فعالیت آنزیمی و بیان ذهنی پراکسیداز و فنیل آلانین آمونیالیاز در رشته گیاه کتان در تنش آلومینیم

مريم دهقانپور، فاضل قناتي، مهرداد بهمنش، مظهر شريفی

دانشگاه تربیت مدرس، دانشکده علوم زیستی

چکیده

سمت آلومینیم یکی از مهمترین عوامل محدود کنده رشد و نمو گیاهان در حالت نیازی (pH 5/5 کتیر از (5/5 است که حطران آن به علت عملیات زراعی و باران‌های دمیدی رو به افزایش است. مکانیسم سمت آلومینیم هدز بروز مشخص نشده است. ملایمت رشد ریشه، اولین پاسخ گیاه به سمت آلومینیم است و این ملایمت رشد از طریق توقف با کاهش در نوسان مولکول‌های ریشه، احتمالا با افزایش ترکیبات فنی دیوار، اعمال می‌گردد. در این پژوهش تأثیر آلومینیم بر فعالیت و بیان آنزیم‌های دخیل در پروتئین ترکیبات فلزی مانند آلومینیم و پراکسیداز بررسی شد. بدین منظور گیاهان کتان رشد یافته در محیط هوگاند بارا دو هفته در محیط تیمار آلومینیم با وظیفتهای 50 و 100 میکرو مولار (بخصوص AlCl3/6 H2O) قرار گرفتند. نتایج نشان داد که تیمار آلومینیم سبب کاهش رشد ریشه و افزایش میزان فنیل آلانین مصرفی به دیواره در مقایسه با گیاهان شاهد می‌گردد. افزایش فعالیت آنزیم پراکسیداز به‌وجود می‌دهد در بخش پوستی و کووالانس بخویی کاهش رشد ریشه را توجیه می‌کند. افزایش فعالیت و بیان ذهنی فنیل آلانین آمونیالیاز و نیز افزایش میزان لیکوکین تنها در پیشترین عوامل تیمار آلومینیم مشاهده گردید. بررسی بیان آلومینیم پراکسیداز نشان داد که فلکور سی در مقایسه با فلکور ۰ در سمت آلومینیم در رشد نش دارد.

مقدمه

آلومینیم (Al) فراوانترین فلز بوستنی زمین و مهم‌ترین عصر فراوان موجود در آن است، ولی برای رشد گیاه ضروری نیست. سمت آلومینیم فاکتور عمده محدود کندنی تولید محصول در حالی گیاه است که حدود ۴۰ درصد زمین‌های زراعی دنیا را تشکیل می‌دهند [۲۰]. اولین نشانه سمت Al، مهار رشد ریشه است که نتیجه آن کاهش جذب مواد غذایی، آب و کاهش رشد گیاه خواهد بود [۷۱]. همچنین تأثیر Al در ساختار و عملکرد دیواره سلولی، خشای سبیولاسی و استاتس سلولی، تأثیر بر سنتز لیکوکین و ترکیبات فنی باند شده به دیواره، دیلیزیز کردن غشاء پلاسمایی و در نتیجه افزایش ترکیبات قابلیت غشای تأثیر گونه‌های تکه‌پکس در ROS، هوموستاتیک کلسیم و متابولیسم فسفر به اثبات رسید است [۹۱].

واژه‌های کلیدی: آلومینیم، پراکسیداز، ترکیبات فنی، فنیل آلانین آمونیالیاز، کتان، لیکوکین

1. Linum usitatissimum L. 2. Flaxper

۲۳
فعالیت‌هایی و بیانیه‌های برخی از اکسیداز و فنیل-الانین اوتومایلیا در رشته گیاه کشاورزی و میوه نویسی

بررسی‌ها نشان داده است که مانع داشتن رشد طولی ریشه به‌وسیله آلومینیم از طریق توقف طولی شدن سول

عمل می‌گردد. دیویزه سلول اولین و مهم‌ترین محل تجمیع آلومینیم است. یکی از مکانیسم‌های مهم سیست

این آلومینیم از دست دادن انعکاس‌های کریستالی و سخت شدن آن در سلول‌های در خلال طولی شدن در ریشه است.

[15] سخت شدن دیویزه سلول براین نسبتاً پیچیده است که با دخالت آلومینیم و مواد حد واسط متعدد انجام

می‌شود. در بین این آنزیم‌ها، پراکسیداز‌های مفصل شده به دیویزه سلول نقش مهمی را ایفا می‌کند. این آلومینیم‌ها

در تشکیل اتصالات کووالانسی و بین کربوهیدرات‌ها و پلیمرهای فلئی همچنین اتصال‌های اکسیداز و پلی-

سکاریدهای استر شده با فرولیک اسید و پلیمریزاسیون منومرهای فلئی و تشکیل لیگن‌ها دخالت دارد.[8]

همچنین ارتباط زندیکی بین فعالیت پراکسیداز‌های آپیلوپاسیا و سنتر لیگنی در ریشه‌های تحت تنظیم آلومینیم

جدید دارد [13], [18]. تا کنون، چهره توالی برای آلومینیم در گیاه کتاب گزارش نشده است.

پایلی و همرکاران (2009) [16] با مشاهده افزایش بیان دو ایزوفرم فلکسیر 1 و فلکسیر 2 در تنظیم فلز کادمیوم، نتی

جین دو ایزوفرم را در اتصالات عرضی هموگالکتورونیا در دیویزه سلولی تحت تنظیم شرح دادند [20]. آنزیم فنیل-الانین اوتومایلیا که در پاسخ دیگر به تنظیم مختلف فعال می‌شود، آنزیم کلیدی در پیوستن ترکیبات

فنیل است که پیش‌سرهای لیگنی و سوپرستی لازم برای افزایش آلومینیم را فراهم می‌کند. [9] گزارش‌های

موجود نشان می‌دهد که بیان بیش از 35 زن مشهد آلومینیم تنظیم می‌شود که زن‌های دخیل در تشکیل و طولی

شن سلولی و تنظیم اکسیداز می‌توانند آن‌ها را هستند [14]. بنابراین، آگاهی در زمینه بیان زن‌های القآیق هنگام

آلومینیم در درک مکانیسم سبب آلومینیم اهمیت زیادی دارد. ریشه به عنوان اولین بخش پذیرنده آلومینیم،

مهم‌ترین محل دریافت سیگنال تنظیم آلومینیم است که رشد اندام هوایی و کل گیاه را تحت تأثیر قرار می‌دهد; از

این رو در این تحقیق بررسی‌های لازم را روي آن اندام ریشه صورت گرفت. هدف از پژوهش حاضر بررسی

tغییرات در فعالیت و بیان زن رزمکتندن آلومینیم پراکسیداز و فنیل-الانین اوتومایلیا و ارتباط آن با مانع‌ت

طلولی ایجاد شده به‌وسیله آلومینیم در رشته گیاه کتاب بود. در سال‌های اخیر به این گیاه علاوه بر تولید فیبر و

روغن، به عنوان مدل در تحقیقات پایه و کاربردی در پژوهش‌های سلول گیاهی و پیوندکولوزی توجه شده است.

[17].

مواد و روش‌ها

مواد گیاهی و طرح آزمایش

جوامع‌گری بذر گیاه‌گیاه کتاب بعد از ضدمohoکردن کردن سطحی آنها با نیترات کلسیم (حالت ۱) درصد کارین

فعل) و انواع ۳۰ درصد، در تاریکی و دمای ۲۲ درجه سانتی‌گراد. دانه‌سپری‌های با طول پکس‌های، انتخاب و به

محلول هیوگل و تغییرات شکل (برحسب میلی‌مولار): MgSO4.۷H2O ۴۳/۷، KNO3 ۱/۵، Ca(NO3)2 ۳۵/۷، ۴H2O ۱۰۵/۰۰۰، Paynel ۱۷۲۴
فوران آنزیم و بیوپلوکسیداز و فنیل آنتیکانالیز در روش‌های کلیک

پژوهش‌های بیوشیمیایی

سنجد فعالیت‌های آنزیم‌های فنیل آنتیکانالیز (PAL) و پراکسیداز (POD) و نیز اندوز دگری محتوای لیگنین و فنل‌های متصول به دیواره با روش‌های رایج انجام گرفت [8]. آنزیم فنیل آنتیکانالیز به عنوان آنزیم کلیدی در متابولیسم ترکیبات فنیل، پیش‌سازی تا لازم برای آنزیم پراکسیداز را فراهم می‌کنند. دنی پر انسان فعالیت آن و 44 ساعت پس از انجام فعالیت پراکسیداز 24 و 46 ساعت پس از تیمار آلومینیم اندازه‌گیری شد. 

مقدار 20 گرم باید به ریشه در بافت پوستی بیشتر 1/2 مولار /8 pH = 8/80 میلی‌مولار روی یک سالنیه شده. بعد از شاتر هفته نمودن با سرعت 1 6000 به‌دست دقت‌های در دمای 60 درجه سانتی‌گراد مخلوط و اکتش. محلول روی برای سنجد فعالیت آنزیم استفاده گردید. مخلوط با کمک لیفات لایه سوئستر، با پراکسیداز و عصاره آنزیمی، به یک ساکت در حمام نیترات و با دمای 37 درجه سانتی‌گراد 15 درجه سانتی‌گراد با آمریکا کلاردیترین اسید 5 مولار متوقف گردید و سیمانیک اسید موجود در نمونه‌ها (فراورده آنزیم PAL) به برای انتخاب استخراج و توسط جریانی از هوا بر تصفیه‌های شکل گردید. میزان سیمانیکاسید بعد از حل نمودن نموده‌های شکل در متابولیزم با استفاده از سدیما (کاتون ایران) مجهز به ستوئن ODS-80 Ts انجام گرفت. از شیب خطی (0.25 mm) HPLC در آزمایشات (د) درصد داده شد. درصد داده شد.
آنزیم پراکسیداز در سه بخش محالله، بوزیو و کولائیت جهادی و فعالیت آن اندازه‌گیری شد. گرم بات‌ ریشه در فیبرزشن میان‌الستیکتول، در دماهای 40\(^\circ\)C، سالیده و بالا سرعت 1000 شده. سنجش فعالیت محالله پراکسیداز استفاده شد. فعالیت آنزیمی این بخش با افزودن مقدار مناسب از عصاره آنزیمی، با کاهش پتاسیم تاسیس 1, 4\(\text{mM}\) گالکول سیستیکرومین (مستر)، استلالیا، (GBC) اندازه‌گیری شد. روش مرحله‌ای قبل با کلرید کلسیم به‌کمک 1,2\(\text{mM}\) به‌عنوان دهنده الکترون و پراکسیداز هستون گالکول 2,0 به‌عنوان دوش‌ساعت در درجه حرارت محتوای اسید هایدوژینا و سبیس با سرعت 1,000\(\text{g}\) به‌کمک سانتی‌تفیوز گردید. محلول روبی برای سنجش فعالیت بخش بوزیو پراکسیداز و رسوب حاصل از افزودن بال‌ با آب‌ با نسبت 1\(\text{mM}\) با سیرینگ‌الدازیل و 1/4\(\text{mM}\) با فیبرزهای بین‌الستیکتول، فعالیت بخش محالله پراکسیداز استفاده شد. مقدار مناسب عصاره انزیمی با 300\(\text{nm}\) محالله در طول موج دیوایر سلولی می‌باشد. فعالیت بخش محالله بوزیو و بین‌الستیکتول افزایش 56\(\text{nm}\) اندازه‌گیری شد. میزان فعالیت بخش کولائیت به‌صورت افزایش جنب 30\(\text{nm}\) دیوایر تک‌ضلاعی می‌باشد. میزان فعالیت بخش کولائیت به‌صورت افزایش جنب 

مقدار متوسط بی‌فیبرزی بین‌الستیکتول میزان‌های ریشه بعد از سایپین در آب‌ضراقو با سرعت 1,000\(\text{g}\) سانتی‌تفیوز

v/v) CHCl3–MeOH

شدید. رسوید حاصل با اکسید نیتریلی با انثال و دیوارا (دو دقیقه و یک ساعت)، مخلوط بین یک شب و استون به‌مدت یک ساعت شسته و سپس خشک دیوایر سلولی حاصل برای سنجش 3\(\text{mM}\) مخلوط دیوایر سلولی با روست اسلیت برماید اندازه‌گیری شد. بین‌الستیکتول 2/5 میلی‌لیتر مخلوط استیل‌رومانی در اسیدسیکتول (w/w) 1/0/2 درصد پرکلیکاسد 70\% آفزوده و در حرارت 70\(^\circ\)C افزوده و در حرارت 70\(^\circ\)C با مقدار 30\(\text{nm}\) گاشته و در فواصل 10\(\text{nm}\) نکات داده شد. بعد از سرد نمونه‌ها در یخ، محصول لوئیتا به یک باانی در 25\(\text{nm}\) میلی‌لیتر شاهد می‌باشد. میزان میلی‌لیتر میلی‌لیتر هیدروکسیدمیو نرمال منفی و با استدیکتول به حجم رسانده شد. میزان لیگنن با اندازه‌گیری جنب در 280\(\text{nm}\) با استفاده از ضریب جنب ویزه 1\(\text{g}\) L\(^{-1}\) cm\(^{-1}\) 20\(\text{nm}\) محسوب می‌گردد [12].

باستخراج فعالیت متنصل به دیوایر، به دیوایر سلولی استخراج‌شده، اگالت‌آتومیوم 20\(\text{mg}\) به‌مدت 15 دقیقه در حاوی آب‌گرم با دمای 70\(^\circ\)C قرار داده شد. تصویر کردن محلول 3\(\text{mM}\) از قرار داده شد. پس از صاف کردن محلول روبی این عمل وی با دیگر تکرار و به‌موردن محلول روبی به محلول قابل افزودن شد. به روش بال‌بانده ماده 2\(\text{mM}\) NaOH به پس از قرار گرفتن به‌سخت یک شب تحت گاز N\(_2\) محلول روبی حاصل استخراج به محلول‌های قابل افزودن شد. ترکیبات فلزی سه بار با اچ‌ایست استخراج و توسط جربایانی از هوا 1. Cintra
Fullerene + biotin 3'-OH or fossil + amino groups was used for a different set of antibodies. HPLC chromatograms were obtained by injecting the reaction mixture into a C18 column. The HPLC system consisted of a pump, a column oven, and a detector. The detector was set to a wavelength of 254 nm.

The concentration of the fullerene + biotin 3'-OH or fossil + amino groups was determined by integrating the peak areas corresponding to the fullerene + biotin 3'-OH or fossil + amino groups. The concentration was calculated using a standard curve obtained by injecting known amounts of the fullerene + biotin 3'-OH or fossil + amino groups into the HPLC system.

**RT-PCR**

**Primer pairs used for RT-PCR**

<table>
<thead>
<tr>
<th>Accession number</th>
<th>GeneBank</th>
<th>ZnH</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>L07554</td>
<td>Flaxper1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U59284</td>
<td>Flaxper3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SDS-PAGE**

SDS-PAGE was used to determine the molecular weight of the fullerene + biotin 3'-OH or fossil + amino groups. The samples were denatured in SDS buffer and separated on a 12% SDS-polyacrylamide gel. The gel was stained with Coomassie Blue and imaged with an Image Gauge.

**Results and Discussion**

The results showed that the fullerene + biotin 3'-OH or fossil + amino groups were effectively conjugated to the fullerene. The conjugated fullerene was successfully used for the isolation and characterization of the fullerene + biotin 3'-OH or fossil + amino groups.

**Conclusion**

In conclusion, the conjugation of fullerene + biotin 3'-OH or fossil + amino groups was successfully achieved using the method described in this study. The conjugated fullerene + biotin 3'-OH or fossil + amino groups can be used for various applications such as drug delivery, diagnostics, and imaging.

---

1. Analyticjena
2. Contr
3. Semi-quantitative
4. RNeasy Plant Mini Kit
5. Qiagen Science, Germantown, MD, USA
6. Prime Script RT reagent Kit
7. TaKaRa
8. Mastercycler gradient, Eppendorf, Germany
9. Image Gauge

---

Page 77
بررسی‌های آماری
طرح آزمایش و انجام تیمکارها به‌صورت طرح کاملاً تصادفی با سه تکرار انجام شد. همه آنالیزهای بیوشیمیایی در سه تکرار مستقل، هر یک با سه تدوینه و آنالیزهای مولکولی در سه تکرار مستقل انجام شدند. برای تعیین میانگین و انحراف معیار و رسم نمودارها، از نرمافزار SPSS استفاده شد. همچنین برای تعیین معنی‌داری بودن تفاوت‌ها از تجزیه واریانس یک‌طرفه (آناواری) با استفاده از آزمون دانکن در سطح P ≤ 0/05 بر استفاده تابع SPSS نرم‌افزاری اکمل استفاده شد.

نتایج
تاثیر الومینیم بر رشد
نتایج نشان داد که الومینیم با غلظتش‌های ۵۰ و ۱۰۰ میکرومولار سبب کاهش رشد گیاه کتان (وزن تر) بعنوان بعید می‌باشد (کشته ۵/۰۰۸/۵ و ۸/۰۰۰/۸ درصد نسبت به گیاهان کنترل می‌شود (شکل A). کاهش وزن خشک گیاه در تیمکار با الومینیم به نسبت گیاه شاهد قرمز معنی‌دار بود اما باعث کاهش در وزن تر نبود (شکل B). بنا بر این نتایج گیری می‌شد که تنش الومینیم سبب افزایش سریع گیاه شده است.

![نمودار A](image1.png)

![نمودار B](image2.png)

شکل ۱. تاثیر غلظت‌های مختلف Al بر رشد برحسب وزن تر (A) و وزن خشک (B) گیاه کتان. داده‌ها میانگین حداکثر ۵ تکرار مستقل ± انحراف استاندارد (میله‌های عمودی) است. حروف مختلف (A) تا (C) مربوط به تفاوت معنی‌دار در سطح P ≤ 0/05 بر اساس آزمون دانکن هستند.

1. Excel
2. ANOVA

28
تأثیر آلومینیم بر فعالیت آنزیم پراکسیداز

چنان که در شکل ۲ مشاهده می‌شود، با افزایش سطح آلومینیم در سه بخش پراکسیداز افزایش یافته. در تیمار ۲۴ ساعت تفاوت معنی‌داری بین تیمارها و شاهد دیده نشد. فعالیت پراکسیداز در تیمار ۹۶ ساعت تفاوت معنی‌داری با شاهد نشان داد. بیشترین فعالیت بخش محلول در تیمار ۱۰۰ میکرومولار آلومینیم دیده شد، ولی تفاوت معنی‌داری در بخش بیونی بین ظل‌های مختلف آلومینیم به‌اختلال مشاهده نگردید. بر اساس نتایج بدست آمده، فعالیت بخش کوارائی در تیمار ۵۰ میکرومولار آلومینیم افزایش معنی‌داری را نسبت به تیمار ۱۰۰ میکرومولار و شاهد نشان داد.

![نمودار A] (A) ۰-۵۰-۱۰۰ میکرومولار آلومینیم در ۲۴ ساعت
![نمودار B] (B) ۰-۵۰-۱۰۰ میکرومولار آلومینیم در ۲۴ ساعت
![نمودار C] (C) ۰-۵۰-۱۰۰ میکرومولار آلومینیم در ۲۴ ساعت

شکل ۲. تأثیر ظل‌های مختلف آلومینیم بر فعالیت پراکسیداز در رشته گیاه کتان در زمان‌های ۲۴ و ۹۶ ساعت پس از تیمار. فعالیت آنزیم در سه بخش محلول (A)، بیونی (B) و کوارائی (C) اندوزه‌گیری شد. بدست آمده میانگین‌های ۳ تکرار مستقل ± انحراف استاندارد (میله‌های عمودی) است. حروف غیریکسان، معنی‌دار تفاوت معنی‌دار در سطح P < ۰.۰۵ بر اساس آزمون دانکن هستند.
تأثیر آلومینیم بر فعالیت آنزیم فیل‌الانیم آمونیالیاز

اگر دانستگری فعالیت آنزیم PAL در زمان ۴ و ۴۴ ساعت پس از تیمار با آلومینیم، نسبت به شاهد افزایش نشان داد و این افزایش در تیمار ۵۰ میکرومولار در زمان ۴ ساعت و در تیمار ۱۰۰ میکرومولار آلومینیم در ۴۴ ساعت معنی‌دار است (جدول ۲).

جدول ۲. تغییرات فعالیت آنزیم PAL در ریشه گیاهان تیمار شده با غلظت‌های مختلف AI

<table>
<thead>
<tr>
<th>PAL Activity (μg CA/mg protein/h)</th>
<th>غلظت آلومینیم (میکرومولار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>زمان (ساعت)</td>
</tr>
<tr>
<td></td>
<td>۴</td>
</tr>
<tr>
<td>۵۸۷/۸۰ ± ۳/۸۲</td>
<td>۵/۱۵ ± ۲/۴۱</td>
</tr>
<tr>
<td>۶۱۲/۷۴ ± ۳۲/۵۴</td>
<td>۶/۳۳ ± ۳/۶۱</td>
</tr>
<tr>
<td>۶۳۵/۹۲ ± ۳۱/۳۱</td>
<td>۷/۳۳ ± ۴/۶۱</td>
</tr>
</tbody>
</table>

ساده‌ترین داده‌ها میانگین حداقل ۳ تکرار مستقل یا انحراف استاندارد (میله‌های عمودی) است. هر نوع غلظت، عرف تفاوت معنی‌دار در سطح ۰/۵ یا p < ۰/۵ بر اساس ازون دانکن است.

تأثیر آلومینیم بر تجمع لیگنین و میزان فنل‌های متصول به دیواره

نتایج حاصل از تعیین لیگنین دیواره نشان داد که آلومینیم با غلظت ۱۰۰ میکرومولار، لیگنین دیواره را نسبت به شاهد ۱/۲۰ را افزایش می‌دهد. درصورتی در کافی ضمنی بین میزان لیگنین در تیمار، میکرومولار آلومینیم و شاهد بیشتر همچنین میزان فنل‌های متصول به دیواره در ریشه گیاهان تیمار شده با آلومینیم نسبت به گیاهان شاهد افزایش معنی‌داری نشان داد (جدول ۳).

جدول ۳. تأثیر آلومینیم بر تجمع لیگنین و میزان فنل‌های متصول به دیواره

<table>
<thead>
<tr>
<th>فنل‌های متصول به دیواره (میکرومولار و وزن خشک دیواره)</th>
<th>غلظت آلومینیم (میکرومولار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>محتوای لیگنین (% از دیواره سلول)</td>
<td>۲۰/۱۲ ± ۱/۳۰</td>
</tr>
<tr>
<td>۱۲/۱۲ ± ۳/۶۱</td>
<td>۱۲/۱۲ ± ۳/۶۱</td>
</tr>
<tr>
<td>۱۰/۱۲ ± ۳/۶۱</td>
<td>۱۰/۱۲ ± ۳/۶۱</td>
</tr>
<tr>
<td>۸/۱۲ ± ۳/۶۱</td>
<td>۸/۱۲ ± ۳/۶۱</td>
</tr>
<tr>
<td>۶/۱۲ ± ۳/۶۱</td>
<td>۶/۱۲ ± ۳/۶۱</td>
</tr>
<tr>
<td>۴/۱۲ ± ۳/۶۱</td>
<td>۴/۱۲ ± ۳/۶۱</td>
</tr>
<tr>
<td>۲/۱۲ ± ۳/۶۱</td>
<td>۲/۱۲ ± ۳/۶۱</td>
</tr>
</tbody>
</table>

ساده‌ترین داده‌ها میانگین حداقل ۳ تکرار مستقل یا انحراف استاندارد (میله‌های عمودی) است. هر نوع غلظت، عرف تفاوت معنی‌دار در سطح ۰/۵ یا p < ۰/۵ بر اساس ازون دانکن است.

میزان جذب آلومینیم ریشه

براساس نتایج بدست آمده از جنب اتمی، ارتباط مستقیمی بین مقدار آلومینیم جذب شده به وسیله ریشه با میزان آلومینیم موجود در محیط رشد گیاه در تیمارها مختلف آلومینیم دیده می‌شود. الی‌که با افزایش غلظت آلومینیم در محیط، مقدار جذب آن توسط گیاه نیز افزایش می‌یابد (شکل ۳).

تأثیر آلومینیم بر بیان Zn ۲+ پراکسیداز و فنیل‌الانیم آمونیالیاز

بیان Zn ۲+ دی ازوزیپرپاکسیداز (فلکسسر ۲، فلکسسر ۳) و Zn-FEALAI آلومینیالیاز بررسی شد. در بررسی‌های اولیه نشان داد که زن ۲+ با عنوان کنترل داشت تحت تأثیر تیمارها اعمال شده ACTIN (ACT-F2)
فعالیت انزیم ویپاکسیداز و فیلیل اتیمیتاز در ریشه گیاه کتان

قرار گرفت. این امر در پژوهش‌های سایر محققان نیز ثانان داده شده است [10]; از اینرو از زن مربوط به فاکتور طولی شدن (LuEF1α) به عنوان زن کنترل داخلی استفاده شد [19].

شکل 3. مقادیر آلومینیم به‌وسیله‌بریش‌های در ریشه‌های مختلف آلومینیم. داده‌ها میانگین حداکثر ۳ تکرار مستقل ± انحراف استاندارد (میله‌های عمودی) است. حروف غیریکسان، معرف تفاوت معنی‌دار در سطح ۰/۰۵ پر اساس آزمون دانکن است.

**A**

<table>
<thead>
<tr>
<th>Treatment duration (h)</th>
<th>6</th>
<th>24</th>
<th>6</th>
<th>24</th>
<th>6</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaxper1 (101bp)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>LuEF1α (100bp)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

**B**

<table>
<thead>
<tr>
<th>Treatment duration (h)</th>
<th>6</th>
<th>24</th>
<th>6</th>
<th>24</th>
<th>6</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaxper3 (185bp)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>LuEF1α (100bp)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>
فصل نخستی: اثر آلومینیوم، منیزیم، فسفر، آهن و پیوند آن‌ها بر رشد گیاه کانکان

سایر مطالعات نشان می‌دهند که آلومینیوم می‌تواند به عنوان یک مواده خطرناک برای نباتات در نظر گرفته شود.

در این مطالعه، تعدادی از این مواد به نسبت زمان‌های مختلفی در زمان‌های مختلف استفاده شدند. نتایج نشان دادند که ترکیبی که شامل پرداخته‌ی انرژی (A-C) بود، به عنوان Housekeeping gene LuEF1a مورد توجه قرار گرفت. مقدار کمی پارسیال و تب‌افزار در تیمار آلومینیوم و پرداخته‌ی انسانی فیزیولوژی (D-F) در تریال 4 ساعت و ۲۴ ساعت پس از تیمار آلومینیوم را نشان می‌دهد.

جدول ۱: تأثیر افزایش زمان شدید به عنوان شاخص در شکل C در میانگین میانگین آلومینیوم در محیط کاهش پیش‌تروی در بینان می‌باشد. بینان پرستیژی فلکس‌سیر ۳ در ریشه‌های شاهد با گسترش زمان تغییری ندارد. در نتیجه، کاهش بینان در تیمار آلومینیوم ۵۰ میکرومولار و افزایش بینان در تیمار آلومینیوم ۱۰۰ میکرومولار مشاهده شد. بینان زن فلکس اونتالیپالاز در زمان ۴ مستقر به ۴ ساعت افزایش نشان داد و بیشترین افزایش بینان در تیمار آلومینیوم ۱۰۰ میکرومولار دیده شد.

بحث

دبیلر به سیر رشد یک مدلی تجمع بارهای منفی به عنوان اصلی‌ترین محل اتصال آلومینیوم در نظر گرفته شده است. براساس پروتئین‌های انجام شده، اتصال آلومینیوم به متارپیکتین و دیگر ترکیبات دبیلر سیلیس، باعث تغییر خواص دبیلر سیلیس و عملکرد آن در کاهش آنزیم و نیز تغییرات سیمپلاتویی از طریق ارتباط بین دبیلر سیلیس-عصاره‌ای پلاسمید-اسکلت سلولی می‌باشد که میتواند کاهش با مانع در ریشه را ناپذیر کند [۳۲]. پروتئین‌های سبزیجی بیشتر ثابت داده است که اولین اثر آلومینیوم در کاهش رشد ریشه از طریق توقف رشد طول سلول تا توقف تکمیل سلولی اعمال می‌گردد [۵]. نتایج باعث آمده‌اند بررسی رشد گیاه کانکان در حضور آلومینیوم، کاهش میزان رشد را متناسب با افزایش عقب‌نشینان آن در محیط رشد گیاه نشان می‌دهد.

در میزان کاهش رشد، با افزایش محتوای آلومینیوم رشد ارتباط مستقیم دارد. با این نتایج، اثر آلومینیوم می‌تواند به عنوان یک تغییر اثراتی بر رشد گیاهی در محیط‌های آلوده به آلومینیوم مطرح شود.
فعالیت انزیم ویبین‌های پراکسیداز و فنی‌الانیونتیلاز در ریشه‌های کانک

بر رشد گیاه نا حدودی با محتوای آلومینیم ریشه مناسب است. این نتیجه در تحقیقات قبلی در مورد سلول‌های جداکننده در تیمار با آلومینیم نیز مشاهده شده است [1]. [2]. تحقیقات بسیاری نشان داده است که آلومینیم با اتصال عرضی به یکتیک‌ها، از طریق افزایش سختی دیواره، سلولی و تغییر ساختار و عمل غشاء سیتوپلاسمی، کاهش جذب آب و سایر مواد غذایی سبب کاهش رشد گیاه می‌گردد [11]. در پژوهش‌هایی هم از آنژیم پراکسیداز دیواره سلولی تنش‌سازی کاهش رشد ریشه و در نهایت کاهش رشد دانه گیاه، در مطالعات می‌باشد. لیگنین‌های ناحیه‌های کلیه انجیر، دیواره‌های اجزایی انجیر، از اتصال عرضی، کاهش انعطاف‌پذیری و رشد دیواره می‌گردد [5]. بیوسنت سایت‌های با PAL:

فیل‌آلائین و PAL فعالیت لیگنین در تنش‌سازی FvP افزایش می‌شود. این آلئیمیا نکته‌ای از همه رو به همکاری با افزایش فعالیت PAL: فعالیتIN آنزیم PAP BA است از ا(dtoکنترل لیگنین دارد. این فعالیت از عوامل مختلف مانند تنش‌های محیطی تأثیر می‌پذیرد [3]. محققان نشان داده‌اند که تنش آلولین به سبب چندین پروتئین و دانه‌های می‌شود که از انتخابی PAL: FvP آلئیمیا است [3]. با توجه به اینکه افزایش IN آنزیم آنزیمی در میزان mRNA: FvP که به‌طور فعالیت افزایش می‌گردد. از انتظار است که افزایش فعالیت IN آنزیم به mRNA آنزیم در Zماک 24 ساعت پس از تیمار بررسی شد. در تیمار آلولین با غلظت 0.5 میکرومولار در زمان 24 ساعت، کاهش بیان زن PAL با کاهش فعالیت IN آنزیم فیل‌آلائین آلولینیونتیلاز نسبت به زمان 6 ساعت مناسب‌تر بود. با Tوجه به نتایج حذفی ادامه احتمال دارد کاهش فعالیت IN آنزیم FvP که میزان آلولین می‌باشد. باشد که میزان تولید آن در تیمار آلولین با غلظت 50 میکرومولار بیشتر از تیمار 100 میکرومولار است.

با لفظ گردرگ که افزایش فعالیت IN آنزیم در غلظت 50 میکرومولار زودتر می‌شود. افزایش میزان IN آنزیم تیمار آلولین با غلظت 100 میکرومولار به مدت 24 ساعت با افزایش بیان این زن هم‌خوانی داشت. افزایش فعالیت IN آنزیم در تیمار آلولین با غلظت 100 میکرومولار، افزایش محتوای لیگنین دیواره و میزان فنی‌الانیونتیلاز متصل به آن را موجب گردید که با افزایش سختی دیواره، سبب کاهش رشد ریشه بوده و تیمار آلولین با غلظت کبیر گردد.

برای بررسی نقش آلولینیونتیلاز در تنظیم فعالیت انزیم PAP BA، فعالیت آن در سه بخش مختلف، پیوندی و کوارتالی اندوزه‌گیری شد. بخش محلول در پاسخ به تشخیص دانه در حالی که ذو بخش پیوندی و کوارتالی بیشتر در سست لیگنین و سپرین نش دارد. پراکسیدازهای الیپتوصفتی شابن هم 1 استند که نش اصلی

1 Heme
آنها اکسید کردن ملکول‌ها در حضور $\text{H}_2\text{O}_2$ است. اغلب پراکسیدازها ویژه بافت هستند که در مرحله نموی خاص ظاهر می‌شوند و با وسیله عوامل محیطی تحت تأثیر قرار می‌گیرند [22]. پراکسیداز‌های موجود در دیواره سلولی می‌توانند خواص دیواره‌ای سلولی را تغییر دهند. فعالیت این پراکسیدازها با اکسیداسیون ترکیبات فنلی، ایجاد عرضی پروتئین‌های دیواره سلولی و پلی‌سکاریدها و تشکیل پلی‌مرهای نظر کوتین، سوبرین و لیگنین مربوط است. بررسی‌ها نشان داده اینکه پراکسیدازها در بلوغ سلول و تماشای بیش از معمول و در انتها مرحله طولی شدن فعالیت می‌پذیرد [19]. داده‌های حاصل از تحقیق حاضر نشان داد که فعالیت پراکسیداز نه تنها با فاکتور طبیعی سیگاه کتان، بلکه در حضور آمونیم افزایش می‌یابد. حضور آمونیم فعالیت و بیان ایزوزیم‌های پراکسیداز را تحت تأثیر قرار داد. فعالیت بخش دیواره‌ی پراکسیداز که با جویی شدن دیواره مربوط است در تیمارهای آمونیم افزایش یافته، به توجه به ادامه افزایش فعالیت بخش بونی در غلظت‌های بیشتر آمونیم (100 میکرومولار) نسبت به بخش کوئینی، پیشنهاد می‌شود که این باعث شده شود که در پلیمریزاسیون نمونه‌ها و بیوسنتز لیگنین داشته باشد. افزایش لیگنین در آمونیم غلظت‌های مورد نیاز است و با گزارش سایر پژوهشگران در مورد نقش بخش کوئینی پراکسیداز در افزایش لیگنین در تنش ناشی از فلزات سنگین هبهگونی دارد [8]. افزایش لیگنین در تیمار ۱۰۰ میکرومولار آمونیم سبب شد که کاهش وزن خشک نسبت به کاهش وزن در این تیمار از نظر کتاز بروزدار باشد. مطالعات صورت گرفته در این تیمار نشان داد که فلکسیر ۱ و فلکسیر ۳ علاوه بر تشغیب ابزار اتصالات عرضی بین فنل‌ها و پلی‌سکاریدها، باوساطه داشتن ساختار گلیکوپروتئینی قدرتی که با باند شدن به هموگلوبین‌های دیواره‌ای سبب افزایش اتصالات عرضی موجب در دیواره شوند [19]. تحقیقات مرور همبین نشان داد که در حضور کامادوم بین این دو ایزوزیم در هپیوتیل گیاه کتان افزایش می‌یابد. در تحقیق حاضر بین فلکسیر ۱ با افزایش سن گیاه کتان و افزایش آمونیم در محفظ رشد گیاه کاهش یافته که نقش این ایزوزیم در سنتز لیگنین و کاهش رشد رشد روز تردید قرار می‌دهد. اما افزایش بین ایزوزیم فلکسیر ۳ در تیمار ۱۰۰ میکرومولار آمونیم در ۲۴ ساعت این احتمال را تقویت می‌کند که از بین دو ایزوزیم بررسی شده، فلکسیر ۳ بیشتر در سنتز لیگنین و کاهش میزان رشد در ریشه‌ها دخالت داشته باشد. بدیهی است که در این راستا نقش سایر پراکسیدازها و انزیم‌های دیگری که در تنظیم انعکاس‌پذیری و مقاومت دیواره سلول گیاهی نقش کلیدی دارند (نظیر آنزیم پکتین متیل استراز) را نیز نباید از نظر دور داشت.

منابع

۱. خ. شکوهی ف. قاتلی، تأثیر آمونیم بر کاهش رشد و تغییر در ترکیبات دیواره سلول‌های توکون، مجله علوم دانشگاه تربیت معلم، ۷ (۱۳۸۴)، ۸۵۵ – ۸۶۴.
Comellia sinensis L. cv. Yabukita


