فعالیت آنزیمی و بیان دهنده پراکسیداز و فنیل آلاتین آمونیالیاز در ریشه گیاه کتان

در تنش آلومینیم

مریم دهقانپور، فالحه قاتلی، مهدی بهمنی، مظهر شریفی:
دانشگاه تربیت مدرس، دانشکده علوم زیستی

چکیده
سمت الومینیم یکی از مهمترین عوامل محدود کندن رشد و نمو گیاهان در خاک‌های اسیدی (pH < 5) است که خطر آن به یادگاری زراعی و باران‌های اسیدی را به‌افزاری است. مکانیسم سمیت الومینیم‌های ب روشنی مشخص نشده است. مطالعه رشد نشان‌دهنده سمیت الومینیم است و این مطالعه به‌منظور اطمینان از تغییرات هویتی فنیل اسید، اعمال سنجیده در این پروپاپسی تأثیر آلومینیم بر فعالیت و بیان آنزیم‌های دخیل در بیوستاتیک‌های مانند فنیل آلاتین الومینیم و پراکسیداز بررسی شد. بدین منظور گیاهان کتان رشد پایه در محیط هوگن جاری دو هفته در محیط‌های تیمار الومینیم با غلظت‌های ۵۰، ۱۰۰، ۲۵۰ و ۵۰۰ میکرو مولار (پیش‌بازیت AlCl₃·6 H₂O قرار گرفته. نتایج نشان داد که تیمار الومینیم سبب کاهش رشد و فنیل آلاتین تولید می‌شود. افرادی این فعالیت آنزیم پراکسیداز به‌وجود و در بخش بویی و کووالانس به‌خویی کاهش رشد راش را توجیه می‌کند. افزایش فعالیت و بیان فنیل آلاتین الومینیم و نیز افزایش میزان لیگنین یافته‌ها در بخش‌های غلظت الومینیم ممکن است. بررسی بیان دو آنزیم پراکسیداز نشان داد که فلکسپر ۲ در مقایسه با فلکسپر ۰ در سمت الومینیم رشد ندارد.

مقدمه
الومینیم (Al) فراوان‌ترین الیاف بوستن زمین و سوییمی عصر فراوان موجود در آن است و لیبرای رشد گیاه ضروری نیست. سمیت الومینیم یک‌ورک هر محدود کندن تولید محصول در خاک‌های اسیدی است که حداکثر درصد زمین‌های زراعی دنیا را تشکیل می‌دهند [۲۰]. اولین نشان‌های سمیت Al، مهار رشد ریشه است که نتیجه‌گیری آن کاهش جذب مواد غذایی، آب و کاهش رشد گیاه خواهد بود [۷]. [۱۱]. هجمنی تأثیر Al در ساختار و عملکرد دیواره سلولی، نشان‌دهنده سبیل‌سازی و اسکلت سلولی، تاثیر بر سنتز لیگنین و ترکیبات فنیلی با پاید شده‌اند، دی转化为کردن غشا پلاسمی و در نتیجه؛ افزایش نفوذپذیری غشا تحت تأثیر گونه‌های فعال اکسید‌های (ROS) هوموستاتیک کلسیم و متابولیسم فسفر به‌تنهایی رضایت است [۹]. [۴].

1. Linum usitatissimum L. 2. Flaxper
بررسی‌ها نشان داده است که مانع‌های رشد طولی ریشه با استفاده از آلومینیم از طریق توقف طولین سلول اعمال می‌گردد. دیویژن سلول اولین و مهم‌ترین محل تجمع آلومینیم است. یکی از مکانیسم‌های مهم سیستم آلومینیم از دست دادن انعطاف‌پذیری دیویژن و سخت شدن ان در سلولی در حال طولین سلول در ریشه است [15]. سخت شدن دیویژن سلولی فرآیند نسبتاً بی‌پیچیدی است که با دخالت اینژیا و مواد خاص و انتقال اندام می‌شود. در بین این انژیاهای، پراکسیدزهای متصل شده به دیویژن سلولی نقش مهمی را ایفا می‌کند. این انژیاهای در تشکیل اتصالات کولورالی بین کربهوریدهای و پلیمرهای فلی و همچنین اتصال بین اکستنسین و پلی ساکاریدهای استرای شده به فرولیک اسید و پلیمرهای منورههای فلی و تشکیل لیگنین دخالت دارند [8].

همچنین ارتباط نزدیکی بین عفایت پراکسیدزهای اپیلایسیا و سنتر لیگنین در ریشه‌های تحت تنش آلومینیم وجود دارد [16، [18]. تا کنون، جهار تولالی برای زن پراکسیدز در گیاه کتان گزارش شده است. پایلی و همکاران (2009) با مشاهده افزایش بین دو ایزوفرم فلکسیر و فلکسیر 3 در تنش فلز کادمیوم، نقش این دو ایزوفرم را در اتصالات عرضی میوه‌پلاستونی‌ها در دیویژن سلولی تحت تنش شرک دادن [20]. آنژیم پراید آلومینیم که در پاس دیگر به نتیجه‌های مختلف جریان می‌شود، انژیمی کلیدی در بیوسترز ترکیبات فنی است که پیش‌بازهای لیگنین و سوپرتراز لازم برای انژیم پراکسیدز را فراهم می‌کند [9]. گزارش‌های موجود نشان می‌دهد که بین بیش از 25 زن توزیع آلومینیم تنظیم می‌شود که زن‌های دخیل در تشکیل و طولین سلولی و تنش اکسیداتیو مهیج‌ترین آنها هستند [14]. بدین ترتیب، آگاهی در زمینه بین زن‌های القا شده توسط آلومینیم در درک مکانیسم سیستم آلومینیم همیت زیادی دارد. ریشه به عفایت اولین بخش پنجم آلومینیم، مهم‌ترین محل دریافت سیگنال تنش آلومینیم است که رشد اندام هواپی و کل گیاه را تحت تاثیر قرار می‌دهد. از این رو در این تحقیق بروز‌های لازم نتیجه روز اندام ریشه صورت گرفت. هدف از پژوهش حاضر بررسی تغییرات در عفایت و بین زن مرکز کندن اینژیا پراکسیدز و فنی‌الینی آلومینیا و ارتباط آن با مانع‌های رشد طولین بحث شده با استفاده از آلومینیم در ریشه گیاه کتان بود. در سال‌های اخیر به این گیاه علاوه و تولید فیبر و رونه‌های ابعاد مدل در تحقیقات بایه و کاربردی در نیازهای سلول گیاهی و پیونکلولوزی توجه شده است [17].

مواد و روش‌ها

مواد گیاهی و طرح آزمایش

جوان خزنی برخی گیاه کتان بعد از ضدعفونی کردن سطحی آن با سیدم هیوبکاریت (حاوی 5‌درصد کاربنی فعال) و اتانول 70 درصد، در تاریک و دما 22 درجه C انرژی گردید. دانه‌رسیدن با طول یکسان، انتخاب و به محلول هولوگلد تغییرپذیر شکل (برحسب میله‌مولار): MgSO4: 7H2O: 45/5، KNO3: 15/2، Ca(NO3)2: 4Н2O: 1/0.5 و Neplan

1. Paynel
فعالیت آنزیمی، بیان ضریب‌های پروپایدوز و فنیل‌آتومیکالیاز در مایع گیاهی کانس

پژوهش‌های بیوشیمیایی

سنگش فعالیت انزیم‌های فنیل‌آتنیکاسیداز و پروپایدوز (PAL، POD) و نیز اندازه‌گیری محتوای لیگنین و فنیل‌های متصل به دیواره با روش‌های رایج انجام گرفت [8]. انزیم فنیل‌آتنیکاسیداز به عنوان انزیم کلیدی در متابولیسم ترکیبات فنیل، پیش‌سازه‌های لازم برای انزیم پروپایدوز را فراهم می‌کند. بنابراین فعالیت آن و ساعت پس از تیمار، فعالیت پرکاسیداز و 24 ساعت پس از تیمار، فعالیت پرکاسیداز و 24 ساعت پس از تیمار تیمار شده بعد از شستشو با استفاده جداسازی و در نیتروژن، مایع منجمد و منهای 80°C برای بررسی های بعید به فیزیولوژی نتایج. از آزمایش با صورت طرح کاملاً تصمیمات به سه تكرار اجرا گردید.

مقدار 20 گرم بافت ریشه در بافت‌سازی‌بود 0.1 مولار، pH=8/6 حاوی β-Merkaptopotanol 2 میلی‌میلی‌متر لیو ه، داید. شد. بعد از سانتی‌فیوز نمودن با سرعت 16000 گرم دمای کوبه در دمای C 4 میلی‌میلی‌متر لیو ه در 10 لیتر محلول روی برای سنگش فعالیت انزیم استفاده گردید. محلو لیو ه- فنیل‌آتنیکاسیداز با فیبرافرودن سویسترا، بافت‌سازی‌بود (بنون مراکزیتایانول) و عصاره انزیمی، به دست یک ساخت در حمام باغ‌گرمه با دمای 70°C قرار داده شد. واکنش انزیم با افزودن کلرید هیدروژن اسید 5 مولار متوسط گردید و سیمانیک اسید موجود در نمودن (فراورده انزیم PAL)، سه بار با اینلیست استخراج و توسط جریان از هوای تصفیه‌شده خشک گردید. میزان سیمانیکاسید بعد از حل نمودن نمودن های خشک شده در مانول مطلق با استفاده از دستگاه اکسیژن‌اکسیداز (کتامیتر، آب) مجهز به سیسته حیطه‌های آب 300-250 (nm) دقت علائم ODS 80Tس (HPLC) در شیب حیطه‌ای از 0/045 سانتی‌متری بر دقیقه به عنوان فاز متحرک استفاده شد. و میزان سیمانیکاسید توسط دریافت در یک ساعت در طول موج 473nm تست شد. فعالیت انزیم بر حسب میزان سیمانیکاسید با اعمال میلی‌گرم پروپتین بیان شد [8]. میزان پروتئین به روش برادوی و با استفاده از BSA عنوان استاندارد محاسبه گردید [4].

1. KNAUER 2. Flow rate
آنزیم پراکسیداز در سه بخش محلول یونی و کووالنت جداسازی و فعالیت آن اندازه‌گیری شد. 2/3 گرم بافت ریشه در 400 mM CHCl₃–MeOH (v/v) (قندیل‌سازی مخلوط) در دمای 4°C سالیقه و با سرعت 10000 ×g 2 دقیقه در دمای 4°C ساخته شد. از محلول روبی استخراج فعالیت بخش محلول پراکسیداز استفاده شد. فعالیت آنزیم در بین بخار، با فشار نیم‌هیضی و 0.25 میلی‌لیتر محلول استری‌وی‌رایش در اسیدسیسک (w/v) 75% افزوده و در حمام آب‌گرم با دمای 75°C و ضریب پرکتیکاستد صورت می‌گیرد. 20 دقیقه گذشته و در فواصل 3 دقیقه‌ای ثانیه‌ای دش سرد نموده می‌شود. بعد از سرده نمونه‌ها در یخ، محصول 200 میلی‌لیتر شامل نمود، هیدروکسید سدیم 25 میلی‌لیتر مخلوط استری‌وی‌رایش به حجم رسیده شد. میزان لیسین‌ها مقدار هنگام ثبت نمونه با استخراج یک جنبه در 200 nm انتخاب می‌شود. 400 μg حجم‌سنجی می‌شود. 100 μg اسیدسیسک (w/v) به استخراج فعالیت مقداری مخلوط می‌شود. 200 μM NaOH به استخراج افزوده می‌شود. 100 μg حجم‌سنجی می‌شود. 200 μM NaOH به استخراج افزوده می‌شود. 200 μM NaOH به استخراج افزوده می‌شود. 200 μM NaOH به استخراج افزوده می‌شود.
خبک شندن. رسوب حاصل در منحل مطلق حل شد و میزان فتلهای متصل به دیواره با دستگاه HPLC با تاییدیه که برای آنژیم PAL نظریه در طول موج 280nm همان شرایطی که برای آنژیم شد.[8]
برای اندام‌گیری میزان آلبومین تومورهای ریشه پس از تست‌های دقیق دیپ بر اب معمولی گرفته شد. در آزمایش
اینکی و پس از تعیین وزن در دمای 40°C و 50°C هر کدام به‌طور جداگانه و سپس در شدت یک میلی‌لیتر مخلوط 1:1 آب و کلرید کاسیسید غلیظ (N) به خاکستر حاصل از روی و سپس در حمام شن در دمای 40°C 110 درصد شد رسوب حاصل پس از حل کردن با سیکل دریک 1 نرمال برای تعیین
محتوای آلبومین به دستگاه جنب ایمنی (آنالیتیک‌زن)، آلمان، کانتور 7000، تزریق شد [2].
بررسی بیان زن‌های RT-PCR با POD و PAL و نیمه کمی
rt-PCR، cDNA Pest المان است. گرنگی علت و سپس از اسکریپت آرتمی رانت کپ انجام شد. استفاده شد. برای دریکه
cDNA و دریکه جهت واکنش‌های cDNA استفاده شد. برای دریکه
RT-PCR با استفاده زن‌های حجم واکنش‌های PCR منظور براساس جدول 1 تهیه و مورد استفاده قرار گرفتند [19]. بهینه‌سازی واکنش‌های جهت حذف RNA ساپس، المان MD، USA برای استخراج گردید. پس از استفاده از
اتز و نماینده شرکت سازنده (کویزن
مثلاً cDNA جهت واکنش‌های PCR تهیه در اندام‌گیری غلظت آن با استفاده از
سایس، المان MD، USA استخراج گردید. پس از استفاده از
اسبکروتوناراندرب، با استفاده از پرمی اسکریپت آرتمی رانت کپ انجام شد که با
ژن‌های PCR در دمای 40°C و 50°C به‌طور جداگانه انجام شد که با
جرحه واکنش‌های اولیه در دمای 40°C به‌طور جداگانه انجام شد که با
فرمولوژی پاسکراکی (از نظر کوموگریپ)
برای کمی محدود داده‌های حاصل از بیان زن، نرمافزار (ایمیج گیتی) استفاده شد.
جدول 1. پراپنرهای استفاده شده در واکنش‌های RT-PCR
| چکیده | ترتیب ژن | Accession number GenBank | ژن
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hano et al. (2006)</td>
<td>5CATCAGATTGAGATCTTGGAAGC 3 / GTTACAAAACACAAATAGG 3</td>
<td>L987328</td>
</tr>
<tr>
<td>Paynel et al. (2009)</td>
<td>5TGGATAACAACCCCGACAAA 3 / GGGGCCCTTGGACCAGG 3</td>
<td>L07554</td>
</tr>
<tr>
<td>Paynel et al. (2009)</td>
<td>5TACCTCACAATCTCCAGACC 3 / GGAAACTTGGACAGGCCTC 3</td>
<td>U59284</td>
</tr>
</tbody>
</table>

بررسی‌های آماری

طرح آزمایش و انجام تیمارها به‌صورت طرح کاملاً تصادافی با سه تکرار انجام شد. همه آنالیزهای بیوشیمیایی در سه تکرار مستقل، هر یک با سه نمونه و آنالیزهای مولکولی در سه تکرار مستقل انجام شدند. برای تعیین میانگین و انحراف معیار و رسم نمودارها، از نرم‌افزار SPSS استفاده شد. همچنین برای تعیین معنی‌دار بودن تفاوت‌ها از تجزیه واریانس یکطرفه (آنوا) با استفاده از آزمون دانکن در سطح ۰/۰۵ \(P \leq \) درست SPSS نرم‌افزار \(P \leq 0/05 \) استفاده شد.

نتایج

تاثیر الومینیم بر رشد

نتایج نشان داد که الومینیم با غلظت‌های ۵۰ و ۱۰۰ میکرومولار سبب کاهش رشد گیاه کتان (وزن تر) بود. در تیمار با الومینیم به نسبت گیاه گوش نگرفته بود، اما بنا بر نتایج الومینیم طبیعی، الومینیم سبب افزایش مواد خشکی نظیر لیگنین شده است.

![نمودار A](#)
![نمودار B](#)

شکل ۱. تاثیر غلظت‌های مختلف الومینیم بر رشد گیاه کتان (A) و وزن خشک (B)

<table>
<thead>
<tr>
<th>Al concentration (µM)</th>
<th>Relative growth rate (mgFW/day)</th>
<th>Relative growth rate (mgDW/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Al concentration (µM)</th>
<th>Relative growth rate (mgFW/day)</th>
<th>Relative growth rate (mgDW/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱. تاثیر غلظت‌های مختلف الومینیم بر رشد گیاه کتان (A) و وزن خشک (B)

1. Excel
2. ANOVA
تأثیر آلومینیوم بر فعالیت آنزیم پراکسیداز

چنان‌که در شکل ۲ مشاهده می‌شود، با افزایش سن گیاه فعالیت هر سه بخش پراکسیداز افزایش یافت. در تیمار ۲۴ ساعت تفاوت معنی‌داری بین تیمارها و شاهد دیده نشد. فعالیت پراکسیداز در تیمار ۹۶ ساعت تفاوت معنی‌داری با شاهد نشان داد. بیش‌ترین فعالیت بخش محلول در تیمار ۱ میکرومولار آلومینیوم دیده شد، ولی تفاوت معنی‌داری در بخش بیونی بین غلظت‌های مختلف آلومینیوم به‌کار رفته مشاهده نگردید. بر اساس نتایج بدست‌آمده، فعالیت بخش کووالنت در تیمار ۱ میکرومولار آلومینیوم افزایش معنی‌داری را نسبت به تیمار شاهد نشان داد.

شکل ۲. تأثیر غلظت‌های مختلف آلومینیوم بر فعالیت پراکسیداز در ریشه گیاه کتان در زمان‌های ۲۴ و ۹۶ ساعت پس از تیمار. فعالیت آنزیم در سه بخش محلول (A)، بیونی (B) و کووالنت (C) اندام‌گیری شده. داداه‌ها راستگنگ حداکثر تکرار مستقل ± انحراف استاندارد (میله‌های عمودی) است. حروف غیریکسان، معنی‌دار تفاوت معنی‌داری در سطح ۰/۰۵ ≤ P بر اساس آزمون دانکن هستند.
تأثیر آلومنیم بر فعالیت آنزیم قیف‌الانیم امونیالاز

اکاذبگری فعالیت آنزیم PAL در زمان ۴ و ۲۴ ساعت پس از تیمار با آلومنیم، نسبت به شاهد افزایش نشان داد. این افزایش در تیمار ۵۰ میکرومولار در زمان ۴ ساعت و در تیمار ۱۰۰ میکرومولار آلومنیم در ۲۴ ساعت معنی‌دار است (جدول ۲).

جدول ۲. تغییرات فعالیت آنزیم PAL در ریشه گیاهان تیمار شده با غلظت‌های مختلف

<table>
<thead>
<tr>
<th>غلظت آلومنیم (میکرومولار)</th>
<th>زمان (ساعت)</th>
<th>PAL Activity (µg CA/mg protein/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۰۰۰</td>
<td>۲۴</td>
<td>۵۰،۱ ± ۲،۳۷۳</td>
</tr>
<tr>
<td>۵۰۰۰</td>
<td>۲۴</td>
<td>۴۰،۷ ± ۱،۲۵۷</td>
</tr>
<tr>
<td>۱۰۰۰۰</td>
<td>۲۴</td>
<td>۳۰،۵ ± ۰،۹۷۵</td>
</tr>
</tbody>
</table>

داده‌ها مناسب ماند که ۳ تکرار مستقل با انحراف استاندارد (میله‌های عمودی) است. هرörü غیرطبیعی، معروف تفاوت معنی‌دار در سطح ۵% (P < ۰/۰۵) بر اساس آزمون دالکن است.

تأثیر آلومینیم بر تجمع لیگنین و میزان فل‌های متصل به دیواره

نتایج حاصل از تعبیه لیگنین دیواره نشان داد که آلومینیم با غلظت ۱۰۰ میکرومولار، لیگنین دیواره را نسبت به شاهد ۲/۵ برابر افزایش داده. در صورتی که تفاوت بین میزان لیگنین در تیمار ۵ میکرومولار آلومنیم و شاهد دیده نشد. همچنین میزان فل‌های متصل به دیواره در روشگاهان تیمار شده با آلومینیم نسبت به گیاهان شاهد افزایش معنی‌داری نشان داد (جدول ۳).

جدول ۳. تأثیر آلومینیم بر تجمع لیگنین و میزان فل‌های متصل به دیواره

<table>
<thead>
<tr>
<th>غلظت آلومنیم (میکرومولار)</th>
<th>محصول لیگنین (mg/mg دیواره)</th>
<th>فل‌های متصل به دیواره (µg/mg دیواره)</th>
<th>فل‌های متصل به دیواره (µg/mg دیواره)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۰۰۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۵۰۰۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
</tr>
<tr>
<td>۱۰۰۰۰۰</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰</td>
<td>۱۰۰۰</td>
</tr>
</tbody>
</table>

داده‌ها مناسب ماند که ۳ تکرار مستقل با انحراف استاندارد (میله‌های عمودی) است. هرörü غیرطبیعی، معروف تفاوت معنی‌دار در سطح ۵% (P < ۰/۰۵) بر اساس آزمون دالکن است.

میزان جنب آلومینیم ریشه

براساس نتایج به‌若您ت آمدن از جنباتی، ارتباط مستقیمی بین مقدار آلومینیم جنب شده با میزان آلومینیم موجود در محیط رشد گیاه در تیمارهای مختلف آلومینیم دیده می‌شود، چنان‌که با افزایش غلظت آلومینیم در محیط مقدار جنب آن توسط گیاه نیز افزایش یافته (شکل ۲).

تأثیر آلومینیم بر بیان زن پراکسیداز و قنی فنی الی‌الینامونیالاز

پایان‌بگیرنده آلومنیم به نشان داد که زن LuPAL بررسی شد. در بررسی‌های اولیه نشان داد که زن ACTIN (ACT-F2) به عنوان کنترل داخلی تحت تأثیر تیمارهای اعمال شده

۲۰
فرآیند اتمسفری و بیان زن‌های پروکسيراز و قفل‌پذیر امینوپراز در ریشه گیاه کتان

قرار گرفت. این امر در پژوهش‌های سابق محققان نیز مشاهده شده است [10]; از اینرو از زن مرتبط به
فاکتور طولی شدن (LuEF1α) به عنوان زن کنترل داخلی استفاده شد [11].

شکل ۳. مقدار آلومینیم به‌وسیله پیشده در فناوری‌های مختلف آلومینیم. دادها میانگین حداکثر ۳ تکرار مستقل ± انحراف استاندارد (میله‌های عمودی) است. حروف غیرپایین، معنی‌دار در سطح ۰/۰۵، بر اساس آزمون دانکن است.

امکانات

- فلایر (Flaxper1) (۱۰۱bp)
- LuEF1α (۱۰۰bp)
- فلایر (Flaxper3) (۱۸۵bp)
- LuEF1α (۱۰۰bp)

جدول ۱. اندازه‌گیری محتوای آلومینیم در طول زمان.

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>آلومینیم (میلی‌گرم در گرم بافت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۰.۳۵</td>
</tr>
</tbody>
</table>

امکانات

- فلایر (Flaxper1) (۱۰۱bp)
- LuEF1α (۱۰۰bp)
- فلایر (Flaxper3) (۱۸۵bp)
- LuEF1α (۱۰۰bp)

جدول ۱. اندازه‌گیری محتوای آلومینیم در طول زمان.

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>آلومینیم (میلی‌گرم در گرم بافت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۰.۳۵</td>
</tr>
</tbody>
</table>

امکانات

- فلایر (Flaxper1) (۱۰۱bp)
- LuEF1α (۱۰۰bp)
- فلایر (Flaxper3) (۱۸۵bp)
- LuEF1α (۱۰۰bp)

جدول ۱. اندازه‌گیری محتوای آلومینیم در طول زمان.

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>آلومینیم (میلی‌گرم در گرم بافت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۰.۳۵</td>
</tr>
</tbody>
</table>
فعالیت آنزیمی ویول بان زن‌های پاکسیداز و فیل الانین امیتابلیاز در ریشه گیاه کلکان

مربی‌دهی یور و همکاران

C

<table>
<thead>
<tr>
<th>Treatment duration (h)</th>
<th>6</th>
<th>24</th>
<th>6</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>LuPAL (132bp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuEF1α (100bp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D-F

<table>
<thead>
<tr>
<th>Al concentration (µM)</th>
<th>0</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative expression of LuPAL</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
</tr>
</tbody>
</table>

بحث

دیواره سولسی ریشه به‌دلیل تجمع حاره منفی بعوونان اصلی‌ترین محل اتصال آلومینیم در نظر گرفته شده است. براساس پژوهش‌های انجام شده، اتصال آلومینیم به ماتریس پتیتی و دیگر ترکیبات دیواره سولسی، باعث تغییر خواص دیواره سولسی و عملکرد آن همچنین کشش، تخلخل، عالی‌تیمی و نیز تغییرات سیمپلاتاتی از طریق ارتباط بین دیواره سولسی-شیائ پلی‌امائیل-اسکلت سولسی می‌شود که می‌تواند کاهش با منعکست رشد ریشه را موجب گردد [13]. پژوهش‌های بسیاری نشان داده است که اولین اثر آلومینیم در کاهش رشد ریشه از طریق توقف رشد طول سلولی تا توقف تقسم سلولی اعمال می‌گردد [5]. نتیجه بحشت آمده از بررسی رشد گیاه کم در حضور آلومینیم، کاهش میزان رشد را می‌توان با افزایش غلظت آن در محیط رشد گیاه ناشان می‌دهد. از طرفی میزان کاهش رشد، با افزایش محیط آلومینیم ریشه ارتباط مستقیمی دارد. با این اثر سمیت آلومینیم
بر رشد گیاه تا حدودی با محتوای آلومینیم رشته مرتبط است. این نتایج در تحقیقات قبلی در مورد سلول‌های جدایی کشت گیاهی در تیمار با علت‌های مختلف آلومینیم نیز مشاهده شده است [1] [2]. تحقیقات سپری بر نشان داده است که آلومینیم با تاثیر عرضی به یکینی‌ها، از طریق افزایش سختی دیواره سلولی و تغییر ساختار و عمل غشا سیتوپلاسمی، کاهش جذب آب و سایر مواد غذایی سبب کاهش رشد گیاه می‌گردد [3]. در پژوهش حاضر نیز آلومینیم با افزایش میزان لیگنین و فلش متقابل با دیواره سلولی ریشه کنن سبب سختی دیواره کاهش رشد ریشه و در نهایت کاهش رشد کل گیاه گردید. لیگنین یک هتروپلیمرفیل است که از پلیمریزه شدن اکسیداتیزو سو منولیگون-پ کوماریل، کونفرژال و سناینال‌درک به آلومینیم دیواره سلولی تاثیل می‌شود. منومرهای لیگنینی هیچینه با اتصال به یکینی، اکسکسین و سایر پلی‌سوارکردهای دیواره سبب افزایش اتصالات عرضی، کاهش انعطاف‌نیروی و رشد دیواره می‌گردد [4]. بیوسترات این منومرهای از پیش‌داغ فنی‌الانین و با فعالیت آزماین PAL آغاز می‌شود. این آنزیم یکی از آنزیم‌های کلیه مسیر متابولیسم ترکیبات فنی است که تبدیل فنی‌الانین به سنامینکاسیسید را کاتالیز می‌کند. این آنزیم با فرآیند پیش‌درآمدی لازم برای فعالیت آنزیم پراکسیداز نک می‌شود در نوع لیگنین دارد. فعالیت PAL از عوامل مختلفی مانند نشان دهنده‌های محیطی تأثیر دارد [5]. محققان نشان دادند که تیمار آلومینیم به سبب چندین پروتئین و زن منجر می‌شود که یکی از آنها فنی‌الانین‌مونوتیلاز است [6]. با توجه به اینکه فعالیت آزماین PAL در طرح رونده‌ای تنظیم می‌شود، انتظار می‌رود که افزایش فعالیت آزماین منجر گردد. از آنجا که فعالیت mRNA خیلی سریع به‌وسیله فروآورده آن بیشتر سنامینکاسیسید می‌شود، در پژوهش حاضر فعالیت و بیان آن آزمای در زمان‌های 6 و 24 ساعت پس از تیمار بررسی شد. در تیمار آلومینیم با علت‌های 244 50 میکرومولار در زمان 6 ساعت، کاهش بین زن بالا کاهش فعالیت آلومینیم فنی‌الانین‌مونوتیلاز نسبت به زن 6 ساعت مناسب بود. با توجه به نتایج بعضاً سبک ادامه حاصل کاهش فعالیت آلومینیم با پیش‌بینی افزایش میزان بالا سبک‌نگاشت حاصل PAL بنا بر این که فعالیت آلومینیم بالا 50 میکرومولار قبل از تیمار 100 میکرومولار است. فعالیت آلومینیم بالا 50 میکرومولار زودتر و برای 32 ساعت با افزایش بین این زن همگونی داشت. افزایش فعالیت آلومینیم بالا 50 میکرومولار قبل از تیمار 100 میکرومولار با علت‌های فنی‌الانین‌مونوتیلاز منطقه‌ای آن را جذب گردید که با افزایش سختی دیواره، سبب کاهش رشد نسبت به شاهد و تیمار آلومینیم با علت‌های فنی‌الانین‌مونوتیلاز نسبت به زن 6 ساعت مناسب بود.

برای بررسی نقش آلومینیم در تنظیم فعالیت آزماین پراکسیداز، فعالیت آن در سه بخش محول، بیونی و کوالانلی اندام‌گیری شد. بخش محول در پس‌دیواره با دخالت دارد در حالیکه دو بخش بیونی و کوالانلی بیشتر در دست‌زدایی و سوپریون نقش دارند. پراکسیدازها، گلیکوپروتئین‌هایی شامل هم 1 هستند که نقش اصلی

1. Heme
فناوری انتزاع و بین‌المللی بر اکسیداز و فیبر اینوکتیلیز در ریشه گیاه کنار

ماناب

1. خ. شکوهی، ف. قنایی، تأثیر اکسیکولیت به‌کارگیری رشد و تغییر در ترکیبات دیواره سلولهای نمونه، مجله علوم دانشگاه

34
Comellia sinensis L. cv. Yabukita

