پتروگرافی و پترولوزی متابلیت‌های بخش میانی زون سنندج- سیرجان (شمال گلیپاگان)

سمیه کرامی، "سیدحسن طباطبایی‌منش: گروه زمین‌شناسی دانشگاه اصفهان

چگونه

متابلیت‌های شمال گلیپاگان بر مبنای مجموعه‌های کناری در جهار درسته گارانت کارتوونید شیست، گارنت شیست، گارنت استروتونید شیست و استروتونید کیلایی شیست فرار می‌گیرند. وجود کارتوونیت در گارنت کارتوونیت

شیست به‌کارگیری شیست سیز است. گارنت‌های موجود در گارنت شیست‌ها یک مرجع است. تغییرات سنگ‌شناسی از گارنت کارتوونیت شیست‌ها به‌عنوان استروتونید شیست‌ها پیش‌گر تشکیل این سنگ‌ها از گرار گرو تبدیل شده است.

بررسی ترمودینامیکی این سنگ‌ها نشان‌گر است که متابلیت‌های شمال گلیپاگان در محدوده دمایی 400 تا 560 درجه سانتی‌گراد و در محدوده فشاری 1/4 تا 4 کیلوبار تشکیل شده‌اند. این نتایج با شواهد پرآزمایی‌های کانی دها

کاملا ماهنگ است و حاکی از نگرگردان سیستمی شال گلیپاگان تا رخساره امپیلیت‌پلیپی (آپیدوت امپیلیت) است.

مقدمه

ناحیه گلیپاگان در شمال غرب استان اصفهان از ایجادگر طبیعی برای بررسی سروزمرن‌های دگرگون شده است. این منطقه از نظر ساختاری جزئی از پهن سنندج- سیرجان (شکل‌های 1 و 2) و از نظر پترولوزی و پتروفاویک به‌شب جالب و در عین حال پیچیده است، این پیچیدگی هم شک این سنگ‌شناسان مختلف بیش از بیش برای حل ابهام‌های زمین‌شناسی این منطقه تلاش کننده

متابلیت‌ها از مهم‌ترین خاتم‌های شناخته‌شده در ناحیه گلیپاگان هستند که کانی‌های شامل موجود در آنها توزیع منظمی را نشان می‌دهند. این توزیع می‌تواند با شدت دگرگونی و حوادث مختلف زمین‌شناسی مرتبط باشد. در این مقاله به بررسی پتروگرافی، پترولوزی و شرایط ترمودینامیکی تشکیل متابلیت‌ها در این ناحیه پرداخته شده است. برای با کمک آن برخی سنگ‌های بهرتی در شرایط ترمودینامیکی تشکیل این بخش از زون سنندج-

سیرجان اجرا کرد.

واژه‌های کلیدی: متابلیت، شیست، امپیلیت، گلیپاگان، سنندج، سیرجان

دریافت: 94/12/10
پذیرش: 95/7/28
کریمی‌سماهی @gmail.com

807
زمانشناسی

از دیدگاه تکنولوژی پهن‌سنج سیرجان از فعالیت‌های پهن‌سنجی شناخته شده، در دارای پیچیدگی است. این پهن‌سنج
به لحاظ داشتن حجم‌هایی در خورشیدی از سنگ‌های مادگی و پیشرفته و توسعة فرایندگی دگرگونی،
پیوسته‌دارنده زمان‌سنجی ایران محسوس می‌گردد. مهم‌ترین حادثه دنگرشکلی و دگرگونی آن در ارتباط با واپسین مهم تکنولوژی پهن‌سنجی ایران بوده است که در طول دوران مراکزهای انجام تحقیقات ایران است [۱],
در حقيقة این پهن‌سنجی تکنولوژی دانستنی‌ترین حاصل فرودانش و برخورد صفه عربی و خرد فلزه ایران
مرکزی در زمان کرکاسه پایانی تا تشریی است [۲]; [۳]، برخی محققین از جمله شربی (۱۳۸۶) [۲], احمدی‌کاکی (۱۳۸۸) [۴] و صبایان (۱۳۸۷) [۵] در منطقه
گلابیان ۴ فاز دنگرگونی (فشارشی، حرارتی، برشی، حرارتی و قهرمانی) دو قرارداد دنگرشکلی‌های
گزارش شده در این منطقه عبارتند از:
- دنگرگونی D1، که حاصل آغاز فرودانش تبتان جویان به زیر صفه ایران در زوراسیک پایانی است و یک
دنگرگونی در حد رخساره هیست سیز تا امکانپذیر و ساختارهای با روند SW-NE اجگ فرود است
[۶].
- دنگرگونی D2، که حاصل برخورد صفه عربی با صفه ایران در کرتاسه پسین است و ساختارهای با
روندی به مواضع زاگرس اجگ فرود و باعث دستیابی شدن سنگ‌ها شده است [۶].
- دنگرگونی D3، که حاصل تکنولوژی جابجایی فشارشی است: ردیاب طی دنگرگونی سنوزویی است [۶].
بر اساس شباهت‌های سنگی مشابه شدید و همکاران (۲۰۰۲)، شیست‌های منطقه شمال گلابیان متعلق به
زوراسیک است [۷]. مورتنس و همکاران (۲۰۰۴) مطالعاتی‌های گردش‌های جغرافیا و با متعلق به خش فوق‌ریز کرتاسه
زهرین (لونی می‌دانند [۹].
در واقع بطور نظر می‌رسد که در منطقه گلابیان، رسوبات در زمان تریاس-زوراسیک تشکیل و در زمان
زوراسیک با فاصله پسین دنگرگون شده‌اند.

شکل ۱: واحدهای تکنولوژی اصلی ایران همراه با موقعیت
منطقه بررسی شده بر روی پهن‌سنج سیرجان، سیرجان [۲].
بتروگرافی و پترولوژی متابلیت‌های بخش مینای زون سنندج، سوریه

روش تحقیق

طرفیابی‌های صحرایی ۱۰۰ نمونه سنگ به‌صورت سیستم‌اتیک برداشت شد. بعد از انجام مطالعات میکروسکوپی، زمینه هک نام تعدادی از آن‌ها در پیوست ۱ ارائه سده، به روش XRF (سنس اضلاعی تنظیم‌های کانال‌های بتينیت، گرانیت و استروتونیت در ۲ نمونه دیگر (St- Gol, SF- ۷) در آزمایشگاه JXA-8800 (WDS) منای سیرالوپ (JEOL)، با شرایط (12nA ولتاژ شتاب دهنده ۲۰ keV شدت جریان شد.

علائم اختصاصی استفاده شده در متن: گرانیت- Grt- بیوتیت- Bt-، فلسپار بناسیم- Mus, موسکوکیت- Kfs, کریت- Qtz, بالازیکلر- Pl, کوارتز- Qtr, استروتونیت- Chl

بتروگرافی و شیمی کانی‌ها

مجموعه سنگ‌های دگرگونی منطقه گلیپاگان عبارت است از آمفیبول‌های، شیلت، مرمر و متروکانکیک (شکل ۳). سنگ‌های برجسته‌سازه تشکل‌گذاری شده در شمال گلیپاگان شامل گرانیت کریتوپنیت شیلت، گرانیت شیلت، گرانیت استروتونیت شیلت و استروتونیت کلیت شیمت‌های مناسب در خصوصیات کلی برای شیمی‌های منطقه‌ایی گلیپاگان وجود بافت‌های لیفوپلاستی و میکروپلاستی است.
به‌روزرسانی و پترولئومی متابیت‌های نخستین، دو، سه، چهار،...، سه‌گنجینه، سیدمگینه، طبیعتی‌زمانش،...،

شکل ۳، نمایی از سنگ‌های دغرگونی شمال کلیوگان

C (نام کلی، درجه‌بندی که از شیست، مرمر، آمفوپیلیت و میتا و تکانیک، تشکیل شده است) و E (نام نزدیک از پتریولئوم‌های بررسی‌شده) به ۳۷، ۵۶، ۶۴، ۸۳، ۹۶، ۱۷۵، ۱۴۳، ۱۳۴، ۱۴۰، ۱۲۰، ۱۰۰ میلی‌متر و فراوانی به‌طور مشابه در حدود ۲۰ درصد و پتریولئوم‌های کلیوپتی (نام اولیه‌ای در ابعاد ۲/۵ تا ۲/۳ میلی‌متر، پلاژیک‌های دانه‌ای با ماهیت پلی‌سپتیک، با فراوانی حدود ۳۰ درصد و رقیق‌های پیش‌بستگی با فراوانی حدود ۱۰ درصد و تا ۱۵ درصد کانی‌های اپاک مشاهده می‌گردد (شکل ۴). کوارتز‌ها کمی کشیدگی نشان می‌دهند. این سنگ‌ها بافت‌گرایی پورپروپیولئوم‌های در دنیای کوارتز‌ها تجمع اند. اکنون ها به فرم ساعت شناست. ساعت (Hour-Glass) (به یاد اورژیدی) حاصل از اتصال کلیوپتی‌های هندسی ممکن از ادخال‌های که در ارتباط با ساختمان بلور میزان آراش باشفت‌شده [۱۰] معمولاً اولین نسل کوارتز‌های در دمای حدود ۴۵۰ تا ۳۰۰ درجه سانتی‌گراد و فشارهای بالای از ۳ کیلوبار مشابه می‌گردد. [۱۱] کوارتز‌های بررسی شده اهمیت است و ضمن اینکه تا حدودی کلیوپتی شده‌اند، واجد ادخال کوارتز‌های کوارتز‌های که بکی از کانی‌های معمول در دغرگونی

۸۱
ماتیلیت‌های سبزی درجه پایینی محدود می‌شود که در آن‌ها مقدار آهه بیشتر از میتوانی است. این کاتی
متعالاً از شکسته شدن پیروفلیت و کلریت به‌خست می‌آید [12]. نوع آهوند پاتخسی رخ‌شده شیست سپ
است. گرنت‌های موجود در گرانت‌گردی کلریت‌های شیست‌های دارای ادخال‌های کوارتز و بیوتیت است و برفی از آن‌ها تا
حدودی کلریتی شده و برفی کاملاً به کوارتز پسودومورف شده‌اند.

![عکس](image-url)

الف
شکل ۳. گرانت کلریتوئیدی شیست (نمونه) (پاره) پورفیروپلاست کلریتوئیدی با ادخال‌های فراوان کوارتز در زمینه‌ای
از کوارتز و میکا. ب: پورفیروپلاست‌های کوارتز و کلریتوئیدی در زمینه‌ای از کوارتز و میکا

**گرانت شیست‌هایِ سنگ‌های (از جمله نمونه‌ی SF-7) (پاره) بافت پورفیروپلاست‌های نشان می‌دهند و حدود
۲۵-۵۰ درصد موسمکوت، ۱۵-۲۰ درصد گرانت، ۱-۲۰ درصد بیوتیت، ۲-۳۰ درصد کوارتز. درصد کانونی اینک و حدود ۵ درصد فلزهار
درخی از پورفیروپلاست‌های گرانت با ابعاد ۳ تا ۷ میلی‌متر.

مرحله رشد را در گرانت نشان می‌دهند (شکل ۵، الف).

۱. گرانت با ادخال‌های پیکر کم‌کوارتز- بیوتیت و اپاک در مرکز
۲. گرانت با ادخال‌های فراوان کوارتز و تا حدودی بیوتیت و اپاک به‌صورت نواری در اطراف بخش
مرکزی
۳. گرانت با ادخال‌های کم‌کوارتز- بیوتیت و اپاک در حاشیه

برخی از گرانت‌های موجود در این سنگ‌های شریف و آئولی شکل نشان می‌دهند (شکل‌های ۵ ب و ج).
توالی‌ها بیوتیت و موسمکوت با کوارتز در سنگ، شیستورژیت‌های شدیدی نشان می‌دهند که این شیستورژیت‌های
پورفیروپلاست‌های گرانت را دارود و در قسمت‌هایی به‌صورت کریتوبلانکت اندامادان (شکل ۶). این شاهد
بوند سنگ و کاتی یان است. در این سنگ‌های بیوتیت و موسمکوت ابعادی حدود
۵/۰ میلی‌متر و کوارتز ابعادی حدود ۲/۰ میلی‌متر دارند.

گرانت‌های پربرسی شده در این سنگ‌ها دارای ۱ تا ۱۴ درصد پیرو، ۲ تا ۳ درصد گروسوالر، ۵ تا ۲۳
درصد اسپارتن و ۶۸ تا ۸۱ درصد آلمنید هستند. $X_{	ext{mg}}$
در گرانت‌های با ترکیب منطقه‌ای از ۱۷ تا ۱۲/۰/۷۱ تا ۱۷/۰/۹۷/۱.

811
در نوسان است و مقدار آن در گارنت هایی که مرحله سوم رشد را نشان می‌دهند، کمتر از دو مرحله قبل است.

گارنت‌های موجود در متالیت‌ها همیشه دارای مقداری از گروسولار هستند که در دستگاهی پیش‌رونده دمای ظهور آنها را پیشین می‌آورد.

در تعادل از نمونه‌های گارنت شیست، شکل‌گیری موسکویت و بیوتیت در کنار یک‌دیگر دال بر تشکیل آن‌ها در طی و اکتش (1) است. در ادامه دگرگونی و با مصرف

فلداسب پتاسیم موسکویت در مقابل کوارتز ناپایدار شده و طبق و اکتش (2) گارنت و بیوتیت تشکیل می‌شود.

شکل ۵. گارنت شیست (نمونه‌ی SF-7) ۳ مرحله رشد گارنت، ب) نحوه پراکندگی ادخال‌های کوارتز در گارنت، (۶) رشد اولیه شکل گارنت، (۷) کرپتوپرینه تریف در سنگ گارنت استروتود شیست: این سنگ‌ها (نمونه‌ی G9) (پیوست ۱) نسبت به سایر سنگ‌ها دانه‌ای است و دارای حدود ۲۵۳۰ درصد گارنت، ۱۰۱۵ درصد کوارتز، ۲ درصد کانی‌های ویرسکه (پیوست ۱) درصد استروتود هستند و پرفیرو‌پیچیده‌ترین شکل گارنت را نشان می‌دهند. پرفیرو‌پیچیده‌ترین شکل گارنت با ابعاد ۳ تا ۴ میلی‌متر دارای شکستگی فراوان است (شکل ۶) و از نظر فابریکی ۲ مرحله را نشان می‌دهند (اندکس‌های مرکز و ادخالات زیاد در حاشیه). وجود بیوتیت در شکستگی‌های گارنت نشان می‌دهد که گارنت کاملاً به کلریت، ایدیوت و ایدیوت تجزیه شده است (شکل ۶).

۸۱۲
در بعضاً از گارنت استروتوپد شیست‌ها و روزه‌های بیوتیت در بین ورق‌های موسمکوئید دیده می‌شود. برخی بیوتیت‌ها کاملاً کارپنی شده و از بین رفته است و تنها آثاری از آنها باقی مانده است و برخی از آنها کاملاً سالم هستند. این مسئله بیانگر این است که احتمالاً بیوتیت‌های موجود در سنگ در 2 مرحله تشکیل شده‌اند. فرآیند اکسید آهن و کلری در این سنگ‌ها نمایانگر تأثیر فاز دنکریت خاکستری بر روی آن هاست.

ظاهر استروتوپد‌های ریزداتی با ابعاد کبیر از 1 میلی‌متر نشانه فرآیندهای سنگ‌دار در مرز رسخ‌سازی شیست سبز به امغيبیتی است. رخداد واکنش (3) باعث تخرب کلریوتید و تشکیل استروتوپد می‌شود. همراهی استروتوپد با بقاها کلریوتید می‌تواند این مسئله را تثبیت کند. استروتوپد نیز همانند کلریوتید در سنگ‌های تشکیل شده نشانه این مسئله را باید باشد. ظاهر استروتوپد در سنگ‌ها در ترکیبات غیز از آهن از دمای حدود 500 درجه در اثر شرورهای امغيبیتی است. [12] عدم وجود زونینگ در استروتوپد موجود در این شیست‌ها نشانه رشد و تشکیل این سنگ‌ها در جرخه‌های پیش‌روند است. [15] وجود پارانتز (4) نشانه است و تقریباً تمامی بیوتیت موجود در این سنگ‌ها طی این واکنش تشکیل شده‌اند.

الف: شکل 3. گارنت استروتوپد شیست (نمونه 9). الف) گارنت خرد شده که در شکستگی‌های بان بیوتیت تشکیل شده است، ب) تشکیل استروتوپد در سنگ

استروتوپد کینه‌نشت‌ها: این سنگ‌ها (از جمله نمونه (پیوست 1) دارای بافت ظرفیت‌پر و ظرفیت‌پرولیدوبلاستیک با حدود 350 درصد استروتوپد و 20 درصد بیوتیت در سنگ‌ها دیده می‌شود. استروتوپد کینه‌نشت‌ها (پیوست 2) دارای منشی‌کریستال هستند که از 5 درصد کینه‌نشت تشکیل شده و طلاه‌ای رنگ استروتوپد با ابعاد تا 5 میلی‌متر دارای ادخالات کارترز، ایاک و بیوتیت هستند. این فرآیندهای پیش‌روند استروتوپد‌ها به تثبیت واکنش یا اکسید‌های برق‌گذاری آتشفشانی نشانه از آن‌جا که استروتوپد گزین یک کانی از میزان سنگ‌دار و منشی‌کریستال ندارد. کرتیت ناشی از اطراف سری‌چین‌شده‌ای است و براز شکل جمجمه‌ای دارد. در این سنگ‌ها گارنت پیش‌ریز کاملاً و استروتوپد به خرج گارنت تشکیل شده است و واکنش (4) برخط استروتوپد‌ها دارای ادخال در حاشیه (شکل 7) و برخطی دارای دیگر دارای ادخال در مرکز هستند (شکل 7). ب) برخط استروتوپد با دیگر دارای دیگر دارای ادخال در مرکز

813
بریده شده و در یک امتداد مشخص از یکدیگر دور شده، این سنتلبه به ویژه در این سنگ‌های (شکل 7) مشاهده می‌گردد و بیانگر وقوع پدیده شیرینگ است. برخی از این سنگ‌ها در استرودی‌ها و ادخال‌های آنها چرخد خاکستری (Syn-tectonic) نشان می‌دهند (شکل 7). وجود شیرینگ و چرخد S- شکل در استرودی‌ها با صورتی (Bt) بودن آن‌ها و متغیر است و از مرکز به حاشیه کاهش می‌یابد. در بیوتیت به‌طوری که کانی Mg در استرودی‌ها متغیر است و از مرکز به حاشیه افزایش می‌یابد. با افزایش درجه Fe، میزان میانگین در بیوتیت که یک کانی Mg دوست است افزایش می‌یابد و در استرودی‌ها که یک کانی Mg دوست است کاهش می‌یابد [14].

یکی دیگر از کانی‌های موجود در این سنگ‌ها کانیات است. این کانی صوراً از درگونی سنگ‌های پلیتی تحت فشار‌های متوسط تا بالا تشکیل می‌شود. کانیات با واکنش‌های (5) و (6) و $St+Chl=Kt+Bt$- Ky صورا در پلیتی‌های رود می‌گردد که کانی‌های سیلی قلبی از Mg داشته باشند. کانی‌های بیوتیت و مسکویت شیستوزیته زمینه سنگ‌ها در سنگ‌های ساندن که به خوبی در اطراف پورفیرولاست‌های استرودی دیده می‌شود (شکل 7).

![شکل 7 استرودی‌های شیست استرودی‌بد (ممونه ST-Gol)](alf) پورفیرولاست استرودی‌بی دو مونه. (C) چرخد بر روی استرودی آن، چرخد در استرودی S- شیرینگ در استرودی تشکیل سنگ‌کل در سنگ‌های متالیتیک کلایاگن بر روی دیگرگونه در محدوده شیل‌های پلاژیک قرار می‌گیرد که بطور نسبی از A1 نسبت به شیل‌های پلاتورمی غنی بوده و از Ca تهی است (شکل 8). در این Ca
شکل پاراژن کانی‌های نیز ترسیم شده است، لیکن به‌علت عدم دسترسی به داده‌های آن‌الزمان نقطه‌ای کانی‌های گلیپیکن، کریت و کاریت‌نی و کاریت‌نی‌های مربط به کانی‌های ترکیب (و اکثریت‌های 1 تا 3) ترسیم نشده است. پاراژن‌های مشخص شده در شکل‌های A، B و C تعریب مربط به واکنش‌های 5 و 6 هستند.

موقعیت مشابه نمونه‌ها در شکل 8 بیان گر آن است که عامل اصلی ظهور مجموعه‌های کانی‌پی از تغییرات دما و فشار است.

شکل 8. نمایش پاراژن‌های کانی‌های همرود با ترکیب سنگ کل در داتلاق‌های گلیپیکن (P) ترکیب میانگین رس‌های پلاژیک [11، 12]. (A) پاراژن‌های گارنت، بیوتیت، استروتید و بیوتیت، استروتید، کیانیت، بیوتیت، استروتید، کیانیت، پاراژن گارنت، استروتید، کیانیت در در دیگر دیگر پاراژنی AFM نشان داده شده است. Mf، Nکل در گارنت ناچیز است و افزایش خفیف آن نشان دهنده تشکیل آنها در ادامه دگرگونی پیش‌رونه است. (شکل‌های 9 و 10).

شکل 9. نمایش محل فرآیند ترکیب کانی‌های موجود در داتلاق‌های گارنت، استروتید، بیوتیت و گارنت‌های موجود در داتلاق‌های شمال گلیپیکن بر روی دایگرام AFM و همچنین افزایش Mg از مکانیسم مناسب حاشیه گارنت و بیوتیت بر روی این دایگرام به خوبی مشخص است.

گارنت‌ها گروه مهمی از کانی‌های ارتوسپیقاته‌اند که در محیط‌های مختلف زمین‌شناسی پانت می‌شوند [17].

با توجه به نوع سنگ دربرگردان، ترکیب زنی، کانی‌های پیرامون و شرایط دما و فشار، عناصر مختلف در ترکیب این کانی شرکت می‌کنند و در نتیجه انواع مختلفی از گارنت‌های می‌تواند فرمولی متنوعی از مکانیسم‌های جایگاه کانی‌پی یا گارنت‌های با عدد کنورناسیون Z، X، Y، Z و X，
گزارش شاخص پتروژئیک مفیدی است، البته به‌راف این‌که در محدوده وسیعی از دما پایدار است بلهک توزیع آهسته کاتانویس در گزارن موجب می‌شود که بتوان این را در بررسی‌های زندگی‌مولتی‌ها بکار برد. بنابراین گزارن‌های دارای منطقه‌بندی می‌توانند بخش مهمی از مسیر زمانی داشته باشند. از گزارن‌های ناملم شوی می‌توانست با منطقه‌بندی شناسی به‌حساب گذاشته می‌شود. (Mn) که با شرایط کافی دما مطابقت می‌کند [21]. در مقابل گزارن‌های دگرگونی دارای منطقه‌بندی عادی هستند و در مرکز از Mn غیب شده‌اند.

بررسی بلوار‌های منطقه‌ای از گزارن موجود در گزارن شیست‌ها (نمونه 7 SF2). نشان‌گر افزایش میزان منیزیم این کالی در مرحله بندی است (شکل 1). میزان X_{Mg} موجود در پورفیروبلاست‌های کوچک‌شده گزارن نشانه‌بندی می‌شود X_{Mg} در مرحله‌های دوم و سوم پورفیروبلاست‌های زونه گزارن است. این منشأهای بالی بر احتمال هیمز‌ماتیک تبوز پورفیروبلاست‌های کوچک‌شده گزارن به مرحله‌های دوم و سوم پورفیروبلاست‌های زونه گزارن است. منگنز موجود در گزارن‌ها در دگرگونی‌های دوج دیده تا پیشرفته‌تر بگیرد و در میزان منیزیم با پیشرفته‌ی دگرگونی افزایش می‌یابد. بنابراین در گزارن‌های جنرال‌می‌باید شکل شده است، غنی از منگنز؛ و حاشیه‌ای پورفیروبلاست‌های (مرحله سوم) که در جریان‌های بالاتر دگرگونی تشکیل شده است، غنی از منیزیم است. تمرکز این تکثیر می‌شود که در ساختار گزارن عنصر Mn در هسته گزارن‌های بالینی را تغییر می‌کنند که در ساختار اولیه تبوز گزارن، تحالمی و ساختار آن متمرکز می‌شود و می‌تواند از تهی‌گرد. بنابراین مرکز گزارن نسبت به حاشیه آن از Mn غنی‌تر است [22]. لازم به ذکر است که منطقه‌بندی مکوس در گزارن طبیعی بالانت می‌تواند در محیط‌های است که به آرامی تکثیر با کرده و سنگ‌ها سریع بالای نیامده‌اند (low rate exhumation).
شیوه‌کریمی، سیدحسن طبایبی‌پور

بتروگافی و پترولولوژی منبت‌های بخش میانی رون سنندج، سیرجان

شکل 11. (الف) BSI (Backscattered Image) از استروتوپی و بیوتیت مجاور آن در نمونه‌های از منبت‌های شمال گلیاییکان (نمونه 7-8). (ب) پروفیل تغییرات X₃Mg از حاشیه به مرکز در استروتوپی و بیوتیت هژیست است. بینانگر کاهش X₃Mg در حاشیه استروتوپی و افزایش هژیست است.

شکل 11. (الف) BSI (Backscattered Image) از استروتوپی و بیوتیت مجاور آن در نمونه‌های از منبت‌های شمال گلیاییکان (نمونه 7-8). (ب) پروفیل تغییرات X₃Mg از حاشیه به مرکز در استروتوپی و بیوتیت هژیست است. بینانگر کاهش X₃Mg در حاشیه استروتوپی و افزایش هژیست است.

شرايط ترموديناميكي و اکتشه‌های درگونی

واکنش‌های درگونی اعماک از انقیاغی یا تبادلی می‌توانند به خوبی بین‌گر شرایط فشاری و حرارتی تشكل سنگ‌های درگونی باشه‌ند. لازم به ذکر این اطلاعات، انجام آنالیز‌های نقشه‌ای بر روی کاتیون‌های است که در این واکنش‌ها شرکت کرده‌اند. برای محاسبه پارامترهای ترمودینامیکی در تعادلات کاتیوی از ابتدای داده‌های استفاده شد [23]. با دارایی منطقه‌بندی و سیاست در گروه‌های موجود در سنگ‌های بررسی شده که نمودان بهصورت افزایش مناسبی از مرکز به سمت حاشیه و کاهش میزان متدینگز در همین سیر است، حاکی از درگونی بیشتر بودن منبت‌های در بررسی شده است. این همین‌طور نشانی از حاکی از شدن آن‌ها در کالی‌های مزینه‌های مثل گروه‌های میتواند تغییرات درجه‌های بالایی درگونی باشد [24]. با توجه به
بررسی ترمودینامیکی متابلیته‌های شماره گلیپاگان، محوده دامی، ۵۸۰ تا ۵۳۰ درجه سانتی‌گراد و محوده فشاری ۸ تا ۱ کیلوبار را نشان می‌دهد که روند و مسیر دگرگونی نیز در شکل ۱۲ رسم شده است. این شرایط می‌تواند نشانه‌ای از دگرگونی پیشروی داده شده در پراکنده‌های امپیولیت‌های باربرسی شده تا رخساره آمپیولیت پایینی و سپس عملکرد فرآیندهای مناسب آن را بر روی سه سنجش باشد.

نتیجه‌گیری
بررسی‌های پیروگرافی و مطالعه پراکنده‌های مجموعه دگرگونی شماره گلیپاگان حاکی از دگرگونی پیشروی داده‌ای زوراسیکی‌ها تا حد رخساره آمپیولیت پایینی دارد. در این سنجش‌ها و اکتشافات‌های زیستفیزیوکمپرسیونی‌های دیده
شکل ۱۲. مسیر درگوگان شدن سنگ‌های متاپیلیتی شمال گلپایگان بر روی دیگرام فشار-حرارت [۲۶]

خط چین: مسیر احتمالی درگوگانی پیش‌رونده و پرگشته سنگ‌های بررسی شده

می‌شود: ۱. ناپاپاداری کلریت در مقابل فلزپرای تناک و تشکیل میکا، ۲. ناپاپاداری کلریت و مسکواک و تشکیل گارنت و بوشیت، ۳. ناپاپاداری کلریت و تشکیل استروتوریت و گارنت، ۴. ناپاپاداری کلریت در حضور گارنت و تشکیل استروتوریت و بوشیت، ۵. ناپاپاداری کلریت در حضور استروتوریت و تشکیل بوشیت و کاتینت، ۶. ناپاپاداری استروتوریت و تشکیل گارنت نشان می‌دهد.

متاپیلیت‌های گلپایگان در محدوده دمایی ۵۵۰-۶۵۰ درجه سانتی‌گراد و فشار ۶/۱ کیلوبار شکل گرفته‌اند. بر اساس منحنی P-T بالاترین موجب ثبت اثر درگوگان پیش‌روده بر روی این سنگ‌ها شده است. پروتوپارین سنگ‌های دارای سن تریاس-ژوراسیک بوده و در ورودی‌های پیوند، در طی فاز کیمیایی پسین، محروم‌گوگان دینامیکال تا حد رخساره آمیفیتولیت پاپیئی شده‌اند.

پروفیل‌های ترمیمی میکرووزوندی و همچنین آراش ادخال‌های موجود در گارنت‌های بررسی شده به وضوح در مرحله رشد در طی درگوگان پیش‌روده نشان می‌دهند.

هسته‌های متدولا و فاقد ادخال گارنت در مرحله اولی و طی درگرنشکل D۱ در زمان ژوراسیک پاپیئی-کرتاسه آغازین با فاز کوارتزی کیمیایی پسین تشکیل شده است.

در مرحله دوم رشد گارنت که دارای ادخال فراوان است، طی درگرنشکل D۲ ایجاد شده است. این درگرنشکل با فاز کوارتزی لامید در کرتاسه پاپیئی پدید آمده است.

در مرحله سوم رشد گارنت طی درگرنشکل D۳ در کرتاسه پاپیئی، پانوسن بوده است.
پیوست ۱. مشخصات نمونه‌های که نمایانگر شرایط محیطی در موقتها و محل برداشت شده می‌باشد:

<table>
<thead>
<tr>
<th>نام نمونه</th>
<th>شرایط محیطی</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl</td>
<td>N 33° 36', E 50° 17'</td>
<td>گارنت کارین‌نیستشیست</td>
</tr>
<tr>
<td>SF-7</td>
<td>N 33° 35', E 50° 22'</td>
<td>گارنت نیستشیست</td>
</tr>
<tr>
<td>G9</td>
<td>N 33° 36', E 50° 23'</td>
<td>گارنت استروترودیشیست</td>
</tr>
<tr>
<td>St-Gol</td>
<td>N 33° 36', E 50° 23'</td>
<td>استروترودیشیست</td>
</tr>
</tbody>
</table>

پیوست ۲. آنالیز نسخه‌گیری متابله‌های کمی شامل گلیپپان:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample – St-Gol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO2 Al2O3 Cr2O3 FeO2 FeO MnO MgO CaO Na2O K2O P2O5 LOI Total</td>
</tr>
<tr>
<td>Ho-1-5-3</td>
<td>64.2 0.761 20.57 0.018 5.79 0 0.14 1.951 0.56 0.262 4.6 0.111 * *</td>
</tr>
<tr>
<td>Sh-13S1</td>
<td>69.82 0.48 12.94 * 1.85 2.49 0.06 1.57 2.76 2.01 1.05 0.12 4.2 99.35</td>
</tr>
<tr>
<td>Sh-16S1</td>
<td>70.56 0.55 14.69 * 2.28 1.44 0.04 0.6 1.37 3.98 0.21 0.09 4.2 99.98</td>
</tr>
<tr>
<td>Sh-17S2</td>
<td>64.87 0.39 10.56 * 6.17 4.12 0.08 1.09 2.09 3.48 0.19 0.09 5.59 99.06</td>
</tr>
<tr>
<td>Sh-18S2</td>
<td>60.48 0.37 9.38 * 6.76 2.14 0.03 1.5 2.98 4.0 0.19 0.08 11.3 99.22</td>
</tr>
<tr>
<td>Sh-21S1</td>
<td>60.69 0.5 11.14 * 2.65 3.8 0.07 2.43 5.05 4.29 0.52 0.07 7.76 98.99</td>
</tr>
<tr>
<td>Sh-2S1</td>
<td>69.23 0.77 15.06 * 3.41 1.37 0.02 0.78 1.7 3.72 0.93 0.12 2.93 100.04</td>
</tr>
<tr>
<td>Sh-3T</td>
<td>63.62 0.58 10.02 * 9.9 0.94 0.03 0.93 2.32 2.66 0.33 0.16 7.48 98.93</td>
</tr>
<tr>
<td>Sh-4T</td>
<td>68.31 0.72 14.61 * 2.08 1.8 0.09 2.04 1.93 4.03 1.72 0.16 2.53 100.02</td>
</tr>
<tr>
<td>Sh-6S3</td>
<td>74.02 0.95 9.99 * 3.06 3.06 0.01 1.1 2.65 2.51 0.18 0.12 8.12 99.84</td>
</tr>
<tr>
<td>Sh-9S3</td>
<td>63.75 0.4 11.75 * 5.12 3.03 0.08 1.57 3.15 2.38 1.29 0.12 7.03 99.67</td>
</tr>
<tr>
<td>Sh-g2</td>
<td>58.39 3.588 17.86 0.046 11.36 0 0.09 2.044 0.84 0.024 1.8 0.231 * *</td>
</tr>
<tr>
<td>Sh-J0-1</td>
<td>54.84 0.896 21.6 0.034 7.85 0 0.05 5.928 1.32 1.413 3.5 0.154 * 97.59</td>
</tr>
<tr>
<td>Sh-S9</td>
<td>58.39 0.796 22.35 0.026 5.99 0 0.09 3.173 0.6 0.323 4 0.164 * *</td>
</tr>
<tr>
<td>Sh-SF-2</td>
<td>65.46 0.326 19.29 0.014 3.73 0 0.11 0.339 1.58 3.104 2.09 0.08 * *</td>
</tr>
<tr>
<td>Sh-SS-12</td>
<td>61.3 0.928 18.43 0.036 6.44 0 0.1 3.995 1.54 1.953 2.33 0.106 * *</td>
</tr>
</tbody>
</table>

پیوست ۳. آنالیز نقطه‌ای تعدادی از کمی‌ها موجود در متابله‌ها:

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO2</td>
<td>TiO2</td>
<td>Al2O3</td>
<td>Cr2O3</td>
<td>FeO2</td>
</tr>
<tr>
<td>St-Gol</td>
<td>34.757</td>
<td>34.662</td>
<td>35.994</td>
<td>35.778</td>
<td>36.291</td>
</tr>
<tr>
<td></td>
<td>1.626</td>
<td>1.589</td>
<td>1.794</td>
<td>1.885</td>
<td>1.609</td>
</tr>
<tr>
<td></td>
<td>18.976</td>
<td>18.634</td>
<td>18.660</td>
<td>18.831</td>
<td>18.829</td>
</tr>
<tr>
<td></td>
<td>18.659</td>
<td>18.984</td>
<td>17.510</td>
<td>16.881</td>
<td>16.884</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>0.174</td>
<td>0.069</td>
<td>0.049</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td>10.864</td>
<td>12.357</td>
<td>10.659</td>
<td>10.892</td>
<td>10.733</td>
</tr>
<tr>
<td></td>
<td>0.143</td>
<td>0.036</td>
<td>0.007</td>
<td>0.020</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>0.252</td>
<td>0.036</td>
<td>0.190</td>
<td>0.095</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>0.319</td>
<td>0.047</td>
<td>0.071</td>
<td>0.077</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>5.314</td>
<td>5.245</td>
<td>5.471</td>
<td>5.453</td>
<td>5.503</td>
</tr>
<tr>
<td></td>
<td>3.419</td>
<td>3.324</td>
<td>3.343</td>
<td>3.383</td>
<td>3.365</td>
</tr>
<tr>
<td></td>
<td>0.187</td>
<td>0.181</td>
<td>0.205</td>
<td>0.216</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>2.386</td>
<td>2.403</td>
<td>2.226</td>
<td>2.152</td>
<td>2.141</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>0.022</td>
<td>0.009</td>
<td>0.006</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>2.476</td>
<td>2.788</td>
<td>2.145</td>
<td>2.475</td>
<td>2.426</td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>0.006</td>
<td>0.001</td>
<td>0.003</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.074</td>
<td>0.010</td>
<td>0.056</td>
<td>0.028</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>1.878</td>
<td>1.873</td>
<td>1.908</td>
<td>1.872</td>
<td>1.887</td>
</tr>
<tr>
<td></td>
<td>0.509</td>
<td>0.337</td>
<td>0.520</td>
<td>0.335</td>
<td>0.331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO2</td>
<td>TiO2</td>
<td>Al2O3</td>
<td>Cr2O3</td>
<td>FeO2</td>
</tr>
<tr>
<td>St-Gol</td>
<td>28.339</td>
<td>29.284</td>
<td>28.818</td>
<td>28.844</td>
<td>27.582</td>
</tr>
<tr>
<td></td>
<td>0.761</td>
<td>0.579</td>
<td>0.617</td>
<td>0.584</td>
<td>0.603</td>
</tr>
<tr>
<td></td>
<td>51.612</td>
<td>51.887</td>
<td>52.750</td>
<td>53.582</td>
<td>53.502</td>
</tr>
<tr>
<td></td>
<td>0.310</td>
<td>0.369</td>
<td>0.266</td>
<td>0.287</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>1.923</td>
<td>1.950</td>
<td>1.473</td>
<td>1.527</td>
<td>2.792</td>
</tr>
<tr>
<td></td>
<td>0.153</td>
<td>0.044</td>
<td>0.153</td>
<td>0.092</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>7.987</td>
<td>8.135</td>
<td>8.019</td>
<td>7.974</td>
<td>7.680</td>
</tr>
<tr>
<td></td>
<td>17.145</td>
<td>16.988</td>
<td>17.300</td>
<td>17.459</td>
<td>17.559</td>
</tr>
<tr>
<td></td>
<td>0.101</td>
<td>0.121</td>
<td>0.129</td>
<td>0.121</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>3.188</td>
<td>3.102</td>
<td>3.048</td>
<td>2.903</td>
<td>2.809</td>
</tr>
<tr>
<td></td>
<td>0.074</td>
<td>0.087</td>
<td>0.063</td>
<td>0.067</td>
<td>0.071</td>
</tr>
<tr>
<td>Mineral</td>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
<td>FeO</td>
<td>MnO</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Spot 1</td>
<td>37.57</td>
<td>20.09</td>
<td>34.45</td>
<td>39.14</td>
<td>4.94</td>
</tr>
<tr>
<td>Spot 2</td>
<td>37.96</td>
<td>20.95</td>
<td>33.85</td>
<td>38.41</td>
<td>5.87</td>
</tr>
<tr>
<td>Spot 3</td>
<td>38.36</td>
<td>20.92</td>
<td>32.57</td>
<td>37.93</td>
<td>6.99</td>
</tr>
<tr>
<td>Spot 4</td>
<td>37.98</td>
<td>21.15</td>
<td>31.96</td>
<td>37.93</td>
<td>8.01</td>
</tr>
<tr>
<td>Spot 5</td>
<td>37.93</td>
<td>21.11</td>
<td>31.19</td>
<td>38.41</td>
<td>8.12</td>
</tr>
<tr>
<td>Spot 6</td>
<td>38.41</td>
<td>21.24</td>
<td>28.48</td>
<td>37.93</td>
<td>8.23</td>
</tr>
<tr>
<td>Spot 7</td>
<td>37.93</td>
<td>20.88</td>
<td>27.72</td>
<td>37.93</td>
<td>8.34</td>
</tr>
</tbody>
</table>

Sample – SF-7

<table>
<thead>
<tr>
<th>Mineral</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot 1</td>
<td>37.793</td>
<td>1.609</td>
<td>19.129</td>
<td>21.082</td>
<td>0.033</td>
<td>9.991</td>
<td>0.164</td>
<td>0.182</td>
<td>8.206</td>
<td>0.184</td>
<td>100.811</td>
</tr>
<tr>
<td>Spot 2</td>
<td>36.031</td>
<td>1.416</td>
<td>18.815</td>
<td>19.671</td>
<td>0.031</td>
<td>9.951</td>
<td>0.293</td>
<td>0.217</td>
<td>8.567</td>
<td>0.053</td>
<td>99.512</td>
</tr>
<tr>
<td>Spot 3</td>
<td>38.735</td>
<td>2.005</td>
<td>19.067</td>
<td>19.205</td>
<td>0.059</td>
<td>9.791</td>
<td>0.216</td>
<td>0.534</td>
<td>8.397</td>
<td>0.294</td>
<td>100.822</td>
</tr>
<tr>
<td>Spot 4</td>
<td>35.844</td>
<td>1.636</td>
<td>19.033</td>
<td>19.515</td>
<td>0.046</td>
<td>9.751</td>
<td>0.232</td>
<td>0.27</td>
<td>8.518</td>
<td>0.000</td>
<td>99.284</td>
</tr>
<tr>
<td>Spot 5</td>
<td>36.342</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
<tr>
<td>Spot 6</td>
<td>38.783</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
<tr>
<td>Spot 7</td>
<td>36.342</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
</tbody>
</table>

Sample – SF-7

<table>
<thead>
<tr>
<th>Mineral</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot 1</td>
<td>35.975</td>
<td>1.595</td>
<td>18.928</td>
<td>18.102</td>
<td>0.033</td>
<td>9.991</td>
<td>0.164</td>
<td>0.182</td>
<td>8.206</td>
<td>0.184</td>
<td>100.811</td>
</tr>
<tr>
<td>Spot 2</td>
<td>36.031</td>
<td>1.416</td>
<td>18.815</td>
<td>19.671</td>
<td>0.031</td>
<td>9.951</td>
<td>0.293</td>
<td>0.217</td>
<td>8.567</td>
<td>0.053</td>
<td>99.512</td>
</tr>
<tr>
<td>Spot 3</td>
<td>38.735</td>
<td>2.005</td>
<td>19.067</td>
<td>19.205</td>
<td>0.059</td>
<td>9.791</td>
<td>0.216</td>
<td>0.534</td>
<td>8.397</td>
<td>0.294</td>
<td>100.822</td>
</tr>
<tr>
<td>Spot 4</td>
<td>35.844</td>
<td>1.636</td>
<td>19.033</td>
<td>19.515</td>
<td>0.046</td>
<td>9.751</td>
<td>0.232</td>
<td>0.27</td>
<td>8.518</td>
<td>0.000</td>
<td>99.284</td>
</tr>
<tr>
<td>Spot 5</td>
<td>36.342</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
<tr>
<td>Spot 6</td>
<td>38.783</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
<tr>
<td>Spot 7</td>
<td>36.342</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
</tbody>
</table>

Sample – SF-7

<table>
<thead>
<tr>
<th>Mineral</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot 1</td>
<td>35.975</td>
<td>1.595</td>
<td>18.928</td>
<td>18.102</td>
<td>0.033</td>
<td>9.991</td>
<td>0.164</td>
<td>0.182</td>
<td>8.206</td>
<td>0.184</td>
<td>100.811</td>
</tr>
<tr>
<td>Spot 2</td>
<td>36.031</td>
<td>1.416</td>
<td>18.815</td>
<td>19.671</td>
<td>0.031</td>
<td>9.951</td>
<td>0.293</td>
<td>0.217</td>
<td>8.567</td>
<td>0.053</td>
<td>99.512</td>
</tr>
<tr>
<td>Spot 3</td>
<td>38.735</td>
<td>2.005</td>
<td>19.067</td>
<td>19.205</td>
<td>0.059</td>
<td>9.791</td>
<td>0.216</td>
<td>0.534</td>
<td>8.397</td>
<td>0.294</td>
<td>100.822</td>
</tr>
<tr>
<td>Spot 4</td>
<td>35.844</td>
<td>1.636</td>
<td>19.033</td>
<td>19.515</td>
<td>0.046</td>
<td>9.751</td>
<td>0.232</td>
<td>0.27</td>
<td>8.518</td>
<td>0.000</td>
<td>99.284</td>
</tr>
<tr>
<td>Spot 5</td>
<td>36.342</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
<tr>
<td>Spot 6</td>
<td>38.783</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
<tr>
<td>Spot 7</td>
<td>36.342</td>
<td>1.463</td>
<td>18.797</td>
<td>20.250</td>
<td>0.063</td>
<td>9.893</td>
<td>0.319</td>
<td>0.455</td>
<td>8.754</td>
<td>0.000</td>
<td>100.762</td>
</tr>
</tbody>
</table>

823