا نخود رنگ، دارای مولپیک‌های متراکم و یک آندازه و مشکی از بلورهای نیم‌تفاوتی با بی‌شکل هستند. دولومیت‌ها آثاری از خرده‌های آسکلتی و قرنی نیز دیده می‌شود.

در این دولومیت‌ها، آثاری از آشگرفتی زیستی، فابریک‌های روزنه‌ای، شواهدی از لامینشن و آثاری از استرومولیت‌های دولومیتی شده وجود دارد (شکل ۳). این دولومیت‌ها، فابریک تقریبی دارد که منجر به حفظ
دوم (دوم‌های متوسط بلور)

این دوم‌هایی مزایل‌هایی دارند که در مکان‌های مختلفی وجود دارند. به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند. به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌هایی مزایل‌هایی دارند که در مکان‌های مختلفی وجود دارند. به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.

دوم‌هایی که در مکان‌های مختلفی وجود دارند، به طور کلی، این دوم‌ها در مکان‌های مختلفی از بیوهای بزرگ و کوچک وجود دارند.
بررسی سنگ‌نخستین و زنوزیمی دولومیت‌های کرتاسه زیبرین در جنوب‌غرب بختیاری

مقاله یک مقاله علمی شامل چهار قسمت است که در ادامه به آن‌ها اشاره می‌شود:

زنوشیمی

ادغام داده‌های سنگ‌نخستین و زنوزیمی درک بیشتری از منشأ، زمان تشکیل، ترکیب سیال‌های دولومیتی کنده و مدل‌های دولومیتی شدن فراهم می‌کند [5]. برای این منظور، بیشتر ارزیابی می‌شود [16]. مقادیر درصد مولی کربنات‌های کلسیم و مرزیم و مقادیر عناصر فرعی و اصلی که به‌وسیله تجزیه با ریزکاول الکترونی تهیه شده‌اند، در جدول ۱ اورده شده‌اند.

ساختار مولی دولومیت‌های منطقه بررسی شده

براساس نتایج بخش‌های آمده، دولومیت‌های کرتاسه زیبرین اصفهان از نظر استوکومتری در دو گروه تقسیم‌بندی می‌گردد. دولومیت‌های تقسیم‌بندی استوکومتری، خیلی ریز تا ریزبلور و

901
بررسی سنگ‌شناسی و زاگ‌شناسی دولومیت‌های کرکانه زیرین در جنوبی

اسمال‌مرادین تنشیزی و همکاران

ریز تا متوسط بلوره. نسبت مولی کلسیم به منیزم در این نمونه از دولومیت/106 تا 1/6 و بسیار نزدیک به مقدار نسبت مولی دولومیت ایدال (1/106) [10] است. استوکومتری دولومیت‌های این شهاده، میزان دیلی بر مشابه نزدیک به نسبت در مرحله اولیه دیاژن، باوسیله سیل‌های فوتوشهر، باند [11].

دولومیت‌های غیراستوکومتری، شامل دولومیت‌های درشت بلور، مراکز کر ۵ و حاوی روشن دارند. دولومیت‌های متوسط بلور بین دارای دارای منطقه‌بندی، دولومیت‌های متوسط تا درشت بلور پرکنده حفره و شکستگی‌ها و دولومیت‌های زین اسپی هستند. مقدار نسبت مولی کلسیم به منیزم در این دولومیت‌ها بین 1/17 تا 1/25 است و از این رو از نوع غیراستوکومتری هستند. در این حالت، درشت مدل بوله‌های دولومیت، به گمان می‌آید. در حالی که یافته‌های دیاژن‌تک تأثیری و بر اساس به‌دنی دولومیت‌های ریزی‌بلور صورت گرفته است

![diagram](image_url)

شکل ۲. سنگ‌شناسی سنگ‌های برش‌های بررسی شده (الف) برش صفحه ب (برش اسفه ج) برش نجف‌آباد و (د) برش کلهرود.
شکل ۳. دلومیت‌های ریز تا متوسط بلور. (الف) پیکان نشان‌دهنده ذرات آواری کوارتز. (ج) پیکان نشان‌دهنده آثاری از بایوکلاست. (د) پیکان نشان‌دهنده نختهایی از دلومیت ریزبلور. (ه) پیکان نشان‌دهنده بقاها از جلبک. (و) دلومیت‌های درشت بلور (پیکان) در زمینه‌ای از دلومیت‌های متوسط بلور
بررسی سنگ‌شناختی و زنوشیمایی دولومیت‌های کرتانه زیرین در جنوب استان خوزستان

چشمه عٕگ

اعّاػیً ِشادياْ تؾٕیضی و همکاران

شکل ۵. عکس‌های اصلی تصویر میکروسکوپی دولومیت‌های درشت‌بلور دارای مرکز کدر، ب و د تصویر میکروسکوپ الکترونی همان دولومیت‌های از برک اسله. پیکان‌های سیاه نشان‌دهنده بلورهای تجزیه شده و پیکان سفید نشان‌دهنده هیدروکسید‌های آهن مستند

عناصر اصلی

کلسیم و منیزیم: مقادیر Ca در دولومیت‌های بررسی شده بین 21/64 تا 23/73 درصد (میانگین 22/7) با نسبت Mg بین 43/38 تا 12/1 درصد (میانگین 11/1 درصد) متغیر است. مقادیر Ca در نمونه‌های بررسی شده، ارتباط مثبتی دارد (شکل ۲). از سوی دیگر، براساس ترسیم مقادیر Mg در نمونه‌های بررسی شده، مشاهده می‌شود که روند تغییرات کلسیم نسبت به منیزیم ارتباطی معکوس دارد. به طوری که با کاهش مقادیر منیزیم، مقادیر کلسیم تقویت می‌شود. دلیل افزایش مقادیر منیزیم با درشت‌بلور شدن بلورهای دولومیت، احتمالاً به مرطوبه دگرسانی دولومیت است. به طوری که مقادیر Mg در دولومیت‌های درشت‌بلور، بحث‌های دگرسانی بیشتر و جانشینی آهن و منگنز بیشتر به‌جای منیزیم، کمتر از مقادیر Mg در دولومیت‌های ریز‌بلور است [۲۰] (شکل ۷).
یکی از مرحله‌های دومیت‌های دوره‌های کرتاسه زیرین در جنوب...
جدول 1. مقادیر عناصر اصلی و فرعی در دولومیت‌های منطقه بررسی شده (حروف S و E, P, K با رتبیت نشان‌دهنده برش‌های کلهرود، نجم‌آیه، اسه و صفحه هستند).

<table>
<thead>
<tr>
<th>نوع دولومیت</th>
<th>نشانه‌ها</th>
<th>نتایج</th>
<th>شماره</th>
<th>توضیحات</th>
<th>Sr (ppm)</th>
<th>Mn (ppm)</th>
<th>Fe (ppm)</th>
<th>Mg%</th>
<th>Ca%</th>
<th>MgCO₃%</th>
<th>CaCO₃%</th>
<th>FeCO₃%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-8-1</td>
<td></td>
<td></td>
<td>39.9</td>
<td>1249</td>
<td>1415</td>
<td>16.74</td>
<td>0.06</td>
<td>0.1/1</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
<tr>
<td>S-8-2</td>
<td></td>
<td></td>
<td>4.19</td>
<td>1614</td>
<td>1657</td>
<td>26.4/1</td>
<td>47/43</td>
<td>1/0.06</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
<tr>
<td>S-8-3</td>
<td></td>
<td></td>
<td>4.08</td>
<td>442</td>
<td>1678</td>
<td>26.0/1</td>
<td>47/43</td>
<td>1/0.06</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
<tr>
<td>S-8-4</td>
<td></td>
<td></td>
<td>4.19</td>
<td>1164</td>
<td>1342</td>
<td>26.0/1</td>
<td>47/43</td>
<td>1/0.06</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
<tr>
<td>S-8-5</td>
<td></td>
<td></td>
<td>4.19</td>
<td>1164</td>
<td>1342</td>
<td>26.0/1</td>
<td>47/43</td>
<td>1/0.06</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
<tr>
<td>S-8-6</td>
<td></td>
<td></td>
<td>4.19</td>
<td>1164</td>
<td>1342</td>
<td>26.0/1</td>
<td>47/43</td>
<td>1/0.06</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
<tr>
<td>P-24-1</td>
<td></td>
<td></td>
<td>0.83</td>
<td>439</td>
<td>10.5/2</td>
<td>0.02/1</td>
<td>0.02/1</td>
<td>0/0.06</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
<tr>
<td>P-24-2</td>
<td></td>
<td></td>
<td>0.83</td>
<td>439</td>
<td>10.5/2</td>
<td>0.02/1</td>
<td>0.02/1</td>
<td>0/0.06</td>
<td>0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
<td>1/0/0.06</td>
</tr>
</tbody>
</table>

عناصر فرعی

اهن و منگنز: در خلاصه خاک‌های دولینتیک انحلال و تبلور مجدد، مقادیر اهن و منگنز افزایش می‌یابند [11]. زیرا که، اهن و منگنز در آب از طریق بیماری می‌گذرد که وجود دارد. اما در سیال‌های منفی، دولینتیک بیشتر قابل توجه‌سازی می‌شود، زمانی که توزیع برای به‌طور جزئی بالایی دارد. به‌طور جزئی قابل توجهی‌سازی می‌شود. نتایج این تجزیه‌بارها و این به‌طور نهایی دو عنصر به‌طور جزئی به‌طور جزئی در طی دولینتیک در شکل‌بندی دومولیت وارد می‌شوند.
(میانگین 1864 گرم درنگ) مقدارتی Fe در نمونه‌های بررسی شده با کاهش میزان افزایش چشگیری Mg در نمونه‌ها بهزیستی Fe دریابیت او بهبود یافته Fe در شکه دولومیت، در خلال دگرگانی Mg است. [20] مقادیر منگنز نیز در دولومیت‌های بررسی شده مانند آن، با کاهش Mg افزایش می‌یابند (شکل 8). علت این افزایش نیز بهبود یافته جانتشینی Mg بهباجی Mn است.

روند تغییرات آهن و منگنز در برای منیژ درنمونه‌های بررسی شده با افزایش اشکال بلوارها، افزایش است. بهطوری که دولومیت‌های زیست‌ریز (قبل ریز تای ریز بلور و ریز تا متوسط بلور)، تشکیل شده در نزدیک سطح کبیر مقدار آهن و منگنز را دارد. در حالی که دولومیت‌های پرکنده حفره‌ها و شکستگی‌ها و دولومیت‌های زین ابی، بیشترین مقدار آهن و منگنز را دارند. تمرکز زیاد آهن و منگنز در این دولومیت‌ها می‌تواند ناشی از وجود شرایط احیایی تا طی فرآیند دگرگانی، و تشکیل دولومیت‌های دیازنتیکی باشد. تغییر مقادیر آهن و منگنز در دولومیت‌ها برای یک زمان دولومیت‌شدن بدون تاکید نازک اهمیت است. عموماً دولومیت‌های سطحی یا نزدیک به سطح زمین، بهبود شرایط احیایی، مقادیر کبیری از آهن و منگنز در مقاومت با دولومیت‌های دیازنتیکی تاخر دارد [21].

چنان‌که در شکل 8 مشاهده می‌شود، روند تغییرات آهن در برای منگنز حاکی از روند افزایشی است. بهطوری که دولومیت‌های زین (قبل ریز تای ریز بلور و ریز تا متوسط بلور)، کبیر مقداری از ۱۸۶۴ کبیر مقدار آهن و منگنز را دارند. از سوی دیگر براساس محاسبه درصد مولی کریزات آهن در دولومیت‌ها، مشخص شده که دولومیت‌های زین، ابی و دولومیت‌های پرکنده حفره‌ها و شکستگی‌ها دولومیت‌های آهن‌دار (۲ mol% FeCO₃) هستند (جدول 1). این امر نیز تاکید دیگری بر تشکیل این نوع از دولومیت‌ها در شرایط احیایی و در طی مراحل تاکید دیازنتی، است. دولومیت‌های متوسط و درشت‌بلور نیز حالت حدودی دارد. آن‌ها احتمالاً در شرایط نسبتاً احیایی و در طی دیازنتی تدفینی کم عمق تشکیل شده‌اند.

شکل 2. (الف) روند تغییرات نسبت Mg/Ca در مقابل Mg در دولومیت‌های بررسی شده. دولومیت‌های ریز‌بازیل منیژی بیشتر و تازه‌تر به مقادیر دلیل دلیل (مقدار دلیل دلیل بمنظور انگیزه ترسیم شده است) دارند. (ب) روند تغییرات منیژی Ca در مقابل Mg در دولومیت‌های بررسی شده. چنان‌که مشاهده می‌شود با افزایش میزان کلسیم، مقادیر منیژی کاهش می‌یابد.
ابهامیت بسیاری دارد [۳۲] مقدار Sr از میان عناصر فرعي مختلف موجود در دولومیت، استراتاسیم: مانند نسبت کلسیم به منیزیم، در تعیین ترکیب سیال دولومیتی کندنی و مدل دولومیتی شدن می‌توان استفاده شود [۲۴]. ضریب توزیع استراتاسیم در دولومیت در حدود نصف کلسیم است، بطعوريه استراتاسیم در ساختار شبکه دولومیتی، تناها به کلسیم قرار می‌گیرد [۲۵]. از اینجا که آب دیمی در مقایسه با آب های جوی قدرت یونی بیشتری دارد، مخلوطی از آب جوی با آب درصد ده به شدت می‌باشد. دولومیت‌های ترکیب نهایی یک مخلوطی از آب جوی و بیش از ۵ درصد آب دریا می‌توانند محتوای استراتاسیم را داشته باشند. این مقدار با دنور گرفتن ضریب توزیع زاکوپسون و بوسونسکی، ۲۰۵۰ پی‌پیام است. دولومیت‌های قندیمی با مقادیر بیشتر، احتمالاً مرتبط با سیال‌های فوق شور‌شناسی دومینیت‌های کنونی، مقادیر استراتاسیم منفی از ده‌ها تا هزار پی‌پیام دارد. بططورکلی دومینیت‌های دیازنیتیک اولیه و تعداد زیادی از مکراتیان دومینیت‌های شده دریپ‌های جزر و میدی، نسبت به دومینیت‌های درشت بلو ترکیب شده در مراحل بعدی دیازنز، محتوای استراتاسیم بیشتری دارند. مقادیر استراتاسیم در دومینیت‌های عده حاضر در حدود ۱۲۰ تا ۱۵۰ پی‌پیام تغییر می‌کند. به اعتقاد هانری [۲۷] وجود استراتاسیم زیاد در این دومینیت‌ها، حاکی از دومینیت‌شن کردن روابط ازاقشانی در سیستم دیازنیتیک نسبتاً بسته است. بططورکلی دومینیت‌های رزیبلور اولیه در مقایسه با دومینیت‌های درشت‌بلور ثانویه، محتوای استراتاسیم بیشتری دارد. به هر حال چنانچه دومینیت تحت تأثیر تغییر ترکیب باروکرده، مقادیر بیشتری استراتاسیم اولیه آن، بططور مشخصی کاهش می‌یابد [۲۱].

استراتاسیم موجود در دومینیت‌های منطقه، محدوده‌ای از ۴۶ تا ۲۰۵۰ پی‌پیام می‌باشد [۱۴۹۱ دارد.

روش‌های مختلف مربوط به دومینیت‌های خیلی رزی تر رزیبلور و کمترین مقدار مربوط به دومینیت‌های دیازنیتیک (سیمان‌های دومینیتی پرکنش حفاظی) است (شکل ۲). تسکین شدید استراتاسیم با افزایش آب‌های بلو دیزل. سپس دومینیت‌های دیازنیتیک درشت بلو نسبت به دومینیت‌های اولیه، مقادیر کمتری از دارد [۲۸]. کانی‌نشانی آراکونیت‌های اولیه و کربونی شدید دگرگونی، به احتمال زیادی، سبب افزایش مقدار استراتاسیم در دومینیت‌های خیلی تر زیبلور منطقه‌های است. طبیعت

۲-DOLOMITE-HY RZ- که موزاییکی متراکم از دومینیت‌های رزیبلور(۴۰ میکرون) و نمی‌شکل دار

- Jacobson and Usdowski ۱-Semi closed ۱-Under nearsurface
اندازه بلوهای دولومیت در هسته‌ی و میزان رشد آنها کنترل می‌شود [30]. این عوامل با
افراش دما، افزایش میزان و ایجاد جوی‌گذاری در دولومیت‌های هسته‌ای متاثر [31]. روابط کربناته میکروبا در مقایسه با
حجاری، گسترش سطحی و سیستم زیادی را برای هسته‌ای فراهم کرده و درنتیجه میزان
هسته‌ای را تسریع می‌کند. در صورتی که میزان هسته‌ای، از سرعت رشد بلور سریع‌تر باشد، حتی در
دماهای زیاد، دولومیت‌های نسبتاً ریزبلور تشكل می‌شوند [32]. از سوی دیگر، تجارب آزمایش‌های ثابت کرده،
در مرحله‌ی که هسته‌ای و رشد بلور چشمگیر باشد (مرحله انتقال)، تشكل دولومیت با افزایش اندازه بلور
(کاهش منطقه سطحی)، افراش می‌یابد [32].

در دولومیت‌های هسته‌ای ریزتا ریزبلور منطقه بررسی شده، این ویژگی‌های سنگ‌سنگ‌نواختی تشخیص داده شده‌اند:

[نگاره‌های نمودار]

شکل A. روند منفی تغییرات مقدار Fe در مقابل مول Mg در دولومیت‌های بررسی شده. دولومیت‌های ریز بلور
کمترین مقدار آهن و دولومیت‌های درشت بلور، خصوصاً دولومیت‌های پرکنده بفرشده و شكستگی‌ها، پیش‌ترین
مقدار آهن را دارند. ب) روند تغییرات مقدار Mn در مقابل مول Mg. دولومیت‌های ریزبلور مقدار منگنز کم‌تر دارند
در حالی که دولومیت‌های درشت بلور، کم‌ماد مقدار بیشتری منگنز دارند. روند تغییرات منگنز در مقابل منفی
RONDI منفی است. ج) روند تغییرات مقدار Fe در مقابل Mn. RONDI ثابت است (د) تغییرات استراتاسیم در برای مول
منفی نیز RONDI ثابت دارد.
1. وجود اینترکلاست، الیپس، پاپوکلاست، بقاها اترومالولوئی و ذرات آواری کوارتز، 2. آناداز میکروئیت
بلورهای دولومیتی، 3. عدم وجود تبخیری‌ها و اشکال کاذب آنها، 4. وجود فایبریک های روزنه‌ای (چشم پرندی)، 5. وجود آثار از آشفته‌گی زیستی و همچنین لامیناسن. موارد باقی‌مانده همراه با تمرکز زیادی از استرس‌انگی و منیزم و تمرکز پایینی از آهن و مدلگر در به دست آمدن دولومیت‌ها، نسبت به انواع دیگر، شاهدی بر تشکیل دولومیت‌های خلی ریز تا ریزبلور، تحت شرایط سطحی دما کم، در محیط‌های بین جزر و مدم تا کولاب، بخصوص جانشینی است.

دولومیت‌های ریز تا متوسط بلوس و دولومیت‌های متوسط بلوس‌ها، تا بخشی
دولومیت‌های ریز تا متوسط بلوس و متوسط بلوس، عمداً لخته‌ای از دولومیت‌های ریزبلوردازند و بدين‌سبب
از تجدید تبتور آنها حاصل شده‌اند (برای مثال [۳۲]).

در این دولومیت‌ها، نواصع بین مراکز کدر و حاوی تشکیل شده‌اند. در این مراکز کدر، زمانی تشکیل می‌شود که محلول‌های دولومیتی کندنی به کلسیم اشباع‌شده‌اند. در حالتی که حاوی تشکیل، از محلول‌های تحت اشباع نسبت به کلسیم حاصل شده و با این قادیدان اتفاق اتفاق‌آوری در نتیجه
این نواصع‌ها می‌تواند منعی کندنی تخییر در نمای درخشان و یا احتال و تبتور دوباره بسیاری‌های بیروپی
بلورهای ساژنده باشد [۲۲] کونگلوی و همکاران [۳۲] معتقدند که تشکیل بلورهای دولومیت دارای مراکز کدر
و حاوی روش، به این دلیل است که دولومیت‌های اولیه احتمالاً از نوع دولومیت‌های کلسیم‌دار نابودار است که
به‌سرعت تشکیل‌شده‌اند. بنابراین دولومیت‌های متناهی علاوه بر نواصع فرعی، ادخال‌های فراوانی را بدون هیچ
محدودیت در خروج جای داده‌اند.

دولومیت‌های درشت بلوس

چنانکه گفته شد، دولومیت‌های ریز تا متوسط بلوس، متوسط بلوس شکل‌دار تا نیمه‌شکل‌دار و دولومیت‌های
درشت‌بلور نیمه‌شکل‌دار تا بی‌شکل، مزرعه‌ای بلوسی مستقیم دارند. براساس پژوهش‌های سپری و گرگ [۹]
گرگ وشولرن [۲۹] و مازولو [۳۹] در شرایط دمایی کم، سطح بلوسی مسطح شکل‌دار تا نیمه‌شکل‌دار تشکیل
می‌شود. لیکن در محیط‌های بالاتر (۶۰۰ تا ۱۰۰۰ درجه سانتی‌گراد)، سطح بلوس غیرمستحکم است و
بلورهای بی شکل تشکیل می‌شوند [۳۰]. براساس مدل ژکسن [۳۲]، رشد بلوس‌ها در دمای کم، با افزایش لایه
به‌لاه‌ای انرژی‌های سطح بلوسی توده‌ی مگیرد که نتیجه‌اند گسترش سطح بلوسی خوشه‌تری و
موزائیک‌های بلوسی خودشکل‌دار تا نیمه‌شکل‌دار است. مورو [۱۷] پیشنهاد کرده است که دولومیت‌های دارای بفت
سطح نیمه‌شکل‌دار، در نتیجه رشد آهسته بلوس‌ها تشکیل می‌شوند. فایبریک‌بندند، به‌طوری‌که نفوذ سیال‌های

911
دولومیتهای متوسط یکنده در دمای پایین حاصل می‌شود[۹]. بنابراین بافت دولومیتهای ریز‌تر می‌تواند بیان‌گر جانشینی دیاژنژیک سنگ‌های اولیه و یا تیلویر مجدد دولومیتهای تشكل شده قبلی باشد [۱۹]. این جانشینی و یا تیلویر مجدد در زیر دمای بحرانی (نامه کیپر از ۸۰ تا ۸۸ درجه سانتی‌گراد) و در شرایط تدفین کم عمق انجام می‌شود [۲۱]. تیلویر مجدد موجب تغییر در بافت، ساختار بلوژر و ترکیب شیمیایی دولومیتهای می‌شود [۲۷] در دولومیتهای پاشه‌ای به این دلیل، فرآیند تیلویر مجدد صورت گرفته است:

۱. اندامه و فلاریک بلوژر سه. وجود مراکز کدر و حواشی روش در بلوژر سه. تشکیل ترکیب مراکز کدر با ترکیب دولومیتهای ریز‌بلور می‌تواند در زیر دمای دیاژنژیک سنگ‌های ریز‌تر تشکیل شود. در این دلیل می‌تواند بافت دلیلی در روش‌های تیلویر دیاژنژیک و وجود لخته‌های از دولومیتهای ریز‌تر می‌تواند بلوژر از اطراف دولومیتهای ریز‌تر می‌تواند تیلویر در زیر دمای بحرانی انجام می‌شود [۲۱].

۵. وجود پیاده‌های از اینتراکلاس‌های دولومیتهای شده ریز می‌تواند بلوژر در زیر دمای دیاژنژیک می‌تواند تیلویر در زیر دمای بحرانی انجام می‌شود [۲۱].

جدول دومین درشت‌بلاژر (دولومیتهای زین اسپ) پیکنده شکستگی‌ها

در این دلیل می‌تواند تاییدی بر این موضوع باشد:

۱. وجود بلوژر نیم‌ششکن‌داری بر مزرعه بلوژر مسطحی در دمای پایین حاصل می‌شود [۲۱]. مقدار آهن و منگنز زیاد در این دولومیتهای باطریکه دردسر مولی کربنات آهن در این دولومیتهای نسبت به ادغام دیگر بپیشر است. این امر امر بیانگر احیایی بودن حیاتی تشکیل این درشت‌بلاژر زین اسپ است [۳۴]. آن زیر آهن این درشت‌بلاژر دیاژنژیک هستند [۲۱] در محدوده‌های میپایه، ۱۰۰ درجه سانتی‌گراد [۲۷] در شرایط فعال دیاژنژیک تأخیری و شرایط

۳۱۲
تشفیع عمیق تشکیل شده‌اند [۴۲]. این ویژگی‌ها می‌توانند تأکیدی بر این مدعایی باشند: ۱. وجود فارابیک درشت بلوی با سطوح بلوری مخصوص و منحنی شکل (خمیده) و دارای خاموشی موجی، ۲. مقادیر آهون و منگنز زیاد داشت. کاهش میزان استرسیم با افزایش عمیق تشفیع و نبود کانی‌های مانند دارای منطقه، حاکی از عدم تأثیر سیالات گرمابی در تشکیل این دولومیتها است (بر خلاف بسیاری از دولومیتها ویژه این سیلن)، برای مثال: دولومیتها کراته شهمرزد (۳۷).

بطرک‌را بر پرخال دولومیتها خیلی ریز تا ریزبلور، سایر انواع دولومیتها در شرایط تشکیل عمیق تا در دماهای افزایش شده تشکیل شده‌اند. این امر موجب افزایش اندازه بلورها و تشکیل دولومیتها در شرایط و تغییر در مقدار عناصر فرعي شده است [۴۷] با توجه به موارد ذکر شده، توالی پاراژنی دولومیتها در منطقه بررسی شده ترسیم شده است (شکل؟).

علاوه بر دولومیتها یاد شده، گروه‌های دیگر از دولومیتها نیز در سنگ‌های آواری کریستال‌های بررسی شده مشاهده شده‌اند که سیمان این سنگ‌ها را تشکیل دادند. این دولومیتها، گستر و سیبی از دولومیتها ریزبلور وبیشتر به‌نشانه زنگ، متوسط بلور شکل‌دار تا نیم‌شکل‌دار، شکل‌دار با متوسط بلوری مستقیم و دارای منطقه‌نتیجه‌اند را تشکیل دادند. دولومیتها یاد شده احتمالاً از دولومیتها کریستال‌های سیمان‌ها این هکی موجود در این سنگ‌ها در خلال مرحله تشکیل کم عمق و یا از تجدید تبخر زمینه دولومیتها اولیه، در مراحل آغازین دیازن بوجود آمدند.

منشا منیژم
دولومیتها خیلی ریز تا ریزبلور، تقریباً هیزم‌ها با رسوگ‌گازداری و یا در مراحل اولیه دیازن آشامیدنی آراگونیت با کلسیت با منیژم زیاد حاقی می‌شود [۴۵]. عقیده باین است که تنها منشاتی که منیژم این دولومیتها، آب دریا است [۴۶].

شکل‌های ظاهری را می‌توان به عنوان مهم‌ترین منبع منیژم مورد نیاز برای دولومیتها شدن تشفیع عمیق در نظر گرفت [۴۳] [۴۷] [۴۸]. شاید توان گفت که بخشی از دولومیتها تشفیع در منطقه بررسی شده از طریق این مکانیک تشکیل شده‌اند. احافل فشاری آهون، منبع منیژم‌های دیگری برای منیژم در نظر گرفتی شده است [۴۹]. با توجه به تشکیل منبع دولومیتها در محل استرس‌برداری، فرآیند احافل فشاری در رسوبات کراتاسه زیرین اصفهان، منبع مهمی برای تنیزی نیز به است. نظر به این که دولومیتها ضخیمی تا منیژم‌ها لایه کراتاسه زیرین اصفهان بر روی ماسکنسه‌های بارمی و بارمی و ماسکنسه‌های زیرین و غرب شرق شده‌اند، شیل‌ها را باید منشای دیگری برای تنیزی، برای دولومیتها کراتسپیتهای زیرین و سیمان‌های دولومیتها ماسکنسه‌های بارمین محسوب کرد (برای مثال [۱۵]) [۴۳].
نتیجه‌گیری
پژوهش‌های سنگ‌شناختی و زنوشیمایی صورت گرفته در منطقه بررسی شده منجر به این نتایج شده است:
- در منطقه بررسی شده پنج نوع از دولوپیته‌ها بین شرک شناسایی شدند: دولوپیته‌های خلیلی ریز تا ریزباینر، دولوپیته‌های ریز تا متوسط بلور، دولوپیته‌های متوسط و ریزباینر با مراکز کدر و حواسی روشن، دولوپیته‌های متوسط تا ریزباینر پرکنده حفره‌ها و شکستگی‌ها دولوپیته‌های خلیلی درشت بلور (دولوپیته‌های زین‌اسبی) پرکنده شکستگی‌ها.
- دولوپیته‌های خلیلی ریز تا ریزباینر در شرایط نزدیک به سطح زمین و در مراحل اولیه دیازن، تا پهن‌های جزر و مدت تا کولبد تشکلب شده‌اند. وجود فابریکه‌های پهن جزرودی، شواهد زنوشیمایی مبنی بر استوکومتریک بودن این دولوپیته‌ها، مقاپر زیاد Sr و مقاپر کم Fe و دلیلی بر تشکلب این نوع دولوپیته در شرایط نزدیک به سطح، توسط سیال‌های وقیصرف با منشا درایبی و به مد فرایند عای کنترل و جریان‌های نشی- برگشتی بودن است. مقاپر زیاد استراتاسیم در این دولوپیته‌ها (1991تا 2537) میتواند مرتبط با کانی‌شناسی ارگونیتی کربن‌های اولیه باشد.
- دولوپیته‌های ریز تا متوسط بلور با توجه به افزایش اندازه بلورها و داشتن Sr و Fe و کبریت نسبت به دولوپیته‌های خلیلی ریزتا ریزباینر، در مراحل اولیه دیازن تخفیفی کم عمق و با جانشینی کربن‌ها و یا از بلور دوبازه دولوپیته‌های پاد شده به‌وجود آمده‌اند. همراهی یافتگی از دولوپیته‌های ریزباینر در اطراف و بین دولوپیته‌های متوسط بلور و هچنین وجود آثاری از ایبرتالکلاسته‌های ریزباینر دولوپیته شده در اینجا که از فرآیند تجدید بلور است. دولوپیته‌های خلیلی ریز تا ریزباینر و هچنین ریز تا متوسطبلور از انواع دولوپیته‌های تقریباً استوکومتری و سایر نمونه‌ها از انواع غیراستوکومتری هستند.
- دولوپیته‌های متوسط تا درشت بلور (دارای حاشی روشن و مراکز کدر) به‌دلیل داشتن بلورهای کبریت در مقایسه با دو نوع قیلی، در شرایط تفغین بیشتر Mn و Fe درشت‌تر و مقاپر کمتر Sr و بیشتر تا متوسط بلور با توجه به دیدگاه‌ها و اثبات‌های اصلی دیدگاه‌های من‌گ‌شناختی.
(افزایش شرایط احیایی) تشکیل شدهاند. وجود این دولومیت‌ها در زمینه دولومیت‌های ریز تا متوسط بلوط نتیجه به دولومیت‌های باد شده، تاکنون بر تشکیل Mn و Fe و همبستگی با میزان Sr وجود دارند که این دولومیت‌ها از دولومیت‌های ریز تا متوسط بلوط در نتیجه فرآیند تبلور شکل‌داده است.

- افزایش اندازه بلوط و همبستگی نسبی Fe و مقادیر زیاد Mn و Fe در دولومیت‌های پرکنده حفره‌ها و شکستگی‌ها، می‌تواند دلیل بر تشکیل آن در نتیجه فرآیندهای دیالژنی تأثیرگذار باشد. در این دولومیت‌ها، از حاشیه به هسته مرکز، اندازه بلوط و مقادیر Fe و Mn افزایش می‌یابد که این خود دلیل بر افزایش شرایط احیایی در طی تشکیل این دولومیت‌ها است.

- دولومیت‌های زیناسی با پیتاس بزرگ می‌تواند با سطح بلوط خمیده، تا بزرگتر بوده، بوده باشد. با این وجود، این دولومیت‌ها در نتیجه مشاهده شدهاند. از آنجاکه سنگ‌های این برش به‌شکل تکثیرهای ناشناخته، با پیتاس، این دولومیت‌ها در نتیجه اب دریا، شیره‌های زوراسبیک و شورایه‌های حوضه‌ای، سه مشنا پیشنهادی برای تا رای منیژ سنگ‌های دولومیتی منطقه هستند.

منابع

