On pointwise inner automorphisms of nilpotent groups of class 2

Z. Azhdari, M. Akhavan-Malayeri*
Department of Mathematics, Alzahra University

Abstract

An automorphism θ of a group G is pointwise inner if $\theta(x)$ is conjugate to x for any $x \in G$. The set of all pointwise inner automorphisms of group G, denoted by $\text{Aut}_{pwi}(G)$, form a subgroups of $\text{Aut}(G)$ containing $\text{Inn}(G)$. In this paper, we find a necessary and sufficient condition in certain finitely generated nilpotent groups of class 2 for which $\text{Aut}_{pwi}(G) = \text{Inn}(G)$. We also prove that in a nilpotent group of class 2 with cyclic commutator subgroup $\text{Aut}_{pwi}(G) = \text{Inn}(G)$ and the quotient $\text{Aut}_{pwi}(G)/\text{Inn}(G)$ is torsion. In particular if G' is a finite cyclic group then $\text{Aut}_{pwi}(G) = \text{Inn}(G)$.

MSC: Primary 20D45; Secondary 20E36

Introduction

By definition, a pointwise inner automorphism of a group G is an automorphism $\theta: G \rightarrow G$ such that t and $\theta(t)$ are conjugate for any $t \in G$. This notion appears in the famous book of Burnside [1, Note B, p 463]. Denote by $\text{Aut}_{pwi}(G)$ the set of all pointwise inner automorphisms of G.

Obviously, $\text{Aut}_{pwi}(G)$ contains $\text{Inn}(G)$, the group of all inner automorphisms of G. These groups can coincide, for instance when G is S_n, A_n, $\text{SL}_n(D)$ and $\text{GL}_n(D)$ where D is an Euclidean domain (see [7], [10], [11]).

By a result of Grossman [5], it turns out that $\text{Aut}_{pwi}(G) = \text{Inn}(G)$ when G is a free group. Endimioni in [4] proved that this property remains true in a free nilpotent group.

Keywords: Inner Automorphism, Pointwise Inner Automorphism, Nilpotent Group.

*Corresponding author: mmalayer@alzahra.ac.ir.
Also Yadav in [12] gave a sufficient condition for a finite p-group G of nilpotent class 2 to be such that $\text{Aut}_{\text{pwi}}(G) = \text{Inn}(G)$. But the equality does not hold in general.

In fact, in 1911, Burnside posed the following question: Does there exist any finite group G such that G has a non-inner and pointwise inner automorphism? In 1913, Burnside himself gave an affirmative answer to this question [3]. Indeed, there are many examples of groups admitting a pointwise inner automorphism which is not inner (see, for instance [3], [4], [8], [9], [12] where these groups are besides nilpotent).

Segal also gave a subtle example. He constructed a finitely generated torsion-free nilpotent group G, in which $\text{Aut}_{\text{pwi}}(G)/\text{Inn}(G)$ contains an element of infinite order (see [9]).

In this paper we study the pointwise inner automorphisms of a finitely generated nilpotent group of class 2 with cyclic commutator subgroup.

We introduce the following definition:

Definition. Let G be a finitely generated nilpotent group of class 2. Then $G/Z(G)$ is finitely generated abelian group and thus $G/Z(G) = \langle x_1 Z(G) \rangle \times \cdots \times \langle x_k Z(G) \rangle$ for some $x_1, \ldots, x_k \in G$. The group G is called d-group if the following distributive law holds in G,

$$\left[x_1^{a_1} \cdots x_k^{a_k}, G \right] = \left[x_1, G \right]^{a_1} \cdots \left[x_k, G \right]^{a_k}$$

where $a_i \in \mathbb{Z}$ and $1 \leq i \leq k$.

Let G be a 2-generator nilpotent group of class 2. It is straightforward to show that G is a d-group.

To give an example of an infinite d-group, consider the group G with the following presentation

$$G = \langle x_1, x_2, x_3, x_4, x : [x_i, x_j] = x^{m_{ij}}, [x_i, x] = 1; 1 \leq i < j \rangle,$$

where $m_{ii+1} = 1$ for all $1 \leq i < 4$ and $m_{ij} = 0$ for all $i + 1 < j$. Then $G' = Z(G) = \langle x \rangle \simeq \mathbb{Z}$ and $G/Z(G) = \langle x_1, x_2, x_3, x_4 \rangle \simeq \mathbb{Z}^4$. A quick calculation shows that

$$\left[x_1^{a_1} x_2^{a_2} x_3^{a_3} x_4^{a_4}, G \right] = \left[x_1, G \right]^{a_1} \left[x_2, G \right]^{a_2} \left[x_3, G \right]^{a_3} \left[x_4, G \right]^{a_4} = \langle x \rangle,$$

where $a_i \in \mathbb{Z}$ for all $1 \leq i \leq 4$ and $\alpha = \gcd(a_1, a_2, a_3, a_4)$. Therefore G is an infinite d-
group.

Now we give a nilpotent group G of class 2 which is not a d-group.

Let G be a free nilpotent group of class 2 on 4 generators a_1, a_2, a_3 and a_4. If $c_{ij} = [a_i, a_j]$ for $1 \leq i < j \leq 4$, then the relations in G are $[c_{ij}, a_k] = 1$ for $1 \leq i < j \leq 4$ and $1 \leq k \leq 4$, and their consequences. Macdonald in [6] proved that $c_{13}c_{24}$ is not a commutator. Therefore G is not a d-group.

Theorem 1. Let G be a finitely generated nilpotent group of class 2 and

$$G/Z(G) = \langle x_1 \rangle \times \ldots \times \langle x_k \rangle.$$

(i) There exists a monomorphism $\text{Aut}_{pwi}(G) \hookrightarrow \prod_{i=1}^{k} \text{Hom}(\langle x_i \rangle, [x_i, G])$.

(ii) If $[x_i, G]$ is cyclic for all $1 \leq i \leq k$, then there exists a monomorphism $\text{Aut}_{pwi}(G) \hookrightarrow \text{Inn}(G)$.

In particular if G is a d-group of class 2 then the monomorphisms in (i) and (ii) are isomorphism. Furthermore $\text{Aut}_{pwi}(G) \simeq \text{Inn}(G)$ if and only if $[x_i, G]$ is cyclic for all $1 \leq i \leq k$.

Notice that if G is a finite group then, as consequence of this result, we derive Theorem 3.5 and Corollary 3.6 of Yadav in [12].

In particular, we derive the following consequences of Theorem 1.

Corollary 1. Let G be a finitely generated nilpotent group of class 2 in which G' is cyclic, then $\text{Aut}_{pwi}(G) \simeq \text{Inn}(G)$. In particular if G' is finite, then $\text{Aut}_{pwi}(G) = \text{Inn}(G)$.

Recall that by Corollary 3.6 in [12], in a finite nilpotent group of class 2, if G' is cyclic then $\text{Aut}_{pwi}(G) = \text{Inn}(G)$. But we cannot hope for a similar conclusion when G is not finite. We will provide an example in the section 2. However, in a finitely generated nilpotent group of class 2, by Corollary 1 we have $\text{Aut}_{pwi}(G) \simeq \text{Inn}(G)$. So the structure of $\text{Aut}_{pwi}(G)$ is determined.

Corollary 2. Let G be a finitely generated nilpotent group of class 2. If the commutator subgroup of G is cyclic, then $\text{Aut}_{pwi}(G)/\text{Inn}(G)$ is torsion.

Let G be a group and N be a non-trivial proper normal subgroup of G. The pair
(G,N) is called a Camina pair if xN \subseteq x^G for all x \in G\setminus N. A group G is called a Camina group if (G,G') is a Camina pair.

Clearly, if G is a Camina group of class 2 then it is a d-group. So, as an immediate consequence of Theorem 1, one readily gets the following corollary.

Corollary 3. Let G be a finitely generated nilpotent group of class 2. If G is a Camina group then \(\text{Aut}_{\text{pwi}}(G) \cong \text{Inn}(G) \) if and only if G' is cyclic. Particularly, if G/Z(G) is finite, then \(\text{Aut}_{\text{pwi}}(G) = \text{Inn}(G) \) if and only if G' is cyclic.

Preliminary results

Our notation is standard. Let G be a group, by \(C_m \) and \(Z(G) \), we denote the cyclic group of order m, the commutator subgroup and the center of G, respectively.

If x, y \in G, then \(x^y \) denotes the conjugate element \(y^{-1}xy \in G \). For \(x \in G \), \(x^G \) denotes the conjugacy class of \(x \) in G. The commutator of two elements \(x, y \in G \) is defined by \([x,y] = x^{-1}y^{-1}xy \) and more generally, the left-normed commutator of \(n \) elements \(x_1, \ldots, x_n \) is defined inductively by

\[
[x_1, \ldots, x_{n-1}, x_n] = [x_1, \ldots, x_{n-1}]^{-1}x_n^{-1}[x_1, \ldots, x_{n-1}]x_n.
\]

If \(H \leq G \), \([x,H]\) denotes the set of all \([x,h]\) for \(h \in H \), this is a subgroup of \(G \) when \(G \) is of class 2. For any group \(H \) and abelian group \(K \), \(\text{Hom}(H,K) \) denotes the group of all homomorphisms from \(H \) to \(K \). Also \(G^* \) is the set of all central automorphisms of \(G \) fixing \(Z(G) \) elementwise.

Yadav in [12] shows that in a finite nilpotent group of class 2, there exists a monomorphism from \(\text{Aut}_{\text{pwi}}(G) \) into \(\text{Hom}(G/Z(G),G') \). It turns out that this result remains true when \(G \) is an infinite nilpotent group of class 2.

For that, let G be a nilpotent group (finite or infinite) of class 2. Let \(\alpha \in \text{Aut}_{\text{pwi}}(G) \). Then the map \(g \mapsto g^{-1}\alpha(g) \) is a homomorphism from G into G'. This homomorphism sends \(Z(G) \) to 1. So it induces a homomorphism \(f_\alpha : G/Z(G) \to G' \), sending \(\overline{g} = gZ(G) \) to \(g^{-1}\alpha(g) \), for any \(g \in G \). Define

\[
\text{Hom}_{\text{pwi}}(G/Z(G),G') = \{ f \in \text{Hom}\left(\frac{G}{Z(G)},G'\right) : f(\overline{g}) \in [g, G] \text{ for all } g \in G \}.
\]

To prove \(\text{Aut}_{\text{pwi}}(G) \cong \text{Hom}_{\text{pwi}}(G/Z(G),G') \), we use the following well-known result.
Lemma 1.1 Let N be a normal subgroup of a group G. Let ϑ be an endomorphism of G such that $\theta(N) \leq N$. Denote by $\bar{\vartheta}$ and θ_0 the endomorphisms induced by ϑ in G/N and N, respectively. If $\bar{\vartheta}$ and θ_0 are surjective (injective), then so is ϑ.

Proposition 1.2 Let G be a nilpotent group of class 2. Then the above map $\varphi: \alpha \mapsto f_\alpha$ is an isomorphism from $\text{Aut}_{\text{pwi}}(G)$ into $\text{Hom}_{\text{pwi}}(G/Z(G), G')$.

Proof. Since for any $\alpha \in \text{Aut}_{\text{pwi}}(G)$, by the definition $f_\alpha \in \text{Hom}_{\text{pwi}}(G/Z(G), G')$, φ is well defined. Let $\alpha_1, \alpha_2 \in \text{Aut}_{\text{pwi}}(G)$ and $g \in G$. We have $\alpha_1(g^{-1} \alpha_2(g)) = g^{-1} \alpha_2(g)$, since $g^{-1} \alpha_2(g) \in G' \leq Z(G)$. This implies that

$$f_{\alpha_1 \alpha_2}(g) = g^{-1} \alpha_1(\alpha_2(g)) = g^{-1} \alpha_1(gg^{-1} \alpha_2(g)) = g^{-1} \alpha_1(g). g^{-1} \alpha_2(g) = f_{\alpha_1}(g). f_{\alpha_2}(g).$$

Hence φ is a homomorphism. Clearly, φ is injective. Now it suffices to show that φ is surjective.

Let f be any element of $\text{Hom}_{\text{pwi}}(G/Z(G), G')$. By Lemma 1.1 a quick calculation shows that $\varphi(\alpha) = f$, where α is an element of $\text{Aut}_{\text{pwi}}(G)$, sending $g \in G$ to $gf(gZ(G))$. Then we have $\text{Aut}_{\text{pwi}}(G) \simeq \text{Hom}_{\text{pwi}}(G/Z(G), G')$.

* Note that if G is a nilpotent group of class 2 then $\text{Aut}_{\text{pwi}}(G) \simeq \text{Hom}_{\text{pwi}}(G/Z(G), G')$.

It is easy to see that in a Camina nilpotent group of class 2, $\text{Hom}_{\text{pwi}}(G/Z(G), G') = \text{Hom}(G/Z(G), G')$. Hence if G is a Camina group of class 2, then $\text{Aut}_{\text{pwi}}(G) \simeq \text{Hom}(G/Z(G), G')$.

The following well-known facts will be used repeatedly.

Lemma 1.3 Let A, B and C be abelian groups.

(i) $\text{Hom}(A \times B, C) \simeq \text{Hom}(A, C) \times \text{Hom}(B, C)$.

(ii) $\text{Hom}(A, B \times C) \simeq \text{Hom}(A, B) \times \text{Hom}(A, C)$.

(iii) $\text{Hom}(C_m, C_n) \simeq C_d$ where $d = \gcd(m, n)$.

(iv) $\text{Hom}(\mathbb{Z}, A) \simeq A$.

(v) If A is torsion group and B is torsion-free group, then $\text{Hom}(A, B) = 1$.

(vi) If $\gcd(|A|, |B|) \neq 1$, then $\text{Hom}(A, B) \neq 1$.

289
Main Result

Let G be a finite abelian group. We denote by G_p, the p-primary component of G. Hence $G = \prod_{p|\pi(G)} G_p$ where $\pi(G)$ denotes the set of all primes p dividing $|G|$. To prove Theorem 1, we need the following Lemma.

Lemma 2.1 ([1, Corollary 1.4]) Let A and B be two finite abelian groups and $\exp(A) = \exp(B)$. Then $\text{Hom}(A, B) \cong A$ if and only if $B \cong C_m \times H$ in which $C_m \cong \prod_{p|\pi(A)} B_p$ and $H \cong \prod_{p\not|\pi(A)} B_p$. In particular, if $\pi(A) = \pi(B)$ then this is equivalent to B is a cyclic group.

Let G be a finitely generated nilpotent group of class 2. Then $G/Z(G)$ is finitely generated abelian group and thus $G/Z(G) = \langle x_1 Z(G) \rangle \times \ldots \times \langle x_k Z(G) \rangle$ for some $x_1, \ldots, x_k \in G$. Let $f \in \text{Hom}_{\text{pwf}}(G/Z(G), G')$. So $f(gZ(G)) \in [g, G]$ for all $g \in G$. In particular, for all $1 \leq i \leq k$ we have $f(x_i Z(G)) \in [x_i, G]$. Now we prove Theorem 1.

Proof of Theorem 1.

(i) By Proposition 1.2, we have $\text{Aut}_{\text{pwf}}(G) \cong \text{Hom}_{\text{pwf}}(G/Z(G), G')$. It suffices to show that there exists a monomorphism from $\text{Hom}_{\text{pwf}}(G/Z(G), G')$ into $\prod_{i=1}^k \text{Hom}(\langle x_i \rangle, [x_i, G])$. Let $f \in \text{Hom}_{\text{pwf}}(G/Z(G), G')$. Denote by f_i, the homomorphism induced by f in $\langle x_i \rangle$, for all $1 \leq i \leq k$. Since G is a nilpotent group of class 2, we have $[a^m, b] = [a, b]^m = [a, b^m]$ for each $a, b \in G$ and $m \in \mathbb{Z}$. Consequently, $[x_i^m, G] \leq [x_i, G]$ for all $m \in \mathbb{Z}$ and $1 \leq i \leq k$. Therefore $f_i \in \text{Hom}(\langle x_i \rangle, [x_i, G])$. Thus the map α sending any $f \in \text{Hom}_{\text{pwf}}(G/Z(G), G')$ to $\alpha(f) = (f_1, \ldots, f_k) \in \prod_{i=1}^k \text{Hom}(\langle x_i \rangle, [x_i, G])$ is well defined. Now we prove that this map is a monomorphism. Since $(fg)_i = f_i g_i$ for each $f, g \in \text{Hom}_{\text{pwf}}(G/Z(G), G')$ and $1 \leq i \leq k$, α is homomorphism. Clearly, $\text{ker} \alpha$ is trivial, this implies that α is monomorphism. Hence the proof of (i) is complete.

(ii) First we show that $[x_i, G]$ is finite if and only if $\langle x_i \rangle$ is finite, and further
exp([x_i, G]) = exp(⟨x_i⟩) = |⟨x_i⟩|. For this, let |[x_i, G]| = n. Since G is a nilpotent group of class 2, we have \([x_i^2, g] = [x_i, g]^n = 1\) for all \(g \in G\) and so \(x_i^n \in Z(G)\).

Hence \(⟨x_i⟩\) is finite and \(|⟨x_i⟩| n\). Conversely if \(|⟨x_i⟩| = m\) then \(x_i^m \in Z(G)\) and \([x_i, G]^m = [x_i^m, G] = 1\). Consequently \([x_i, G]\) is finite and \(\exp([x_i, G]) = n|m\).

Therefore in this case, \(m = n\). Hence by Lemma 2.1, for all \(1 \leq i \leq k\) we have \(\text{Hom}(⟨x_i⟩, [x_i, G]) \cong ⟨x_i⟩\) if and only if \([x_i, G]\) is cyclic.

Now from (i), we have a monomorphism from \(\text{Aut}_{\text{pwi}}(G)\) into \(\prod_{i=1}^{k} \text{Hom}(⟨x_i⟩, [x_i, G])\) and therefore we conclude that there exists a monomorphism \(\text{Aut}_{\text{pwi}}(G) \hookrightarrow G/Z(G)\), this completes the proof of (ii).

If \(G\) is a d-group, then it is easy to see that the monomorphism defined in (i) is an isomorphism from \(\text{Aut}_{\text{pwi}}(G)\) into \(\prod_{i=1}^{k} \text{Hom}(⟨x_i⟩, [x_i, G])\).

Finally to complete the proof, it is sufficient to show that if \(\text{Aut}_{\text{pwi}}(G) \cong \text{Inn}(G)\), then \([x_i, G]\) is cyclic for all \(1 \leq i \leq k\). Since \(\text{Aut}_{\text{pwi}}(G) \cong \text{Inn}(G)\), by Proposition 1.2 we have \(G/Z(G) \cong \text{Hom}_{\text{pwi}}(G/Z(G), G')\). On the other hand, \(G\) is a d-group and hence

\[
\text{Hom}_{\text{pwi}}(G/Z(G), G') \cong \prod_{i=1}^{k} \text{Hom}(⟨x_i⟩, [x_i, G]).
\]

It follows that

\[
G/Z(G) = ⟨x_1⟩ \times \ldots \times ⟨x_k⟩ \cong \prod_{i=1}^{k} \text{Hom}(⟨x_i⟩, [x_i, G]).
\]

Now we may assume that \(⟨x_1⟩ \times \ldots \times ⟨x_n⟩\) is the torsion part and \(⟨x_{n+1}⟩ \times \ldots \times ⟨x_k⟩\) is the torsion-free part of \(G/Z(G)\). Since for all \(1 \leq i \leq n\), \(\exp([x_i, G]) = \exp(⟨x_i⟩) = |⟨x_i⟩|\) and \(\prod_{i=1}^{n} \text{Hom}(⟨x_i⟩, [x_i, G]) \cong ⟨x_1⟩ \times \ldots \times ⟨x_n⟩\), \(\text{Hom}(⟨x_i⟩, [x_i, G]) \cong ⟨x_i⟩\) for all \(1 \leq i \leq n\) and hence \([x_i, G]\) is cyclic. Furthermore, we have

\[
\prod_{i=1}^{k} \text{Hom}(⟨x_i⟩, [x_i, G]) \cong ⟨x_{n+1}⟩ \times \ldots \times ⟨x_k⟩ \cong \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z} \cong \mathbb{Z}^{k-n}.
\]

Now we have \(\text{Hom}(⟨x_i⟩, [x_i, G]) \cong [x_i, G]\), since \(⟨x_i⟩ \cong \mathbb{Z}\) and hence \(\prod_{i=n+1}^{m} [x_i, G] \cong \mathbb{Z}^{k-n}\). That is \([x_i, G] \cong \mathbb{Z}\) for all \(n+1 \leq i \leq k\). This implies that \([x_i, G]\) is cyclic for all \(1 \leq i \leq k\), as required.

*Notice that if \(G\) is a finite group then, as a consequence of this result, we derive Theorem 3.5 and Corollary 3.6 of Yadav in [12].

The following corollary is an easy consequence of the above theorem.
Corollary 2.2 Let G be a finitely generated nilpotent group of class 2 with cyclic commutator subgroup. Then there exists a monomorphism from $\text{Aut}_{pwi}(G)$ into $\text{Inn}(G)$ or equivalently $\text{Aut}_{pwi}(G)$ is isomorphic to a subgroup of $G/Z(G)$.

Remark 2.3 We keep here the notation used in Theorem 1.

(i) By the discussion of (ii) in Theorem 1, if G' is finite cyclic, then $G/Z(G)$ is finite and $|\text{Aut}_{pwi}(G)| \leq |\text{Inn}(G)| = |G/Z(G)|$. On the other hand, $\text{Inn}(G) \leq \text{Aut}_{pwi}(G)$ conclude that $\text{Aut}_{pwi}(G) = \text{Inn}(G)$. Note that in this case, G is not necessarily finite.

(ii) If G' is infinite cyclic, it follows from the discussion of (ii) in Theorem 1, that $G/Z(G)$ is a free abelian group of finite rank, say $r(G/Z(G)) = k$. We certainly have $\text{Inn}(G) \leq \text{Aut}_{pwi}(G)$ and thus $r(\text{Inn}(G)) \leq r(\text{Aut}_{pwi}(G))$. Also $r(\text{Aut}_{pwi}(G)) \leq r(\text{Inn}(G))$, since $\text{Aut}_{pwi}(G)$ is isomorphic to a subgroup of $\text{Inn}(G)$. Therefore $\text{Aut}_{pwi}(G)$ and $\text{Inn}(G)$ have the same rank and hence $\text{Aut}_{pwi}(G) \cong \text{Inn}(G)$.

Now it is easy to deduce Corollary 1 from Remark 2.3.

Remark 2.4 It is known that in a nilpotent groups of class 2, $\text{Inn}(G) \leq \text{Aut}_{pwi}(G) \leq C^*$. So $\text{Inn}(G) = \text{Aut}_{pwi}(G)$ when $\text{Inn}(G) = C^*$. In [1] we characterized all non torsion-free finitely generated groups in which $\text{Inn}(G) = C^*$. We proved that $\text{Inn}(G) = C^*$ if and only if G is an abelian group or nilpotent of class 2 and $Z(G) \cong C_m \times H \times \square^r$ in which $C_m \cong \Pi_{p \in \pi(G/Z(G))} Z(G)_p$, $H \cong \Pi_{p \in \pi(G/Z(G))}^{\square^r} Z(G)_p$ and $r \geq 0$ is the torsion-free rank of $Z(G)$ and $G/Z(G)$ has finite exponent.

Hence if G is nilpotent group of class 2, $Z(G) \cong C_m \times H \times \square^r$ and $G/Z(G)$ has finite exponent then we have $\text{Inn}(G) = \text{Aut}_{pwi}(G)$. Notice that in this case, G' is cyclic and the equality $\text{Inn}(G) = \text{Aut}_{pwi}(G)$ also follows from Corollary 1.

Recall that by Corollary 3.6 in [12], in a finite nilpotent group of class 2, if G' is cyclic then $\text{Aut}_{pwi}(G) = \text{Inn}(G)$. But we cannot hope for a similar conclusion when G is not finite.
For example, consider countably infinitely many copies H_1, H_2, \ldots of a given nilpotent group H of class 2 with cyclic commutator subgroup. Let G (respectively, \overline{G}) be the direct product (the cartesian product) of the family $(H_i)_{i>0}$. Clearly, G and \overline{G} are nilpotent of class 2. For each integer $i > 0$, choose an element $a_i \in H_i$ which is not in the center of H_i. Then the inner automorphism of \overline{G} defined by $\overline{g}(t_i)_{i>0} = (a_i^{-1}t_ia_i)_{i>0}$ induces in G a pointwise inner automorphism which is not inner (see [4]).

However, in a finitely generated nilpotent group of class 2 with cyclic commutator subgroup, we have $\text{Aut}_{\text{pwi}}(G) \simeq \text{Inn}(G)$, by Corollary 1. So the structure of $\text{Aut}_{\text{pwi}}(G)$ is determined.

Furthermore it is fairly easy to deduce Corollary 2 from Remark 2.3.

We end this part of the paper with some examples of infinite groups G satisfying the conditions of Corollary 1 and therefore $\text{Aut}_{\text{pwi}}(G) \simeq \text{Inn}(G)$.

Example 2.5 Let $G = \langle x_1, x_2, y_1, y_2; x_1^p = x_2^p = y_1^p = y_2^p = 1, [x_1, x_2] = y_1, [y_1, y_2] = [x_1, y_1] = 1; 1 \leq i, j \leq 2 \rangle$. Then G satisfies the condition of Corollary 1. We have $G' = \langle y_1 \rangle \simeq C_p$, $Z(G) = \langle y_1, y_2 \rangle \simeq C_p \times \mathbb{Z}$ and $G/Z(G) = \langle \overline{x_1}, \overline{x_2} \rangle \simeq C_p \times C_p$ and hence $\text{Aut}_{\text{pwi}}(G) \simeq \text{Inn}(G)$.

Example 2.6 Let $G = \langle x_1, x_2, x; [x_1, x_2] = x, [x_1, x] = 1; 1 \leq i \leq 2 \rangle$. Then G satisfies the condition of Corollary 1. We have $G' = Z(G) = \langle x \rangle \simeq \mathbb{Z}$ and $\frac{G}{Z(G)} = \langle \overline{x_1}, \overline{x_2} \rangle \simeq \mathbb{Z} \times \mathbb{Z}$. Hence $\text{Aut}_{\text{pwi}}(G) \simeq \text{Inn}(G)$. It is easy to see that in this case every pointwise inner automorphism is inner and so $\text{Aut}_{\text{pwi}}(G) = \text{Inn}(G)$ (see [1, Example 3.4]).

Acknowledgements

We thank the editor of the Journal Scince of Kharazmi University and the referees who patiently read and verified this paper.

References

1. Z. Azhdari, M. Akhavan-Malayeri, "On Inner automorphisms and central automorphisms of..."
On pointwise inner automorphisms of nilpotent groups of class 2

Downloaded from jsci.khu.ac.ir at 15:22 +0330 on Friday January 29th 2021