تکمیل آزمون نیکوئی برای توزیع جوله نرمال بر اساس تابع
مولد گشتاور تجربی

محمدهدی مقامی، نصرالله ایرانی‌نما؛ دانشگاه اصفهان، گروه آمار

چکیده
تلاکون روش‌های مختلف برای آزمون نیکوئی برای توزیع جوله نرمال مطرح شده است. در این مقاله روش مبتلا به زبان (Mintakas [8]) که بر اساس تابع مولد گشتاور تجربی است، بررسی می‌شود. این آزمون با مجاور مجزا برای پارامتر شکل معلوم و محیط مطلوب می‌شود. مبتلا به زبان (Mintakas اعدادی که تابع آزمون نرمال یا از نظر توان یا از اصمول مکمگروف امسیورف قابل تفاوت است. اما این اعداد تناها برای پارامتر شخص معلوم درست است. در این مقاله روشن برای بانک آمار آزمون ارائه شده است که عالی بر زمان کیتی، توàn آزمون مبتلا به زبان (Mintakas را نیز با مجاور چشگیری افزایش می‌دهد.

در این روش برای پیش‌سیریم، به‌جای محاسبه تابع روی شیکه، از آزمون‌های اقدامی می‌شود. مبتلا به زبان پارامتر معلوم اثارات آزمون خود را بررسی نکرده است که در این مقاله بررسی شده است.

آماره آزمون
اگر یک متغیر تصادفی پیوسته با تابع چگالی احتمال \(f(z;\lambda) = \phi(z)\lambda \) باشد، \(Z_\lambda \) را یک متغیر تصادفی جوله نرمال استاندارد با پارامتر پژوهی \(\lambda \) می‌نامیم (آزالینی [1]). در این تعیین \(Z_\lambda \) به‌جای توابع چگالی و توزیع نرمال استاندارد استثناء. اگر ترکیب خصوصی \(\sigma \) در نظر بگیریم، می‌گوییم \(Y \) دارای توزیع جوله نرمال با پارامترهای \(\mu, \lambda, \sigma \) است و با نماد \(Y \sim SN(\mu, \sigma, \lambda) \) نماشگی می‌دهیم.

\[H : Y \sim SN(\mu, \sigma, \lambda) \qquad \mu \in \mathbb{R}, \sigma > 0, \lambda \in \mathbb{R} \]

همچنین آزمون فرض صفر برای خی.

که در آن \(\lambda \) مقدار ثابت و معنی‌دار از مقدار \(\hat{\lambda} \) است، یا در حالت کلی، فرض صفر برای پرخی

\[\hat{H} : Y \sim SN(\mu, \sigma, \lambda) \qquad \mu \in \mathbb{R}, \sigma > 0, \lambda \in \mathbb{R} \]

که در آن \(\lambda \) نامعلوم است را در برای فرض مقابل دلخواه انجام دهد. فرض کنید \(\lambda \) نامعلوم است و برای آزمون \(Y \sim SN(\mu, \sigma, \lambda) \) تابع مولد گشتاور \(M_t = E[\exp(tY)], t \in \mathbb{R} \)

که برای نظر گرفتن پارامتر و باصوصت

\[\mathcal{G} = \lambda / \sqrt{1 + \lambda} \]

مولت گشتاور \(Y \) با در نظر گرفتن پارامتر \(\lambda \)

\[M_{\lambda}(\mu, \sigma; t) = \exp(\sigma t) \Phi(\sigma \mathcal{G}) \]

والده‌های کلیدی: جوله نرمال کلمگروف، اسپیف، بوت استرپ پارامتر، شیپی‌سازی مونت کارلو

پژوهشگر: iranpanah@stat.ui.ac.ir

dیرافتاده: 99/1/5/1/25

نویسنده مسئول:
به‌استدلالی در معادله‌ای دیفرانسیل

\[M'_t - tM(t) - \theta N \exp \left[\frac{t^2}{2} (1 - \theta^2) \right] = 0, \quad t \in \mathbb{R} \quad (1) \]

با استفاده از (1) صدق می‌کند، از احتمال پرازش را نباید روش انجام می‌دهیم.

فرض کنید نمونه‌های تصادفی از توزیع جدایی‌نمایی باشد. برای آزمون فرض \(H_0 \) تابع مدل‌گشای تجربی

\[\hat{M}_n(t) = \frac{1}{n} \sum_{i=1}^{n} \exp(t \hat{X}_j) \]

(2)

را در نظر گرفته که در \(y_{j-1}, \ldots, y_j, \ldots, y_n \) به پایداری سازگار \((\hat{\mu}_n, \hat{\sigma}_n) \) و \(\hat{X}_j = (y_j - \hat{\mu}_n) / \hat{\sigma}_n \) است، با بر این استناد از احتمال

\[D_n(t) = \hat{M}_n(t) - t \hat{M}_n(t) - \theta N \exp \left[\frac{t^2}{2} (1 - \theta^2) \right] \]

(3)

نتیجه‌گیری به اینکه در آسه‌ی ثزای آزمون هیچ‌کدام

\[H \]

براساس انتخاب‌های توزیع تجربی،

\[\tilde{D}_n(t) = \hat{M}_n(t) - t \hat{M}_n(t) - \theta N \exp \left[\frac{t^2}{2} (1 - \theta^2) \right] \]

(4)

از صفر انجام می‌شود، که در ان \(\lambda_n \) و \(\lambda_{-n} \) هک سازگار \(\lambda \) است. انتظار داریم در

واکنش‌های این روش می‌سر است آزمون اثره‌که داده‌ای چنین کاراکتر با آزمون‌های با اساس تابع توزیع تجربی،

مانند آزمون‌های اسکورف-اسپرینف و یک رقابت بین هم‌اکنون به‌علاوه این آزمون جدید در مواردی که خاصی کلاسیک

براساس تابع توزیع تجربی بپیچیده‌ای اجرایی می‌شود.

با توجه به اینکه در اساس ارزیابی آزمون (3) و (4)،

مقدار میوهی است، یک روش برای محدوده‌ای تابع مولد

گشای تجربی انتخاب‌های توزیع \(n \) بردی \((کلاک و همکاران (2)) \) و با یک شیبی منعکس از نقاط

\(\lambda_n \) است. با بر این امره‌های

\[H_n \]

برای خانمیت، \(a > 0 \) در آزمون

\[\tilde{T}_{n,a} = \sqrt{n} \sup_{-a \leq t \leq a} |D_n(t)| \]

(5)

\[\tilde{H}_n \]

\[\tilde{T}_{n,a} = \sqrt{n} \sup_{-a \leq t \leq a} |\tilde{D}_n(t)| \]

(6)

را به‌کار می‌برم.

سازگاری آزمون‌ها

برای آزمون مورد نظر فرض مکاتب‌های تثنیه تحت فرض صفر، بلکه تحت فرض ثابت در مقابل

\[H \]

باشیم \((\mu, \sigma, \lambda) \rightarrow (\mu, \sigma, \lambda) \)

که در آن \(\lambda_n \) در آزمون

\[\tilde{T}_{n,a} \]

\[\tilde{H}_n \]

\[\tilde{T}_{n,a} \]

\[\tilde{H}_n \]

\[\tilde{T}_{n,a} \]

\[\tilde{H}_n \]

832
براوردگرها سازگارند و برای انجام آزمون از براوردگرها گشتاوری استفاده می‌کنیم. برای آزمون فرض \(H \) با معلوم و با فرض اینکه تحت فرض مقابل ثابت \(\gamma \), خواهیم داشت
\[
E(Y) = \mu + \sigma \sqrt{\frac{\gamma}{\pi}}, \quad \text{Var}(Y) = \sigma^2 \left(1 - \frac{\gamma}{\pi} \right)
\]
(5)
از حل معادلات (5) داریم:

\[
\mu = E(Y) - \sigma \sqrt{\frac{\gamma}{\pi}}, \quad \sigma = \sqrt{\frac{\text{Var}(Y)}{1 - (\gamma/\pi)}}
\]
بنابراین \(\mu, \sigma \) و به صورت

\[
\hat{\mu}_n = \bar{Y}_n - \sigma_n \sqrt{\gamma/\pi}, \quad \hat{\sigma}_n = \frac{S_n}{\sqrt{1 - (\gamma/\pi)}}
\]
(6)
ارائه می‌گردد که در آن

\[
S_n^2 = n^{-1} \sum_{j=1}^{n} (Y_j - \bar{Y}_n)^2 \quad \bar{Y}_n = n^{-1} \sum_{j=1}^{n} Y_j
\]
همچنین برای انجام آزمون فرض \(H_0 \) ماجول است، برای وجود براوردگرها گشتاوری \(T_{n,a} \) باشد. سازگاری آزمون کلی را بررسی می‌کنیم. آزمون \(T_{n,a} \) حالی خاصی از

\[
E(Y|\bar{Y}_n) < \infty
\]
باشد. جوان آزمون مطرح شده برای مقایسه بزرگ \(T_{n,a} \) فرض \(H_0 \) را رد کند، این قضیه ارائه می‌شود.

(میتانتیس [8])
قضیه: آزمون نیکوئیب برازشی که برای مقایسه بزرگ آماره \(T_{n,a} \) فرض \(H_0 \) را رد کند، سازگار است.

اثبات: برای اثبات سازگاری آزمون بر اساس آماره \(T_{n,a} \) باید نشان دهیم

\[
\bar{T}_{n,a} = \sqrt{n} \sup_{-\alpha \leq t \leq \alpha} |\bar{D}_n(t)| \to \infty
\]
اگر باشد، مثلاً باشد،

\[
-\alpha \leq t \leq \alpha \quad \bar{D}_n(t) \to \bar{\lambda}
\]
برای تمام

\[
\bar{\lambda}, \quad \sup_{-\alpha \leq t \leq \alpha} |\bar{D}_n(t)| \to \bar{\lambda}
\]
(7)
از طرفی با استفاده از (2) داریم

\[
\hat{M}_n(t) = \frac{1}{n} \sum_{j=1}^{n} \exp(t\bar{X}_j)
\]
\[
= \frac{1}{n} \sum_{j=1}^{n} \exp \left[\frac{(Y_j - \hat{\mu}_n)}{\hat{\sigma}_n} \right]
\]
\[
= \exp(-t\hat{\mu}_n/\hat{\sigma}_n) \times \frac{1}{n} \sum_{j=1}^{n} \exp(tY_j/\hat{\sigma}_n)
\]
\[
= \exp(-t\hat{\mu}_n/\hat{\sigma}_n) \times M_n(t/\hat{\sigma}_n)
\]
(8)
بنابراین

\[
\hat{M}_n(t) = \frac{1}{\hat{\sigma}_n} \exp(-t\hat{\mu}_n/\hat{\sigma}_n) \times \left(\hat{M}_n(t/\hat{\sigma}_n) - \hat{\mu}_n M_n(t/\hat{\sigma}_n) \right)
\]
(8.33)
که در آن (۴) و (۵) می‌باشد.

تاریخ توزیع جدول نرمال بر اساس تابع مولتی گشتاور تجربی

که در آن (۶) است. بنابراین با توجه به (۴) و (۵) سازگاری یکنواخت تابع مولتی گشتاور تجربی و مشتق آن را برابر کران‌دار از اعداد حقیقی و همچنین سازگاری پارامترهای مجهول (μ، σ)، نتیجه می‌گیریم

\[\hat{M}_n(t) = \exp(-t \hat{\mu}_n / \hat{\sigma}_n) \times M_n(t / \hat{\sigma}_n) \rightarrow e^{-(\mu / \sigma)t} M(t / \sigma) \]

که در آن (۷) است. به همین ترتیب M(t) تابع مولتی گشتاور است. اکنون برای متغیر تصادفی X با تابع مولتی گشتاور انتخابی M(t) = e^{\mu / \sigma} m(\sigma, t)

\[M(t / \sigma) = e^{(\mu / \sigma)m(t)} t \quad \hat{(t / \sigma)} = (\mu / \sigma) \mu m(t) \]

(۸)

با انتخاب رابطه (۸) در سمت راست رابطه (۸) داریم:

\[\hat{M}_n(t) = \hat{M}_n(t) \rightarrow m(t) - t m(t) \]

(۹)

با استفاده از (۱۰) جدول گام‌های به پایین و در

\[\hat{D}_n(t) = \hat{D}_n(t) \rightarrow \bar{D}(t) \]

(۱۱)

که در آن (۱۱) است. اکنون برای متغیر X با تابع مولتی گشتاور N(μ، σ، t) که در آن (۱۱) است به دست می‌آید. بنابراین با استفاده از رابطه (۱) است، نتیجه به پایین و در

\[D_n(t) = m(t) - t m(t) - \bar{D}(t) \]

(۱۲)

که در آن (۱۲) است. اکنون برای متغیر X با تابع مولتی گشتاور N(μ، σ، t) که در آن (۱۲) است به دست می‌آید. بنابراین با استفاده از رابطه (۱) است، نتیجه به پایین و در

\[D_n(t) = m(t) - t m(t) - \bar{D}(t) \]

(۱۲)

که در آن (۱۲) است. اکنون برای متغیر X با تابع مولتی گشتاور N(μ، σ، t) که در آن (۱۲) است به دست می‌آید. بنابراین با استفاده از رابطه (۱) است، نتیجه به پایین و در

\[D_n(t) = m(t) - t m(t) - \bar{D}(t) \]

(۱۲)

که در آن (۱۲) است. اکنون برای متغیر X با تابع مولتی گشتاور N(μ، σ، t) که در آن (۱۲) است به دست می‌آید. بنابراین با استفاده از رابطه (۱) است، نتیجه به پایین و در

\[D_n(t) = m(t) - t m(t) - \bar{D}(t) \]

(۱۲)

که در آن (۱۲) است. اکنون برای متغیر X با تابع مولتی گشتاور N(μ، σ، t) که در آن (۱۲) است به دست می‌آید. بنابراین با استفاده از رابطه (۱) است، نتیجه به پایین و در

\[D_n(t) = m(t) - t m(t) - \bar{D}(t) \]

(۱۲)
شیب‌سازی
در این بخش در بررسی شیب‌سازی برای آزمون‌ها دو حالت پارامتر شکل معلوم و نامعلوم را در توزیع چوله نرمال در نظر می‌گیریم.

1. آزمون نیکویی برازش در حالت β معلوم
در این قسمت نتایج شیب‌سازی مونت کارلو برای آزمون $T_{n,\alpha}$، آزمون کلمو-گروف، اسمیرنف (KS) و روش jY جدید را مقایسه می‌کنیم. در حالت خاص با نمونه‌های بهانه‌ای $n=20, 50$ برای متغیرهای تصادفی استاندارد X و با استفاده از برنامه‌های گشتاوری (α) آزمون‌ها را به کار $\hat{X}_j = (Y_j - \hat{\mu}_n) / \hat{\sigma}$, $j = 1, 2, ..., n$ شده‌ند. در روش مینیماتس برای محاسبه آماره آزمون $T_{n,\alpha}^O$, مقدار D_n روی شکل‌های از نفاط در فاصله $[a, a]$ محاسبه می‌شود. در این شکل‌ها a فاصله $[a, a]$ به فاصله‌ای به‌طور $10\times a \times a$ سپس سپری مورد نظر با ماکسیموم D_n روی شکل محاسبه می‌گردد. اما در اینجا روش دیگری را پیشنهاد می‌دهیم و آن استفاده از یک تابع ایمپل برای یافتن مقادیر سپری مورد نظر است. آزمون به روش جدید R را به اولیه می‌دهیم. این روش علاوه بر داشتن زمان کبیر در شیب‌سازی مونت کارلو، دارای دقت و توان

R بیشتری نسبت به روش مینیماتس است. برنامه روش مینیماتس و همچنین روش جدید با استفاده از نرم‌افزار نگاشته شده‌اند.

برای یافتن مقدار بحرانی آزمون مورد نظر به دو روش بر اساس نمونه مشاهده شده $Y_1, Y_2, ..., Y_n$, پارامتر شکل $\hat{\alpha}$ و انداده آزمون $\lambda = \lambda$ این مراحل را انجام می‌دهیم (روش جدید فقط در مرحله 2 با روش مینیماتس مقاوت).

است: $\lambda = \lambda$ با استفاده از نمونه $Y_1, Y_2, ..., Y_n$, پارامترهای $\hat{\mu}$ و $\hat{\sigma}$ از رابطه (1) به روش گشتاوری مونت کارلو

1. تابع شکل‌های $\beta:jY$ محاسبه می‌شود.
2. تابع شکل‌های $\beta:jY$ محاسبه می‌شود.
3. تابع شکل‌های $\beta:jY$ محاسبه می‌شود.
4. مراحل اولیه $m = 1000$ با بکار گرفتن $c_n(\alpha)$ بر اساس تابع توزیع تجربی $T_{n,\alpha}$ محاسبه می‌شود.
5. مقدار بحرانی α با بکار گرفتن $c_n(\alpha)$ بر اساس تابع توزیع تجربی $T_{n,\alpha}$ محاسبه می‌شود.

برآورد توان آزمون برای فرض مقابل، با استفاده از شیب‌سازی مونت کارلو به‌طور مشابه امکان‌پذیر است.

مینیماتس [8] از $m=1000$ با بکار گرفتن شیب‌سازی مونت کارلو برای بررسی توان آزمون استفاده کرده است. اما می‌دانیم قبل از توانای بودن یک آزمون، انداده آن آزمون مهم است. مینیماتس انداده آزمون را بررسی نکرده است. در ادامه انداده آزمون را با استفاده از آماره $T_{n,\alpha}^O$ پارامترها می‌پذیرد. ایندیکت نشان می‌دهد مقدار آماره به جهت یافتن میزان و مقیاس وابسته نیست. Y_j به برای این کافی است پارامترهای میزان و مقیاس وابسته نیست.
فرآیند کنیز (ra $\in \mathbb{R}^n$, $c > 0$), $Y^* = \delta + cY$ و تبدیل داریم

$$
\hat{\mu}_n^* = \frac{1}{n} \sum_{i=1}^{n} Y_i^* - c\hat{\sigma}_n^*
$$

بنابراین $S_n^* = c^2 S_n^*$ و $\bar{Y}_n^* = \delta + c\bar{Y}_n$

این نشان می‌دهد باربرگ کشواری σ میان ناوردها و مقیاس هیوردا و باربرگ کشواری μ هیوردای میان و مقیاس است. با جایگذاری در f, \ldots, n نتیجه می‌گیریم که $X_j = \bar{X}_j$ برنامه‌ریزی نمی‌کند. در نتیجه برای بررسی اندکی آزمون بدون از دست دادن کلیت اصلی

حالات: 1 و 2 را در نظر می‌گیریم.

جدول ۱ درصد رد فرض صفر را در $m = 1000$ بار تکرار شیبیسازی مونت کارلو برای مقادیر پارامتر $\alpha = 0.05, 0.1$، اندکی آزمون اسی $n = 20, 50$ بر اساس آماره $\alpha = 0.1$ به‌عنوان $T_{n,a}^{O}$ می‌باشد.

<table>
<thead>
<tr>
<th>α</th>
<th>$a = 0.05$</th>
<th>$a = 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_n</td>
<td>$\lambda_n = 1$</td>
<td>$\lambda_n = 2$</td>
</tr>
<tr>
<td>$n = 20$</td>
<td>$% 29.9$</td>
<td>$% 26.9$</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>$% 24.9$</td>
<td>$% 26.9$</td>
</tr>
</tbody>
</table>

جدول ۱ نشان می‌دهد اندکی آزمون به‌اندازه اسی آزمون α نزدیک است. این نتایج شیبیسازی را برای مقادیر متغیر متغیر دگری $2/30$ به‌طور مشاهده تکرار شد و به‌نظر می‌رسد آماره آزمون با حداکثر فراوانی‌های متغیر درد که نسبت به تغییر a پایدارد.

جدول‌های ۱ و ۲ میان‌الین [8] توان آزمون H_0 را برای $1, 2, 3, 4, 5, 10, 20, 30, 40, 50$ و $n \in \{20, 30, 40, 50\}$ نشان می‌دهد. برخی از این فرض‌های مقیاس به‌صورت می‌باشند.

بنیادی صورت هستند:

۱. توزیع جوله χ^2 (کم [16]) به‌صورت

$$
ST(\lambda, \theta) = \frac{\lambda}{\sqrt{1+\theta}} \left(|Z|/\sigma \right) + \frac{1}{\sqrt{1+\theta}} \left(Z/\sigma \right)
$$

که در آن $\lambda \in \{1.0, 2.0, 5.0, 10.0\}$ و $\theta \in \{0.5, 0.7, 0.8, 0.9\}$، $Z \sim N(0, 1)$ به‌ازای $\sigma^2 \sim \Gamma(\alpha/2, 1/\theta)$ و $Z \sim N(0, 1)$ به‌ازای $\sigma^2 \sim \Gamma(\alpha, 1)$

۲. توزیع g توکی به‌صورت

$$
Tu(g) = (e^{gZ} - 1)/g
$$

که در آن $g \in \{0.5, 1.0, 2.0, 3.0\}$، $Z \sim N(0, 1)$ به‌ازای $\alpha \sim \Gamma(\alpha, 1)$

۳. توزیع لابلاس نامتناظر $AL(\phi)$ (کاری و همکاران [17]) به‌صورت

$$
AL(\phi) = (\sqrt{\pi}) \left((E/\phi) - \phi E \right)
$$
تجربه آزمون نیکویی بر اساس توزیع جوله نرمال بر اساس تابع مولال گشاتور تجربی

\[\varphi \in \{0.5, 1\} \]

که در آن \((E, E, \sim \text{Exp}) \)

جدول ۲. توان آزمون به دو روش میانیتیس و جدید

<table>
<thead>
<tr>
<th>فرض مقاّب</th>
<th>(\alpha = 0.05)</th>
<th>(\alpha = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ST(0.2))</td>
<td>(T_{0.05}^{0.2})</td>
<td>(T_{0.1}^{0.2})</td>
</tr>
<tr>
<td>(ST(0.5))</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>(Tu(0.1))</td>
<td>(27)</td>
<td>(27)</td>
</tr>
<tr>
<td>(Tu(0.5))</td>
<td>(29)</td>
<td>(29)</td>
</tr>
<tr>
<td>(AL(0.5))</td>
<td>(27)</td>
<td>(27)</td>
</tr>
<tr>
<td>(AL(1))</td>
<td>(27)</td>
<td>(27)</td>
</tr>
</tbody>
</table>

جدول ۲ درصد رتبه در بهترین آزمون

میانیتیس به توان آزمون به توان بقیه روش میانیتیس

<table>
<thead>
<tr>
<th>فرض مقاّب</th>
<th>(\lambda = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ST(0.2))</td>
<td>(29)</td>
</tr>
<tr>
<td>(ST(0.5))</td>
<td>(27)</td>
</tr>
<tr>
<td>(Tu(0.1))</td>
<td>(27)</td>
</tr>
<tr>
<td>(Tu(0.5))</td>
<td>(29)</td>
</tr>
<tr>
<td>(AL(0.5))</td>
<td>(27)</td>
</tr>
<tr>
<td>(AL(1))</td>
<td>(27)</td>
</tr>
</tbody>
</table>

در این حالت نیز میان نتایج حالت \(\lambda \) معلوم از برآوردگر گشتاوری استفاده می‌شود. برای محاسبه برآوردگر

گشتاوری می‌توان از روش مستقیم استفاده کرد و این بخش از روش ساده تبدیل استفاده می‌کنیم. فرض کنید \(y_n = (y_1, \ldots, y_n) \)

باید. برآوردگر گشتاوری پارامترها را با

\[\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \]

و

\[m_i = \sum_{i=1}^{n} (y_i - \bar{y})^2 \]

برابر \(m_i = s^2 \)
نمایش می‌دهیم. اگر y با خط‌بری میانگین و انحراف معیار نمونه مشاهده شده y_i, $i = 1,\ldots,n$ باشد، آنگاه نمونه استاندارد شده $y_{st} = (y_i - \bar{y})/s$، که در آن $y_{st} = (y_1,\ldots,y_n)$، \bar{y} به معنای میانگین و s به معنای انحراف معیار نمونه تصادفی از $Y - SN(\mu, \sigma, \lambda)$ با پارامترهای μ, σ, λ توزیع است. آنگاه

$$y_{st} = \frac{Y - \bar{y}}{s} - SN(\mu, \sigma, \lambda)$$

حال با استفاده از گشتاورهای اول، دوم و سوم نمونه توزیع Y آنها را با خط‌بری با λ, μ, σ مشاهده شده $m^*_i = m_i / s^2$ و $\bar{m}^* = \bar{m}/s = 0$ را بدست می‌آوریم. اگر $b = \sqrt{1 + \pi}$ داریم

$$E(Y) = \mu + b\sigma, \theta \equiv m = 0 \Rightarrow \tilde{\theta} = \frac{-\bar{\mu}}{b\sigma}$$

$$E(Y^*_{j}) = \mu^*_j + b\mu^*_j, \theta^*_j \equiv m = 1 \Rightarrow \tilde{\theta}^*_j = (1 + \tilde{\theta}^*)^{1/2}$$

$$E(Y^*_{j}) = -2\mu^*_j + \frac{\mu^*_j}{b^*} \equiv m = 0 \Rightarrow \tilde{\mu}_j = \frac{-cm^*_j}{s}$$

در نتیجه داریم

$$\bar{\mu} = \bar{\bar{y}} + \bar{s}\bar{\mu}_s, \quad \bar{\sigma} = s\bar{\sigma}_s, \quad \bar{\lambda} = \tilde{\bar{\lambda}}(1 - \bar{\tilde{\theta}})$$

چون توزیع آماره آزمون تحت فرض صفر به پارامتر نامعلوم λ وابسته است، برای یافتن مقدار بحرانی $\tilde{\alpha}(\lambda)$ در روش بود استفاده می‌کنیم. برای یافتن نقطه بحرانی آزمون‌های مورد نظر بر اساس نمونه مشاهده شده y_i, $i = 1,\ldots,n$ و اندازه آزمون α به روش بود استفاده می‌کنیم: 1. برآوردی گشتاوری $\hat{\lambda}$ و سپس $\hat{\lambda}$ و $\hat{\sigma}$ و $\hat{\mu}$ را محاسبه می‌کنیم.

2. مقدار آماره آزمون $T_{n,\alpha}$ را براساس $\hat{\lambda}$، $\hat{\lambda}$ و $\hat{\sigma}$، $\hat{\mu}$ تولید می‌کنیم.

3. نمونه بود استریب Y^*_1,\ldots,Y^*_n را از توزیع $SN(0,1)$ تولید می‌کنیم.

4. برآوردی گشتاوری $\hat{\lambda}$ و سپس $\hat{\lambda}$ و $\hat{\sigma}$ و $\hat{\mu}$ را براساس $\hat{\sigma}$ و $\hat{\mu}$ محاسبه می‌کنیم.

5. مقدار آماره آزمون بود استریب $\tilde{\alpha}(\hat{\lambda})$ را براساس $\hat{\lambda}$ و $\hat{\sigma}$ و $\hat{\mu}$ محاسبه می‌کنیم.

6. مراحل 3 الی 5 را بررسی $\tilde{\alpha}(\hat{\lambda})$ و $\tilde{\alpha}(\hat{\lambda})$ را بدست می‌آوریم.

7. مقدار بحرانی $\tilde{\alpha}(\hat{\lambda})$ را ارائه می‌کنیم که در آن $\tilde{\alpha}(\hat{\lambda}) = \tilde{\alpha}(\hat{\lambda}_{(n)}(\lambda))$ مقدار بحرانی می‌باشد.

8. فرض صفر در انتخاب آزمون α رد می‌گردد اگر α مقدار مورد نیاز $\tilde{\alpha}_n(\alpha) = \tilde{\alpha}_n(\alpha) > \tilde{\alpha}_n(\alpha)$.
کنار یکدیگر برای صادقی واقعی

در این بخش ما بیان می‌کنیم که سیستم داده‌های صادقی واقعی تاکنون روش جدید را با روش مبنا می‌کنیم. داده‌های جدول ۱ و ۲ پویا و برای [۵] نشان‌دهنده هر ۷۷ صفحه‌سایه و ۵۲ صفحه‌سایه مرد را در یک شرکت به‌معنی در سال ۱۹۷۱ نشان می‌دهد. برآوردی گسترشی پارامترهای \(\mu, \sigma, \lambda \) در جدول ۵ گزارش شده است.
جدول ۴. توان آزمون‌های \(KS \) و دیگر \(T^O_{n, draining} \) برای \(\alpha = 0.05 \) و \(n = 20 \) و ۲/۰

<table>
<thead>
<tr>
<th>فرض مقابل</th>
<th>(ST) (۰/۰۵)</th>
<th>(ST) (۲/۰۵)</th>
<th>(ST) (۲/۰۵)</th>
<th>(ST) (۱/۰۵)</th>
<th>(ST) (۱/۰۵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T^O_{n, draining})</td>
<td>%۷۷</td>
<td>%۷۴/۸</td>
<td>%۱۵/۵</td>
<td>%۸/۳</td>
<td>%۷/۲</td>
</tr>
<tr>
<td>(T_{n, draining})</td>
<td>%۷۴/۸</td>
<td>%۲۳/۳</td>
<td>%۱۱</td>
<td>%۷/۸</td>
<td>%۳</td>
</tr>
<tr>
<td>(KS)</td>
<td>%۸۴/۸</td>
<td>%۲۵/۷</td>
<td>%۲۴/۵</td>
<td>%۸/۵</td>
<td>%۷/۳</td>
</tr>
</tbody>
</table>

جدول ۵. پارامترهای تواظب جوله نرمال برای داده‌های بهره‌وری مدل

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>(\mu)</th>
<th>(\sigma)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سفیدپوست</td>
<td>۰/۱۰۵/۶۱</td>
<td>۰/۱۱۹/۸</td>
<td>۰/۱۷۷</td>
</tr>
<tr>
<td>غیرسفیدپوست</td>
<td>۰/۹۸/۵۹</td>
<td>۰/۱۱۳/۸</td>
<td></td>
</tr>
</tbody>
</table>

در جدول‌های ۶ و ۷ مقادیر آماره \(KS \) و مقادیر بحرانی \(0/05 \) و \(0/01 \) داده‌های بهره‌وری، به ترتیب برای دو روش میانگین‌گیری و مقدار آماره \(T^O_{n, draining} \) و دو روش میانگین‌گیری و مقدار آماره \(T_{n, draining} \) محاسبه شده‌اند. با مقایسه مقادیر بحرانی و مقادیر آماره \(T^O_{n, draining} \) و دو روش میانگین‌گیری و ۷ فرض جوله نرمال به دست آمده که مقادیر بحرانی روش جدید محاسبه‌سیریتر از روش میانگین‌گیری است. علاوه بر این، مقایسه جدول‌های ۶ و ۷ نشان می‌دهد که مقادیر آماره \(KS \) به دو روش تا رقم اعشار یک عدد کاسته و در نتیجه مقدار بحرانی آماره \(T^O_{n, draining} \) دارای میانگین‌گیری نسبت به این مقادیر بحرانی آماره \(T_{n, draining} \) می‌باشد. در جدول ۶، مقادیر بحرانی و آماره \(T^O_{n, draining} \) برای داده‌های بهره‌وری مدل.
نتیجه‌گیری
در این مقاله یک روش محاسبه آماره آزمون میانگین بررسی شده که از نظر توان و زمان اجرای شیب‌سازی نسبت به روش قبلی برتری دارد. این روش بر مبنای استفاده از یک تابع ابتیال است. همچنین شیب‌سازی‌ها نشان داد آزمون معرفی شده میانگین در مورد پارامتر معلوم، بر آزمون کلموگروف-اسمرفNF برتری دارد؛ اما در مورد پارامتر نامعلوم این ادعایی درست نیست.

منابع