اثر آلیبدگی آهن بر خواص نانوذرات CdS

جاده حسن زاده، صابر فرجامی شایسته: دانشگاه گیلان

چکیده
نانوذرات آلیبدگی آهن (CdS:Fe) بروز رش سنتز شیمیایی مرطوب در حلال آبی تهیه شده و از
تیوبسولر (TG) به‌عنوان عامل پوششی استفاده شده است. اندازه نانوذرات محاسبه شده بروز رش پرتو ایکس
و روش اتیلکل در حجم ۰.۵ نانومتر است. اگری طرح پوشش اشیع ایکس فاز کرستالی هگزاگونال را نشان
می‌دهد. نتایج حاصل از طرف جنب UV نشان می‌دهد که آلیبدگی گاف نواری را بزرگتر کرده است، که این امر
گویای کاهش اندازه نانوذرات‌های تهیه شده است. اثر آلیبدگی و تغییر غلظت عامل پوششی بر روی طیف
لومیناس نانوذرات برسی شده است.

مقدمه
از زمانی که افروش آثار قیز کوانتومی در نانوذرات‌های نیتراسیان بیان کرد [۱۱]، پژوهش در زمینه
نانومشتارها به حوزه موفقی در علم مواد تبدیل شد. از نظر جستجوی زمانی که اندازه ذره فاصله‌ای
کوچک‌تر از شعاع بوده اکسترونی همان ماده در حالی که ایجاد می‌شود نقطه‌ای کوانتومی نیتراسیان قوی می‌شود [۲۴]، محاسبات کوانتومی رابطه‌ای بین جابجا بایگانی گاف نواری نانوذرات‌هایی از میان درک
شده است. نانوذرات نیترسیان آئیپی بارز نانوذرات‌ها با ف/account می‌گویند. یافته‌ها محاسبات لیکس/نت‌/های کوانتومی نیتراسیان مورد توجه قرار
دارند [۱۱]. نانوذرات آلیبدگی حاوی بی اندازه‌ی آنتیک و الکتریکی جدیدی از خود نشان میدهند که در حالت کیهای آن
مواد مشاهده نمی‌شود. با وجود پژوهشی‌های انجام شده [۱۲]، [۲۴] در زمینه با تأثیر آلیبدگی بر خواص
نانوذرات، برای درک خواص مشاهده شده از نظر ساختاری و فیزیکی نیاز به تحقیقات بیشتر است؛ لذا در این
مقاله نانوذرات آلیبدگی با اهک به روش سنتز شیمیایی مرطوب تهیه شده و آلیبدگی بر خواص اکسیک
CdS اثر آلیبدگی آلیبدگی آهن سنتز شیمیایی مرطوب،

واژه‌های کلیدی: نانوذراتCdS، خواص نورپذیری، اثرات آلیبدگی آهن، سنتز شیمیایی مرطوب،

پنیدش ۱۲/۰۹/۸۹
دریافت ۸۹/۹/۱۳
پذیرش ۸۹/۱۰/۱۲
۳۷۹
آزمایش‌ها

نانوذرات آلیپیده (CdS:Fe) به روش سنتز شیمیایی مرطوب تهیه شدند. بدین ترتیب که در اول مقرتر هم زده شد. از گاز نیتروژن نیز به منظور کسپسیورهای میدانی استفاده شده است. در ادامه محلول پیش ماده آلیپیده را بصورت قطره‌ای به داخل بالن می‌افزاید. محلول پیش ماده آلیپیده در این تحقیق کلرید آهن بوده است. سپس نیکلیسول (TGA) به عنوان ماده بوشی تهیه شده و به محلول Na۲S تطبیق آهن بوده است. در پایان Na۲S را نیز به صورت قطره‌ای به محلول اصلی اضافه کرده و محلول نهایی را به مدت ۶۰ دقیقه هم زدیم. پس از اتمام سنتز محلول را به مدت ۱۵ دقیقه سانترپوز ساخته و در نهایت رسوپ بسته آمده را در داخل تیری دیش ریخته و به مدت ۲۴ ساعت زیر هود نگه داشت تا بطور کامل خشک شود و پودر نانوذرات CdS:Fe بدست آید.

نتایج و بحث

شکل ۱ طیف انتقال نانوذرات CdS:Fe (1, 4, 7, 10% CdS) و (10% CdS:Fe) را نشان می‌دهد.

شکل ۱. طیف انتقال نانوذرات آلیپیده CdS به غلظت متفاوت آهن. غلظت برای تمامی نمونه‌ها برابر ۰/۰۹ مول است.

طبق اثر بورزین، موس گاف نواری در اثر ورود آلیپیده افراش می‌باید [۱۳]، چنان که از شکل پیدا می‌شود. پیک جذب اکستروپی نانوذرات CdS به واسطه ورود ماده آلیپیده یک جابجایی به سمت طول موج آبی دارد. این جابجایی نشان دهنده افراش پهنای گاف نواری است از آنجا که طبق رابطه بررس [۱۴] گاف نواری با اندازه نانوذرات نسبت عکس دارد، مشاهده می‌شود که با افزایش آلیپیده اندازه نانوذرات کاهش یافته است.

۳۸۰
دانایدار به خواص نانوذرات CdS

دانایدارها در دو فاز کرستالی هگزاگونال و مکعبی هستند. فاز هگزاگونال دارای دو قله اصلی در $2\theta = 26^\circ/46^\circ$ (مربوط به صفحه (101)) و $2\theta = 43^\circ/51^\circ$ (مربوط به صفحات (111), (220) و (112)) دارد [15]

در شکل ۲ طرح پراش اشعه ایکس برای نمونه‌های ذکر شده در شکل ۱ نشان داده شده است. چنان‌که مشاهده می‌شود دانایدارها آبی‌بله با اهمیت دارای فاز کرستالی هگزاگونال هستند و اضافه کردن آهن به نانوذرات تغییراتی را در طرح پراش ایجاد نکرده است. طبق رابطه نمای صرر

\[R = \frac{0.89 \lambda}{\beta \cos \theta} \]

که در آن R اندامه متوسط مرزدانه، λ طول موج اشعه، β پهنای کامل در نصف داکتر ارتفاع XRD طیف CdS و θ زاویه پراش است. مشاهده می‌شود که با ورود آهن در ساختار کرستالی نانوذرات CdS پهن‌تر شده است. این پهن شدتی به معنای کاهش اندازه نانوذرات است که در توافق کامل با طیف جذبی نشان داده شده در شکل ۱ است، چون افزایش پهنای کامل در نصف داکتر ارتفاع (FWHM) در رابطه نمای صرر با کاهش اندازه متناسب است.

شکل ۲. طرح پراش اشعه ایکس نانوذرات آلیبده و غیرالیبده CdS ([Tg]=0.09 M)

مقادیر مربوط به اندازه ایتیکی و کرستالی نمونه‌های تهیه شده که به ترتیب از رابطه بروس و دبای شرر محاسبه شده‌اند در جدول ۱ ارائه شده است.
جدول ۱ اندازه‌ای امتیازی کریستالی تخمینی نانوذرات الیمیده با آهن.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Crystal Size (nm)</th>
<th>Optical Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdS</td>
<td>4.06</td>
<td>4.22</td>
</tr>
<tr>
<td>CdS:Fe(1%)</td>
<td>-</td>
<td>3.82</td>
</tr>
<tr>
<td>CdS:Fe(4%)</td>
<td>3.43</td>
<td>3.71</td>
</tr>
<tr>
<td>CdS:Fe(7%)</td>
<td>3.31</td>
<td>3.54</td>
</tr>
<tr>
<td>CdS:Fe(10%)</td>
<td>-</td>
<td>3.66</td>
</tr>
</tbody>
</table>

Cds:Fe(4%) و Cds:Fe(1%) مربوط به نانوذرات در شکل‌های ۳ و ۴ با ترتیب تصاویر EDX و SEM مشاهده شده است. مشاهده شده که نانوذرات شکل کروی‌هستند. آنالیز EDX نشان دهنده آهن به خوبی الیمیده شده است. همچنین، وجود Au در طیف EDX ناشی از لاشه نازک پوششی بر روی زیر الیمیده است.

\[\text{TG} = \frac{1}{209 M} \text{CdS:Fe(1%) نانوذرات EDX و SEM} \]

\[\text{TG} = \frac{1}{209 M} \text{CdS:Fe(4%) نانوذرات EDX و SEM} \]

۷۲۸
به همین دلیل هنگام گزارش الکترن از نوار ضریبی به نوار رسانش ابتدا اقدام به پرکردن تراز خالی \(d \) کرده و پس از آن در بازتربک ساخت کرده و باعث افزایش شدت لومینسنس نسبت به حالت غیرالایید می‌شود. اما وقتی که تعداد بیون‌های آهن به واسطه افزایش ضریب آهن افزایش می‌یابد تعداد تراز‌های خالی \(d \) نیز زیاد شده و تعداد الکترون‌ها بیشتری با آهن به تله می‌افتد به همین دلیل کاهش شدت نورتابای اتفاق افتاده و شدت لومینسنس با افزایش ضریب آهن کاهش می‌یابد. همچنین مشاهده می‌گردد که دو قله \(\text{A} \) و \(\text{B} \) نشان داده شدند وجود دارد. جون انرژی‌های این دو نوار کنترل از انرژی برانگیختگی است باید مربوط به تله‌های سطحی با عمقی باشند. تله‌های عمیق تقریباً در وسط گرفتگی نوار فرار دارند و با تغییر اندازه نانوذرات جابجا می‌شوند؛ در حالی که نوار مربوط به تله‌های سطحی با کاهش اندازه نانوذرات به سمت انرژی‌های کوچک جابجا می‌شود. [17] بنابراین نوار‌های \(\text{A} \) و \(\text{B} \) به ترتیب مربوط به تله‌های عمیق و سطحی هستند.

![Diagram](https://example.com/diagram.png)

\[
[TG] = 0.9 \text{ M} \text{CdS:Fe}^{2+} \text{TL}
\]

*مشکل 5. طیف لومینسنس نانوذرات \text{CdS} با نسبت‌های مختلف آلنیش (0/0/9۵/4/۵ eV\text{TL}) انرژی برانگیختگی ۱/۳۶۵ و ۲۹۰/۶۸۰ کیلووات در غلظت‌های مختلف ۰/۴۰/۱۸۰ و ۴۳۰/۳ مولار برای \text{CdS:Fe}^{2+} \text{TL} نشان داده شده است. مشاهده می‌شود که تغییر اندام نانوذرات در اثر تغییر غلظت به سیار جابجایی است. برای دستیابی به نانوذرات‌های انرژی با انتخاب موکول‌های پوششی سیار جابجایی است. تشکیل پیوند بین مولکول‌های پوششی و پیش ماده‌ها نیازمند است که به خیلی ضعیف بسند و نه خیلی قوی. اگر تشکیل پیوند بین مولکول‌های پوششی و پیش ماده نانوذرات خیلی قوی باشد؛ رشد سریع میشود و مواد بسیار بزرگتر تشکیل می‌شود. اگر به هم جنبه‌ها خیلی ضعیف باشد، نانوذرات‌ها تشکیل نخواهند گرفت. به‌اهمیت انتخاب مواد جذاب‌گردان مولکول‌های پوششی بر میزان رشد و اندازه نانوذرات تأثیرگذار است. با انتخاب نوع و غلظت عامل پوششی دنیای‌که‌هاي.
اتصال و جداشکلی می‌تواند تحت تأثیر قرار گیرد و نهایتاً اندازه نانوذرات تنظیم شود. در غلظت‌های کمتر مولکول‌پوششی، غلظت کمی‌ترکس مولکول‌های پوششی در فراکشن رشد سرعتی زیادی کم است. در غلظت‌های بیشتر مولکول‌پوششی، واکنش رشد احتمالی بوده و نتیجه آن ذرات تک‌اندازه است [18]. همان‌گونه که از Şكل ۶ پیداست غلظت ۰/۱۸ مولار برای TG برای دستیابی به توزیع اندازه باریک در نانوذرات Cds آمیزه با الیتی‌گی ۱ درصد اهمیت بیشتری غلظت است.

شکل ۷: تغییر جنبه نانوذرات (۱۰%) در غلظتهای مختلف Cds:Fe(۱۰:۱۰۰) در هنگام تغییر دما.

d) در شکل ۷ نیز تغییر نانوذرات (۱۰۰:۱۰) در غلظتهای مختلف Cds:Fe(۱۰۰:۱۰۰) در هنگام تغییر دما نشان داده شده است. تغییراتی مشاهده شده است.
ناتایج گیری

نتایج گیری

CdS نانوذرات آلیپیده با آهن به روش سنتز شیمیایی مرطوب در حالی آبی تهیه شده‌اند. از تیونیسول به عنوان عامل پوششی استفاده شده است. نتیجه آزمایش EDX معرفی آن است که پرونده‌ای آهن در شکل (TG) بلوری نانوذرات CdS وارد شده و نمونه‌ها آلیپیده‌اند. بررسی طیف جنب UV نانوذرات CdS عمده نشان می‌دهد که آلیپیده ده فانوری را بزرگتری کرده و باعث کاهش اندوزش نانوذرات شده است. الگوریثمه در پخش اشعة ایکس نشان می‌دهد که ترکیبی آلیپیده‌ای نانوذرات CdS آلیپیده با آهن فانوری نانوذرات CdS آلیپیده در آن اثر ندارد. طیف لومینسانس نانوذرات بررسی شده و مشخص گردید افراز آلیپیدگی باعث کاهش شدت طیف لومینسانس و تغییر جنب ناشی از نواصع و تله‌های سطحی می‌شود.

منابع

385
13. www3.imperial.ac.uk/pls/portallive/docs/1/24311696.RTF.

