Quasi- Secondary Submodules

A. J. Taherizadeh: Kharazmi University

Abstract

Let \(R \) be a commutative ring with non-zero identity and \(M \) be a unitary \(R \)-module.

Then the concept of quasi-secondary submodules of \(M \) is introduced and some results concerning this class of submodules is obtained.

1. Introduction

Throughout this paper all rings are commutative with non-zero identity and all modules are unitary. In [4] L.Fuchs introduced and studied the concept of quasi-primary ideals (see also [5]). An ideal \(I \) of a ring \(R \) is called a quasi-primary ideal of \(R \) if the radical of \(I \) is a prime ideal of \(R \). This concept then generalized to modules, i.e., the concept of quasi-primary submodules of a module introduced and developed in [3].

Here, we introduce the dual notation, that is, the quasi-secondary submodules of a module and obtain some results concerning this class of submodules. In section 2, we obtain some preliminary properties of quasi-secondary submodules. Section 3 is devoted to the quasi-secondary submodules of a multiplication module. Now we define some concepts which will be needed in sequel.

Let \(M \) be an \(R \)-module and \(N \) a submodule of it. The ideal \(\{ r \in R \mid rM \subseteq N \} \) will be denoted by \((N_R M)\); in particular \((0_R M)\) is called the annihilator of \(M \). A non-zero submodule \(N \) of \(M \) is called a secondary (resp.second) submodule of \(M \) if for each \(r \in R \) the homothety \(N \rightarrow N \) is surjective or nilpotent (resp. surjective or zero). In this case \((0_R N)\) is a prime ideal, say \(p \), and we call \(N \) a \(p \)-secondary (resp.a \(p \)-second) submodule of \(M \). We refer readers for more details concerning secondary (resp.second) submodule to [9] (resp. [12]).

KeyWords: quasi – secondary submodules, secondary submodules, multiplication modules
2010 Mathematics Subject Classification:13C05,13C13
Received: 26 Nov. 2011 Revised 18 July 2012
* Correspondence Author Taheri@tmu.ac.ir
An R-module M is said to be a multiplication module if for each submodule N of M there exists an ideal I of R such that $N = IM$. It is easy to see that in this case $N = (N_M)M$. Also the ideal $\theta(M)$ is defined as $\theta(M) := \sum_{m \in M} (Rm)_M$. If M is a multiplication module and N is a submodule of it, then $M = \theta(M)M$ and $N = \theta(M)N$. (see [1]). An R-module M is sum-irreducible if $M \cong 0$ and the sum of any two proper submodules of M is always a proper submodule. Finally a proper submodule N of an R-module M is called a prime submodule if for each $r \in R$ the homomorphy $M/N \rightarrow M/N$ is either injective or zero. This implies that $Ann(M/N) = p$ is a prime ideal of R, and N is said to be a p-prime submodule (c.f. [7], [8], [10] and [11]).

2. Quasi-Secondary Submodules

The starting point of this section is the definition of quasi-secondary submodules of a module.

Definition 2.1. Let M be a non-zero R-module. Then the non-zero submodule N of M is said to be quasi-secondary if $\sqrt{0 \cdot N} = p$ where p is a prime ideal of R. It is obvious that every secondary (or second) submodule of a module is a quasi-secondary submodule, but the converse is not true in general. For example, $2Z$ is a 0-quasi-secondary submodule of the Z-module Z but it is not 0-secondary (or 0-second) submodule. (Here Z denotes the set of all integers.)

Remark 2.2.

(i) Let M be a non-zero R-module and N a submodule of it such that $\sqrt{0 \cdot N} = m(m \in Max(R))$. Then N is m-secondary (m-second).

(ii) Every quasi-secondary submodule of a module over a zero-dimentional ring (i.e., a ring in which every prime ideal is a maximal ideal) is secondary.

(iii) Every quasi-secondary submodule of a module over a D.V.R is secondary.

Definition 2.3. Let M be an R-module and N a submodule of M. An element r of R is called co-primal to N if $rN = N$. Denote by $W(N)$ the set of all elements of R that are not co-primal to N. The submodule N is said to be a co-primal submodule of M if $W(N)$ is an ideal of R. This ideal is always a prime ideal. In this case we say that N is a p-co-primal submodule of M. The class of co-primal submodules of a module is a
fairly large class. For example, all secondary (second) submodules are co-primal. Also it is easy to see that a sum-irreducible submodule of a module is co-primal. But, in general, a quasi-secondary submodule of a module may not be a co-primal submodule. (consider the Z-module Z.). It is worth to mention that in [2] the term secondary is used for co-primal submodules. The next proposition characterizes those p-quasi-secondary submodules which are p-co-primal.

Proposition 2.4. Let N be a p-quasi-secondary submodule of an R-module M. Then N is a p-co-primal submodule of M if and only if it is a p-secondary submodule of M.

Proof \Rightarrow Let $N \to N$ be the R-endomorphism of N given by multiplication by r of R and $rN \neq N$. Then by our assumption $r \in p = \{s \in R | sN \neq N\}$. On the other hand, $p = \sqrt{0}$ and so there exists a positive integer t such that $r^t N = 0$. The result follows. \Leftarrow Is obvious.

The proof of two next propositions is easy and so we state them without proof.

Proposition 2.5. Let M be a module over an integral domain and N be a 0-co-primal submodule of M. Then N is 0-secondary.

Proposition 2.6. Let M be an R-module and N_1, N_2, \ldots, N_t be submodules of M. Then

(i) Suppose that for $i = 1, 2, N_i$ is p_i-quasi-secondary. Then $N_1 + N_2$ is quasi-secondary if and only if $p_1 \subseteq p_2$ or $p_2 \subseteq p_1$.

(ii) If N_1, \ldots, N_t are p-quasi-secondary, then $N_1 + \cdots + N_t$ is a p-quasi-secondary submodule of M.

(iii) If $N_1 + \cdots + N_2$ is a p-quasi-secondary submodule of M. Then N_j is p-quasi-secondary for some $j, 1 \leq j \leq t$.

3. Multiplication Modules

In this short section we give a property of quasi-secondary submodules of a multiplication module.

Lemma 3.1. Let M be a multiplication module and N be a p-quasi-secondary submodule of M. Then $\theta(M) \not\subseteq p$.

Proof. Suppose that $\theta(M) \subseteq p$ and $0 \neq n \in N$. Then $Rn = \theta(M)Rn \subseteq pn$. Hence $n = p_0 n$ for some $p_0 \in p$. By our assumption there exists a positive integer t such that $p_0^t N = 0$. Therefore $n = p_0^t n = 0$, a contradiction.
Theorem 3.2. Suppose that \(M \) is a faithfully multiplicative module and \(N \) a \(p \)-quasi-secondary submodule of \(M \). Then \(pM \) is a prime submodule of \(M \). In particular, if \(p \in \text{max}(R) \), then \(pM \) is a maximal submodule of \(M \).

Proof. By Lemma 3.1, \(\theta(M) \subseteq p \). Now suppose that \(pM = M = RM \). Then by [1, Theorem 1.5] \(R \cap \theta(M) = \theta(M) = p \cap \theta(M) \) and hence \(\theta(M) \subseteq p \) which is a contradiction. Thus \(pM \neq M \) and the result of the first part follows from [6, Lemma 2.4(2)]. The last part can be deduced from the first part and [6, Corollary 2.7].

Acknowledgement

The author would like to thank Kharazmi University for the financial support.

References