تکمیل آزمون نیکویی برای توزیع جوله نرمال بر اساس تابع مولد گشتاور تجربی

محمدهدی مقامی، نصرالله ایران‌پناه؛ دانشگاه اصفهان، گروه آمار

چکیده
تاکنون روش‌های مختلفی برای آزمون نیکویی برای توزیع جوله نرمال مطرح شده است. در این مقاله روش مبتلازآرمانی [18] که بر اساس تابع مولد گشتاور تجربی است، بررسی می‌شود. این آزمون بطور مجزا برای پارامتر شکل معلوم و محروم مطرح می‌شود. مبتلازآرمانی ادعایی کرد که آزمون از آن برای نرمال گلمرگوف اسپیرو مدل نامناسب است. اما این ادعای نتیجه برای پارامتر شکل معلوم درست است. در این مقاله روشی برای اثبات آماره آزمون ارائه داده است که علاوه بر زمان کریک، نرمال مبتلازآرمانی را نیز بطور چشمرده و عامل افزایش می‌دهد. در این روش برای یافتن سوئیچ، به‌خاطر محاسبه تابع روز شبکه، از آنی تیمی استفاده می‌شود. مبتلازآرمانی برای پارامتر معلوم انتظار آزمون یک خود را بررسی نکرده است که در این مقاله بررسی شده است.

آماره آزمون
اگر $\mathbf{f}(z; \lambda) = \sum_{\mu \in \mathbb{R}} \phi(z \mid \lambda \mid \mu \mid \sigma \mid \beta)$ باشد، $Z \sim SN(\mu, \sigma, \lambda)$ را یک متغیر تصادفی پیوسته با تابع چگالی احتمال $f(x; \lambda)$ در نظر بگیریم. و با $Y = \mu + \sigma Z$, پارامتر $\lambda$ به‌عنوان متغیر تابع جوله نرمال استاندارد با پارامتر چونگی می‌شود (از الگونه (18)). در این تعريف (1) با نظر $\Gamma$ در نظر گرفته می‌شود.

$H_0: Y \sim SN(\mu, \sigma, \lambda)$ $\quad \quad \mu \in \mathbb{R}, \sigma > 0, \lambda \in \mathbb{R}$

$H_1: Y \sim SN(\mu, \sigma, \lambda)$ $\quad \quad \mu \in \mathbb{R}, \sigma > 0, \lambda \in \mathbb{R}$

که در آن $\sigma$ مقدار ثابت و معلومی از مقادیر $\lambda$ است، یا در حالی که $\lambda$, فرض صفر برای برخی می‌توان به‌نام $\lambda_0$ نام‌آمری انتخاب یادکرد. همان‌گونه که در آن $\lambda_0$ نام‌آمری است را در برای فرض مقابل دلخواه انجام دهیم. فرض کنید $\lambda$ آن و $Y \sim SN(\mu, \sigma, \lambda)$ تابع مولد گشتاور $M(t) = E[\exp(Yt)], \quad t \in \mathbb{R}$ باشد. آگر $\lambda$ تابع مولد گشتاور $Y$ با نظر $\Gamma$ گرفته کردن پارامتر $\lambda$ به‌صورت

$M_{\lambda}(\mu, \sigma; t) = \exp(\sigma^2 \lambda t) \quad \Phi(\sigma \lambda t)$

و در نظرگرفتن $\Gamma$, آزمون گلمرگوف-اسپیرو، بوت استرب پارامتری، شبیه‌سازی مونتکارلو

پیشر 91/0/9

نویستگان مسئول

iranpanah@stat.ui.ac.ir

831
با استفاده از تابع مدل‌گذاری $M(t)$ در معادله دیفرانسیل

$$M'(t) - tM(t) - \beta \sqrt{\frac{t}{\pi}} \exp\left[\frac{t}{\beta} (1 - \beta t)\right] = 0, \quad t \in \mathbb{R} \quad (1)$$

با مسئله $M = r(t)$، آزمون توزیع جوزه نرمال بر اساس نامونه $Y_1, ..., Y_n$ تابع مدل گسترشی $H_0$ به‌طور کلی به‌صورت

$$\hat{M}_n(t) = \frac{1}{n} \sum_{j=1}^{n} \exp(t\tilde{X}_j) \quad (2)$$

را در نظر بگیرید. که در آن $\tilde{X}_j = (Y_j - \mu) / \sigma$, $j = 1, 2, ..., n$ است، بنابراین $\bar{X}_n$ هستند. تحت فرض $H_0$, میانگین $\bar{X}_n$ به‌طوری که

$$D_n(t) = \hat{M}_n(t) - t\hat{M}_n(t) - \beta \sqrt{\frac{t}{\pi}} \exp\left[\frac{t}{\beta} (1 - \beta t)\right] \quad (3)$$

از صفر استفاده می‌شود. آزمون فرض $H_0$ براساس اندادهای این بررسی

$$\hat{D}_n(t) = \hat{M}_n(t) - t\hat{M}_n(t) - \beta \sqrt{\frac{t}{\pi}} \exp\left[\frac{t}{\beta} (1 - \beta t)\right] \quad (4)$$

از صفر استفاده می‌شود. در نتیجه، $\bar{D}_n$ می‌تواند $\lambda$ را بازیابد. است. انتظار دارد در مواقعی که این وروش می‌پرس است، آزمون اثر به‌طور کامل همپیشگی با آزمون‌های برای تابع توزیع تجربی، مانند آزمون کلمنگروف-اسپیرنوف قابل فرآیند باتش به‌عنوان آزمون جدید در مواقعی که آزمون‌های کلاسیک براساس تابع توزیع تجربی بپیدا می‌گردد به‌سئاسی اجرا می‌شود.

با توجه به اینکه در آمارهای آزمون (3) و (4)، $r(t)$ مقدار مهندسی است، یک روش برای محاسبه تابع مدل $\bar{X}_n$ (کُلگدوک و همکاران [2]) و با یک شبکه متشاهتی از نقاط $t$ ای‌پی، و همکاران [3]) است. بنابراین $\bar{X}_n$ یک آمارهای

$$H_0: \mu, \sigma, \lambda > 0$$

برای برخی $a > 0$, در آزمون $T_{n, a} = \sqrt{n} \sup_{|t| \leq a} |D_n(t)|$

$$\hat{H}_0: \mu, \sigma, \lambda > 0$$

برای برخی $a > 0$, در آزمون $\tilde{T}_{n, a} = \sqrt{n} \sup_{|t| \leq a} |\hat{D}_n(t)|$ را به‌کار می‌بریم.

در نهایت، آزمون‌ها

برای آزمون ندرد نظر فرض مکریم نه تنها تحت فرض صفر، بلکه تحت هر فرض ثابت در مقابل $H_0$ پارامترهای مجهول جامعه را به‌عنوان $\left(\tilde{\mu}_n, \tilde{\sigma}_n, \tilde{\lambda}_n\right)$ باشیم $\left(\mu, \sigma, \lambda\right) \rightarrow (\mu, \sigma, \lambda)$ که در آن $n$ به‌عنوان دیگر،
برآورده‌گرها سازگارند و برای انجام آزمون از برآورده‌گر‌های گشتاوری استفاده می‌کنیم. برای آزمون فرض $H_0$ معلوم و با فرض اینکه تحت فرض مقابل ثابت $\lambda = \lambda_0$ داشت

$$E(Y) = \mu + \sigma \sqrt{\frac{y}{\pi}} \theta, \quad \text{Var}(Y) = \sigma^2 \left(1 - \frac{y}{\pi} \theta^2\right)$$

از حل معادلات (5) داریم:

$$\mu = E(Y) - \sigma \sqrt{\frac{y}{\pi}} \theta, \quad \sigma = \frac{\text{Var}(Y)}{\sqrt{\frac{1}{1 - (\frac{y}{\pi}) \theta^2}}}$$

بنابراین $\mu$ و $\sigma$ بهصورت

$$\hat{\mu}_n = \bar{Y}_n - \hat{\sigma}_n \sqrt{\frac{y}{\pi}} \theta, \quad \hat{\sigma}_n = \frac{S_n}{\sqrt{\frac{1}{1 - (\frac{y}{\pi}) \theta^2}}}$$

ارائه می‌گردد که در آن مجموعه اصلی، برای وجود برآورده‌گری گشتاوری $\lambda$ که در آن $\lambda$ موجود است، برای $\lambda$ موجود برآورده‌گری گشتاوری $T_{n,a}$ باشد. سازگاری آزمون کلی $T_{n,a}$ را بررسی می‌کنیم. آزمون $T_{n,a}$ حالت خاصی از $H_0$ رد می‌کند، این قضیه ارائه می‌شود.

(میتاتومس [4]):

قضیه: آزمون نیکوکوی برآورشی که برای مقادیر بزرگ آماره $T_{n,a}$ فرض $H_0$ را رد کند، سازگار است.

اثبات: برای اثبات سازگاری آزمون بر اساس آماره $T_{n,a}$ به‌دنبال نشان دهیم

$$\hat{T}_{n,a} = \sqrt{n} \sup_{-a \leq t \leq a} |\hat{D}_n(t)| \to \infty.$$ 

اگر $\hat{\lambda} = \sup_{-a \leq t \leq a} |\hat{D}_n(t)| \to \hat{\lambda}$ برای تمام $\alpha$, $\hat{D}_n(t) \to \alpha$  برای تمام $\alpha$, $\hat{D}_n(t) \to \alpha$

از طرفی با استفاده از (3) داریم

$$\hat{M}_n(t) = \frac{1}{n} \sum_{j=1}^{n} \exp(t \hat{X}_j)$$

$$= \frac{1}{n} \sum_{j=1}^{n} \exp\left[t(Y_j - \hat{\mu}_n) / \hat{\sigma}_n \right]$$

$$= \exp(-t \hat{\mu}_n / \hat{\sigma}_n) \times \frac{1}{n} \sum_{j=1}^{n} \exp\left(t Y_j / \hat{\sigma}_n \right)$$

$$= \exp(-t \hat{\mu}_n / \hat{\sigma}_n) \times M_n(t / \hat{\sigma}_n)$$

بنا بر این

$$\hat{M}_n'(t) = \frac{1}{\hat{\sigma}_n} \exp(-t \hat{\mu}_n / \hat{\sigma}_n) \times \left(\hat{M}_n'(t / \hat{\sigma}_n) - \hat{\mu}_n M_n'(t / \hat{\sigma}_n)\right)$$
که در آن (4) و

\[ M_n(t) = \frac{1}{n} \sum_{j=1}^{n} \exp(t Y_j) \]

است. با این نتیجه به دست می‌آید. \( M(t) \) تابع مولتیگشتاور تجربی است. 

\[ \hat{M}_n(t) = \exp(-t \hat{\mu}_n / \hat{\sigma}_n) \times M_n(t / \hat{\sigma}_n) \to e^{-(\mu / \sigma)t} M(t / \sigma) \]

که در آن (9) تابع مولتیگشتاور \( Y \) است. به همین ترتیب

\[ \hat{M}_n'(t) = \frac{1}{\sigma_n} \exp(-t \hat{\mu}_n / \hat{\sigma}_n) \times \left( \hat{M}_n'(t / \hat{\sigma}_n) - \hat{\mu}_n M_n(t / \hat{\sigma}_n) \right) \to \frac{1}{\sigma} e^{-(\mu / \sigma)t} \]

\( (M'(t / \sigma) - \mu M(t / \sigma)) \)

در نتیجه

\[ \hat{M}_n'(t) - t \hat{M}_n(t) \to \frac{1}{\sigma} e^{-(\mu / \sigma)t} \left( (M'(t / \sigma) - (\mu + \sigma t) M(t / \sigma)) \right) \]

(8)

با جایگذاری رابطه (9) در سمت راست رابطه (8) داریم:

\[ \hat{M}_n'(t) - t \hat{M}_n(t) \to m'(t) - t m(t) \]

(10)

با استفاده از (10) جوین در پس

\[ \hat{D}_n(t) \to \hat{D}(t) \]

(11)

که در آن

\[ \hat{D}(t) = m'(t) - t m(t) \to \frac{\gamma}{\pi} \exp \left[ \frac{t'}{\gamma} (1 - \tilde{\theta}) \right] \]

\[ \tilde{\theta} = \frac{\gamma}{\pi} \exp \left[ \frac{t'}{\gamma} (1 - \tilde{\theta}) \right] \]

با این نتیجه

\[ \hat{\theta}_n \to \hat{\theta} \]

(7) با دقت زمانی \( \hat{\theta} \) است که \( \hat{\theta} \) با استفاده از یکتایی مولتیگشتاور نتیجه می‌گیریم \( X \sim SN(\hat{\theta}) \). در غیراین صورت \( \hat{\theta} \) نتیجه برای هر فرض مقابل با

\[ \hat{\theta}_n = \sqrt{n} \sup_{-a \leq \theta \leq a} \left| \hat{D}_n(t) \right| \to \infty \]

(9) تابع مولتیگشتاور متناهی، و اثبات اکمل است.
شیوه‌سازی
در این بخش در بررسی شیوه‌سازی برای ازمون‌های دو حالت پارامتری شکل معلوم و نامعلوم را در توزیع جوله نرمال در نظر می‌گیریم.

1. آزمون نیکوئی برایش در حالت \( \theta \) معلوم

در این قسمت نتایج شیوه‌سازی منحنی کارول برای آزمون، \( T_{n,\alpha} \)، آزمون کلموگروف-اسمیرنف (\( KS \)) و روش جدید را مقایسه می‌کنیم. در حالت خاصی با نمونه‌های معادله 20,50 n = برای متغیرهای تصادفی استاندارد \( \bar{X} \) و با استفاده از ابزارهای گسترشی (1) آزمون‌ها را به‌کار می‌برم. در روی مینیمیسیون برای محاصره آماره آزمون \( T_{n,\alpha} \) مقادار \( D_n \) روي شیوه‌های از نشان در فاصله \( R \) بیشتری نسبت به‌روش مینیمیسیون است. به‌روش روش مینیمیسیون و همچنین روش جدید با استفاده از نرم‌افزار نگاشته شده‌اند.

برای یافتن مقادیر بحرانی آزمون مورد نظر به دو روش بر اساس نمونه مشاهده شده \( Y_n \) و \( Y_n \) پارامتر شکل \( \hat{\lambda} \) و اندازه آزمون \( \alpha \) این مراحل را انجام می‌دهیم (روش جدید فقط در مرحله 2) با روش مینیمیسیون متقاوت

است (1) با استفاده از نمونه \( Y_1, \ldots, Y_n \), پارامترهای \( \hat{\mu} \) و \( \hat{\sigma} \) از رابطه (6) به‌روش گسترشی برآورد

می‌گردد;

(2) روي شیوه [\( t_j \) ] با استفاده از رابطه (3) محاسبه می‌شود;

(3) روي شیوه [\( t_j \) ] با استفاده از رابطه (3) محاسبه می‌شود;

(4) مراحل 1 الی 3 بر تکرار می‌شود;

(5) مقادیر بحرانی \( \alpha \) با یافتن چندک 10\%-یام از تابع توزیع نرمال \( T_{n,\alpha} \) محاسبه می‌شود.

برآورد توان آزمون برای فرض مقابل، با استفاده از شیوه‌سازی مونت کارلو به‌طور مشابه امکانپذیر است.

مینیمیسیون [8] از 1000 m=1 بار تکرار شیوه‌سازی مونت کارلو برای بررسی توان آزمون استفاده کرده است.

اما میدانیم قبل از توانا بودن یک آزمون، اندام‌های آن آزمون مهم است. مینیمیسیون انتخاب آزمون را بررسی کننده است. در ادامه انتخاب آزمون را با استفاده از آماره \( T_{n,\alpha}^{O} \) به‌روش مینیمیسیون انتخاب می‌نماییم. انتخاب \( \alpha \) به‌روش \( T_{n,\alpha}^{O} \) خاسته‌است. توجه کنید آماره \( T_{n,\alpha}^{O} \) فقط از طریق \( X_{j} \) به‌ره \( X_{j} \) به‌روش مینیمیسیون و مقياس وابسته نیست. توجه کنید آماره \( T_{n,\alpha}^{O} \) فقط از طریق \( X_{j} \) به‌روش مینیمیسیون و مقياس وابسته نیست.

835
فرض کنید (\(\delta \in \mathbb{R}, c > 0\)), \(Y^* = \delta + cY\) و تبدیل داریم \(\hat{\mu}_n = c \hat{\sigma}_n\) و \(\hat{\sigma}_n = c \sigma_n\) و \(\hat{Y}_n = \delta + c\bar{Y}_n\) این نشان می‌دهد با راودگشنتازا \(\sigma\) میکان ناوردا و مقیاس هیرردآ و با رآودگشنتیتی\(\mu\) هیرردای مکان و مقیاس است. با جایگذاری در \(j = 1, 2, \ldots, n\) نتیجه می‌گیریم که \(\hat{X}_n = \hat{X}_j\) نشان می‌دهد برای ادامه آزمون بدن آزمون بدن از دست دادن کلیت مسئله حالتی، \(\alpha = 1\) را در نظر می‌گیرم.

جدول 1 درصد روش صفر را در \(m = 1000\) بار تکرار شیبیسازی مونت کارلو برای مقادیر پارامتر \(\lambda_0\) بر اساس آماره \(n\) و انتقال از آزمون آزمونی 
\[ T_{n,\alpha}^O \]

\[
\begin{array}{c|c|c|c|c|c|c|c}
\lambda & \alpha = 0.05 & \alpha = 0.1 \\
\hline
\lambda_0 & 0.05/0.05 & 0.1/0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\
\hline
\mu & 0.05/0.05 & 0.1/0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\
\hline
\end{array}
\]

جدول 1 نشان می‌دهد انتقال از آزمون به انتقال از آزمون \(\lambda\) نزدیک است. این نتایج شیبیسازی را برای مقادیر مختلف دیگر \(\lambda_0\) به‌طور مشابه تکرار شده و با خطر می‌رسد آماره آزمون با حداکثر فراوانی متناهی، نسبت به تغییر \(\alpha\) خاکسازد.

جدول‌های 1 و 2 میان‌الین [8] توان آزمون \(H_0\) را برای \(a = 0.1, 0.05, 0.0\) و \(\lambda_0 \in \{0, 0.1/0.1, 0.2/0.1\}\) و \(\lambda_0 \in \{0, 0.1/0.1, 0.2/0.1\}\) نشان می‌دهد. برخی از این روش‌های مقابل بدين‌صورت هستند:

1. توزیع جوله، \(ST(\lambda, \vartheta)\) به‌صورت

\[ ST(\lambda, \vartheta) = \frac{\lambda}{\sqrt{1 + \lambda^2}}(Z_1/\sigma + 1/\sqrt{1 + \lambda^2}) \]

که در آن \(\lambda, \vartheta \sim \text{Gamma}(2, 2, 1/\vartheta)\) و \(Z_1, Z_{1,2} \sim \text{Gamma}(2, 2)\) و \(\vartheta \sim \text{Gamma}(2, 2, 1/\vartheta)\)

2. توزیع \(g\) توکی \(Tu(g)\) به‌صورت

\[ Tu(g) = \left(e^{gZ_1} - 1\right) / g \]

که در آن \(\lambda, Z_1 \sim \text{Gamma}(2, 2)\) و \(Z_{1,2} \sim \text{Gamma}(2, 2)\)

3. توزیع لابلاس نامتقارن \(AL(\varphi)\) (کاتژ و همکاران [4]) به‌صورت

\[ AL(\varphi) = (1/\sqrt{2})((E_1, \varphi) - \varphi E_1) \]

\[ \alpha = 0.1, 0.05, 0.0 \]

\[ \lambda_0 \in \{0, 0.1/0.1, 0.2/0.1\}\]

\[ n \in \{0, 0.1/0.1, 0.2/0.1\}\]

\[ \lambda \in \{0, 0.1/0.1, 0.2/0.1\}\]

\[ \vartheta \in \{0, 0.1/0.1, 0.2/0.1\}\]

\[ \lambda \in \{0, 0.1/0.1, 0.2/0.1\}\]

\[ \vartheta \in \{0, 0.1/0.1, 0.2/0.1\}\]
جدول ۲. توان آزمون به دو روش میانیتیسی و جدید

<table>
<thead>
<tr>
<th>فرض مقاله</th>
<th>$\alpha = 0.05$</th>
<th>$\alpha = 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ST(0.2)$</td>
<td>$T_{n,a}^{O}$</td>
<td>$T_{n,a}^{O}$</td>
</tr>
<tr>
<td>$ST(0.5)$</td>
<td>$T_{n,a}$</td>
<td>$T_{n,a}$</td>
</tr>
<tr>
<td>$Tu(1/5)$</td>
<td>$T_{n,a}$</td>
<td>$T_{n,a}$</td>
</tr>
<tr>
<td>$Tu(1)$</td>
<td>$T_{n,a}$</td>
<td>$T_{n,a}$</td>
</tr>
<tr>
<td>$AL(1/5)$</td>
<td>$T_{n,a}$</td>
<td>$T_{n,a}$</td>
</tr>
<tr>
<td>$AL(1)$</td>
<td>$T_{n,a}$</td>
<td>$T_{n,a}$</td>
</tr>
</tbody>
</table>

جدول ۲ درصد رده فرض صفر را تحت فرض‌های مقابل ۱ الی ۳ در $n = 1000$ بر تکرار شیب‌سازیی $\mu = 1$, $\sigma = 2$ و $\lambda = 0.5$ انتظار آزمون $\alpha = 0.05, 0.1$ و انتظار نمونه $T_{n,a}$ بر اساس آمار های $T_{n,a}^{O}$، و $T_{n,a}$ به‌این‌گونه نشان می‌دهد. جدول ۲ نشان می‌دهد روش جدید نسبت به روش میانیتیسی برای پیش‌بینی آزمون به‌طور بهتری منجر می‌شود.

جدول‌های ۱ و ۲ میانیتیسی [۸] به مقیاس توان آزمون $T_{n,a}$ با کلموگروف-اسپیروف پرداخته است. با مقایسه نتایج این شبیه‌سازی و شبیه‌سازی میانیتیسی [۸] نتیجه می‌گیریم آزمون $T_{n,a}$ رقیب جدی آزمون کلموگروف-اسپیروف برای نمونه‌های متغیر است. بنابراین این توان‌های آزمون در این بخش، آزمون جدید $T_{n,a}^{O}$ ارائه شده در این مقاله است.

۲. آزمون نیکوئی برآی‌ش در حالت $\mu$ مجهول

در این حالت نیز مانند حالت $\mu$ معلوم از برآوردهای $\lambda$ مسیری استفاده کرد اما در این بخش از روش ساده استفاده می‌کنیم. فرض کنید مشاهدات نمونه‌های تصادفی از توزیع $SN(\mu, \sigma, \lambda)$ با گشاتواری مرکزی نمونه‌ای $y = (y_1, \ldots, y_n)$ باشد. برآوردهای گشاتواری پارامترها را با $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ و $m_i = s_i$ برای $s = 0, 1$
نمایش می‌دهم. اگر $y$ و $s$ با هم و تغییرات میانگین و انحراف معیار نمونه مشاهده شده، $y_i, \ldots, y_i$ باشد، آنگاه نمونه استاندارد شده $y_{ni} = (y_i - \bar{y})/s_i$, که در آن $y_i = (y_1, \ldots, y_n)$، $y_{ni} = (y_{ni1}, \ldots, y_{nin})$، $\bar{y} = (1/n) \sum_{i=1}^{n} y_{ni}$، $s_i = \sqrt{(n-1) \sum_{i=1}^{n} (y_{ni} - \bar{y})^2}$، $y_{ni} = (y_{ni} - \bar{y})/s_i$، $\sigma_o = \sigma/s$, و $\mu_o = \frac{\mu - \bar{y}}{s}$.

توزیع $Y_i = Y - SN(\mu_o, \sigma_o, \lambda)$ مناسب است.

حال با استفاده از گشتاورهای اول، دوم و سوم نمونه‌ای توزیع $Y_i$ که آن‌ها را با هم و تغییرات میانگین و انحراف معیار نمونه مشاهده شده، $m_0 = m_0, s^2 = s^2, m_s = s_s, s_b = s_b, (\bar{m}_s, \bar{m}_b), \sigma_{m_0} = \sigma/m_0, \sigma_{m_s} = \sigma/s^2, \mu_{m_0} = \mu/m_0, \mu_{m_s} = \mu_0/s$، را به دست می‌آوریم. اگر $\lambda$ را حداقل می‌آوریم، $\lambda = \frac{\lambda}{\sqrt{1 + \lambda^2}}$.

$E(Y_i) = \mu_o + b\sigma_0, \theta = m_0 = 0 \Rightarrow \bar{\theta} = -\frac{\mu_0}{b\sigma_0}$

$E(Y_i') = \mu_o' + b\mu_o, \theta = m_0 = 1 \Rightarrow \bar{\theta} = (\lambda + \mu_o')^{\lambda}$

$E(Y_i') = -2\mu_o' + \frac{\mu_o'}{b} \equiv m_s = \bar{\mu}_s = \frac{-cm_o^{\lambda}}{s}$

در نتیجه داریم

$\bar{x} = \bar{y} + s\bar{\mu}_o, \bar{\sigma} = s\bar{\sigma}_o, \bar{\lambda} = \lambda(1 - \bar{\sigma})$

چون توزیع آماره آزمون تحت فرض صفر به پارامتر نامعلوم $\lambda$ وابسته است، برای یافتن مقدار بحرانی $\alpha$ به روش پایتختی استفاده می‌کنیم. برای یافتن نقطه بحرانی آزمون‌های مورد نظر بر اساس نمونه مشاهده شده، $y_1, \ldots, y_n$ و اندیس آزمون $\alpha$ بر خورشی بود استریپ پارامتری این مراحل را طی می‌کنیم:

1. برآورد می‌گفتاری $\hat{\mu}$ و $\hat{\sigma}$ و سپس $\hat{\lambda}$ و سپس نسخه بسته استریپ $\hat{\mu}^*, \hat{\sigma}^*$، $\hat{\lambda}^*$.

2. مقدار آماره آزمون $T_{n,b}$ را برآساس $\hat{\lambda}^*, \hat{\sigma}^*$، $\hat{\mu}^*$ تولید می‌کنیم.

3. نمونه بیشتر $Y_{i,b}$ را از توزیع $SN(0,1,\hat{\lambda}^*)$ تولید می‌کنیم.

4. برآورد بیشتر $Y_{i,b}$ را براساس $\hat{X}_{i,b} = \frac{Y_{i,b} - \hat{\mu}^*}{\hat{\sigma}^*}$، $\hat{\lambda}_{i,b}$ و سپس نسخه بسته استریپ $\hat{\mu}^*, \hat{\sigma}^*, \hat{\lambda}^*$.

5. نمونه بیشتر $Y_{i,b}$ را براساس $\hat{X}_{i,b} = \frac{Y_{i,b} - \hat{\mu}^*}{\hat{\sigma}^*}$ تولید می‌کنیم.

6. مقدار آماره آزمون بیشتر $T_{n,b}$ را بر پایه $T_{n,b} = \frac{\hat{\lambda}_{i,b} \hat{\sigma}^*}{\hat{\mu}^*}$ تولید می‌کنیم.

7. مقدار بحرانی $T_{n,b}(\alpha)$ که در آن $T_{n,b}(\alpha) = \frac{T_{n,b}}{\hat{\sigma}^*}$، $\hat{\alpha}^*$ را ارائه می‌کنیم، که در آن $\hat{\alpha}^*$ را مقدار مربوط شده...

8. فرض صفر در اندیس آزمون $\alpha$ رد می‌گردد اگر $\hat{\alpha}^* < T_{n,b}(\alpha)$ است.
شکل ۳ از دهده‌های واقعی

دارای بیش از یکی از دهده‌های واقعی نتایج روش جدید را ب روش میانه‌ای می‌کنیم. داده‌های جدول‌های ۱ و ۲ گویا و پراون [۶] نمایش‌های هشی ۷۲ سفیدرسته و ۵۲ غیرسفیدرستی مرد و یک شرکت بیمه در سال ۱۹۷۱ نشان می‌دهد. براوردیداه گشتاوری پارامترهای (μ,σ,λ) در جدول ۵ گزارش شده است.

۸۳۹
جدول ۴. توان آزمون‌های توزیع جوله نرمال بر اساس تابع مولد گشتاور تجربی

<table>
<thead>
<tr>
<th>فرض مقابل</th>
<th>ST (۱/۰۵)</th>
<th>ST (۱/۰۵)</th>
<th>ST (۰/۱۵)</th>
<th>ST (۰/۱۰)</th>
<th>ST (۰/۰۵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{T}_{n,a}^O$</td>
<td>۲/۷۷</td>
<td>۲/۸۹/۰۸</td>
<td>۲/۱۵/۵۲</td>
<td>۲/۸۹</td>
<td>۲/۷۷/۲</td>
</tr>
<tr>
<td>$\tilde{T}_{n,a}$</td>
<td>۲/۴۸</td>
<td>۲/۹۸</td>
<td>۲/۱۱</td>
<td>۲/۸</td>
<td>۲/۴۸</td>
</tr>
<tr>
<td>KS</td>
<td>۲/۸۰/۸</td>
<td>۲/۳۳</td>
<td>۲/۵۸</td>
<td>۲/۷۶</td>
<td>۲/۸۵/۰</td>
</tr>
</tbody>
</table>

جدول ۵. برآورد پارامترهای توزیع جوله نرمال برای داده‌های بهره‌هوشی مردان

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>$\mu$</th>
<th>$\sigma$</th>
<th>$\lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>سفید پوست</td>
<td>۱۰/۵۳</td>
<td>۱/۹۲</td>
<td>۱/۷۳</td>
</tr>
<tr>
<td>غیرسفید پوست</td>
<td>۹/۸۷/۱</td>
<td>۱/۷۸</td>
<td></td>
</tr>
</tbody>
</table>

در جدول‌های ۶ و ۷ مقدار آزمون و مقادیر بحرانی ۰/۰۵ و ۰/۱ داده‌های بهره‌هوشی، به ترتیب برای دو روش مینتیلیس و جدول‌های ۶ و ۷ فرض جوله نرمال بودن محاسبه شده‌اند. با مقایسه مقادیر بحرانی و مقادیر آزمون در جدول‌های ۶ و ۷ فرض جوله نرمال بودن هیچ‌کاری از آنها در سطح ۵% و ۱۰% رد نمی‌شود. این لگدیگری یکسان‌الد مقدار بحرانی از روش مینتیلیس است. علاوه بر این، مقادیر جدول‌های ۶ و ۷ که مقدار آزمون بعد از ارائه جدول‌های ۶ و ۷ رقم اعشار بیکسان‌اند، نشان می‌دهد که مقادیر بحرانی دارای گستردگی اند. بطوری که نقطه بحرانی آزمون $\tilde{T}_{n,a}^O$ مقدار بحرانی $\tilde{T}_{n,a}$ نسبت به عمق نقطه بحرانی آزمون ۷ دارد. 

جدول ۶. مقادیر بحرانی و آزمون $\tilde{T}_{n,a}$ برای داده‌های بهره‌هوشی

<table>
<thead>
<tr>
<th>$\alpha$</th>
<th>سفید پوست</th>
<th>غیرسفید پوست</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۵۰</td>
<td>۲/۴۸</td>
<td>۲/۴۸</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۲/۷۷</td>
<td>۲/۷۷</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۲/۸۹</td>
<td>۲/۸۹</td>
</tr>
</tbody>
</table>
جدول ۷. مقادیر بحرانی و آماره آزمون 

\[ T_{n,m}^0 \]

برای داده‌های بهره‌هوشی

| \( \alpha \) | \( \tilde{T}_{n,m}^0 \) & \( \tilde{T}_{n,m}^0 \) |
|--------|--------|--------|
| 0.05   | 0.1    | 0.2    |
| 0.01   | 0.05   | 0.17   |
| 0.001  | 0.005  | 0.017  |
| 0.0001 | 0.0005 | 0.0017 |

نتیجه‌گیری

در این مقاله یک روش محاسبه آماره آزمون میانیتینس بررسی شد که از نظر توان و زمان اجرای شیب‌سازی نسبت به‌روش قبلی برتری دارد. این روش بر مبنای استفاده از یک تابع این‌تیم است. همچنین شیب‌سازی‌ها نشان داد آزمون معرفی شده میانیتینس در مورد پارامتر معلوم، بر آزمون کلموگروف-اسمیرنف برتری دارد؛ اما در مورد پارامتر نامعلوم این ادعا درست نیست.

منابع
