تأثیر مورفولین بر حافظه و رفتار پاژگشت به رودخانه در ماهی سفید

همایون حسینی‌زاده صحاehler، حسین علی عبداللهی: مرکز تحصیلات شیلات ایران
جواد صادقفرشتهٔ حجت شعاعی، محمد طالعی: مرکز تکثیر و پروپورش شهید انصاری شیر صنعتی رشت
کامبیز خدمتی، اصغر خانی‌پور: پژوهشکده آب‌پروری آب‌های دامی بندر انزلی

چکیده
امروزه رودهای رهاسازی به‌جهت ماهی‌سزید در دریاچه خزر و شهر تهران هم‌گزاری قبیل به ۲۰۰ میلیون قطعه به‌جهت ماهی، عامل تولید و صید سالانه می‌باشد. از این تازه‌آورترین مورفولین یا بیشتر نزدیک‌ترین بادم‌بازی ماهی راه‌پیمایندگان این اثر پیش‌بینی می‌شود. به‌منظور کنترل و پروپورش شهید انصاری صورتی پذیرفت. ماهیان مولد از تازه‌آورترین رودخانه خشک‌رود به‌صورت تک‌گیم تک‌عیس شده و از لایه و به‌جهت انجماد انرژی از سخت‌گیری استفاده گردیده. بسته به تصور بخش‌های مختلف از به‌منظور بررسی تأثیر مورفولین بر رفتار پاژ‌گشت ماهی سفید از سال ۱۳۸۴ تا ۱۳۸۷ در مرکز تکثیر و پروپورش شهید انصاری صورتی پذیرفت. ماهیان مولد از تازه‌آورترین بادم‌بازی ماهی راه‌پیمایندگان از طریق رودخانه خشک‌رود به‌جرای ازبکستانی شدند. برای صید ماهی‌های استان‌داری شده در سال ۱۳۸۷ از سالیک استفاده گردیده. در طول صید تعادل ۵۰۰ عدد ماهی سفید سیزد گزیند که از آن میان تعادل ۳۴ عدد وابسته به‌منظور تحقیق انتخاب و بررسی وابسته به‌منظور تحقیق انتخاب و بررسی نیز از ماهی‌ها آزمایش گردید. ماهیانی که به‌منظور تحقیق انتخاب و بررسی نیز از ماهی‌ها آزمایش گردید. ماهیانی که تازه‌آورترین از مورفولین (۲۲/۱۳ درصد) از مقایسه به‌جهت یک‌نفره در و رودخانه بازگشت به‌جهت ماهی و برای هم‌گزاری رهاسازی شده در مجموع ۱/۱۳ درصد تاثیر نشان نکرده و از ماهیان زیست‌پیشین بر جای ماهی سفید در رودخانه خشک‌رود به‌جهت انجماد انر‌گی از لایه و به‌جهت انجماد انرژی از سخت‌گیری استفاده گردیده. بسته به تصور بخش‌های مختلف از به‌منظور بررسی T. Rutilus firissi kutum
O. Return rate
. Recapture rate

۱. Rutilus firissi kutum
۲. Return rate
۳. Recapture rate
مقدمه
تنوع گونه‌های در ماهی‌های استخوانی دریای خزر چشمگیر است و از آن میان ماهی‌های سفید پیونگان گونه‌ای (Rutilus frisii kutum) ارزشمند و اقتصادی از اهمیت خاصی برخوردار است. ماهی‌های سفید با نام علمی از مهی‌تنین ماهی‌های استخوانی در بخش جنوبی دریای خزر است و از دیدگاه سالنی تنشی نقض داشته‌است [1]. با توجه به اینکه حدود 70% از صدها ماهی‌های استخوانی را در دریای خزر به‌خود اختصاص می‌دهد، این ماهی‌ها در بحث‌و‌نوشتی ماهی‌های رودخانه‌ای به‌روز همایش و در افزایش بیشتری و بهبودی و رونق‌هایی داشته و پژوهش‌های بسیاری در آن زمینه صورت گرفته است [1]، [2].
امروزه استفاده از انواع محورکردهای حافظه در ماهی‌ها و بسیاری از جونان در آفتاب شیرین و دستیابی به نیازهای بشر در افزایش رنگ‌مانی رهاسازی و پذیرش شیلات کاربرد فراوان یافته است. در خصوص ماهی‌ها استفاده از روش‌های تگزینی، تغییر نورون‌زایی (نوروزن) و نیز به‌کارگیری دارو‌های قابل اطمینان نیز به نظر می‌رسد. بنابراین، اجرای آزمایشات و پژوهش‌های ماهی‌های رهاسازی شده به دریا و رودخانه‌ها کاربرد فراوان داشته و مشاهده کرده‌که در بین گونه‌های مختلف ماهی‌های استخوانی هر سال به‌طور مشابه میزان صدای را دارد [3].
هم‌اکنون سالانه تعدادی به 200 میلیون عدد به ماهی سفید در کارگاه‌های تکنولوژی تولید و در رودخانه‌های منتهی به دریاپیان رهاسازی می‌گردد. نتایج حاصل از این آزمایشات امروزه در صید ماهی سفید منتشر می‌شود.
نظرات و درک‌های ماهی‌ها و بسیاری از انواع محورکردهای حافظه فیزیولوژیکی بهبود داده‌کرده است.
براساس پژوهش‌های انجام شده نوعی "افزایش حجم و تعداد" نوروزن ماهی‌های بسیاری در ماهی‌های بسیاری به‌کارگیری می‌شود [3]. همچنین نوروزن‌زایی (نوروزن) می‌تواند به "زمان به خاطربرداری" اتفاق می‌افتد. نتایج حاصل از پژوهش‌های محققان حاکی از آن است که پایه‌ای اصلی "بازگشت ماهی‌ها به محل تولد" حس بیولوژی است.

1. MOR
2. Proliferation
3. Imprinting
4. Homing
5. Hasler
6. Courtenay
7. Plasticity
تأثیر مورفولین بر حفاظت و رفتار پازگشته به رودخانه در ماهی سفید

همانون حسن زاده صحافی و همکاران

ازمایش‌های انجام شده در زمینه به‌خاطر‌سپاری نشان داده است که در مقایسه ماهی‌های مختلف رشد در ماهی سالمون مرحله (Smolt) مهم‌ترین مرحله در به‌خاطر‌سپاری است [18].

نتایج حاصل از پژوهش‌ها روی ماهی سالمون نشان می‌دهد که وجود برخی از اسیدهای امیده در آب رودخانه در پازگشت ماهی به رودخانه محل تولد تأثیر دارد [24] که این امر می‌تواند ناشی از به‌خاطر‌سپاری از طرح حافظه بلند مدت باشد.

هیچی‌نیک تحقیقات مشابه دیگر در خصوص ماهی قزلآلا رنگین کمان [15]، [22] و آزد ماهی قزلآلا [22] اجرای شده است که امر موارد تعداد ماهیان در معرض مورفولین، در مقابل قزلآلا در معرض قرار نگرفته، نسبت به جریان آب حاوی مورفولین، بالاتر بود [15].

هسلر و کوکاس در سال 1968 در کالیفرنیا به بررسی تأثیر مورفولین در رودخانه مدی پرداختند. این پژوهش با هدف استفاده از مورفولین و تأثیر آن در میزبان پازگشت به خانه ماهی سفید رهاسازی شده به رودخانه خشک‌کرود انجام گرفت.

روش کار

صد مدل ماهی سفید از رودخانه خشک‌کرود با تور پره انجام گرفت. مدلین پس از صید در رودخانه به مرکز تکثیر شهرابی منتقل شدند. با منظور تأمین به‌کننده ماهی، عملیات تکثیر ماهی از اواسط اسفند 1384 آغاز گردید.

آب رودخانه خشک‌کرود در زمان تکثیر با تانکر به مرکز تکثیر ماهی شهرابی منتقل و درباره تانکرهای ۴ تنی مورد هوادهی قرار گرفت و عملیات تکثیر و به‌خاطر‌سپاری با استفاده از این آب انجام پذیرفت. در این پژوهش گردش کیفیتی تکثیری کننده حافظه، مورفولین بین فرمول (C₄H₇NO) از شرکت مکس آلمان با درجه حل صد ۹۸ درصد استفاده شد.

به منظور تعبیه پیش‌ترین دور مورفولین تعداد ۵۴۸۰ قطعه به جه ماهی با وزن ۶-۵ گرم انتخاب شد که در ۰-۵ تیمار با سه غلظت ۱۰-۵، ۱۰-۴ و ۱۰-۳ میلی‌گرم بر لیتر از مورفولین (برای هر هیپ میلی‌گرم) را تکرار و به مدت ۳۰ روز حمایت داده شدند. لازم به ذکر است که تعداد در مرحله رهاسازی بس از تلفات محاسبه و ارائه شده است.

۹۰۳
پس از انجام مراحل حمام مورفولین در تیمارها بررسی شده نسبت به نگهداری به چه ماهیان تا رسیدن به وزن مناسب رهاسازی (40 گرم در استخر خانکی مکاک تکثیر و پروش ماهیان شهید انتقالی) رشد اقدام گردید برای این منظور و برای کنترل هپتر به چه ماهیان از 15 عقد استخر نشان (هالیا) به ابعاد 7.6 متر و به عمق 1 متر (تور با چشم 1 میلی‌متر) استفاده شد. برای حفظ اثرات احتمالی مدیریت در رشد چه ماهیان تمامی استخری‌ها نشان شد که استخر خانکی به وسعت 1000 متر مربع قرار داده شده و با استفاده از غذای طبیعی و غذای مخصوص به چه ماهیان سفید نگهداری شدند.

علاطم‌گذاری چه ماهیان سفید با استفاده از نگهداری رنگی است‌توسعه در سال 1384 صورت پذیرفت در مجموع تعداد 5480 عدد به چه ماهی برای تعیین مناسب‌ترین غلظت علامت‌گذاری شده تمامی چه ماهی‌ها با تغییر الگوی نمودار (از مؤسسه NMT آمریکا و ساخت ایران اخراج نموده شماره 376) نگهداری در صورت نگهداری این مقدار 5 روز به رودخانه خشک‌کرده را شنیدند.

عملیات صید ماهی‌های سفید با تور پرتاهای سالیک در سال‌های 1382 و 1387 (نیمه‌سالیانه این فردین) و زمان شروع عملیات صید سه سال پس از رهاسازی چه ماهیان در رودخانه خشک‌کرده صورت گرفت.

به‌منظور مقایسه ماهیان علامت‌دار با سایر ماهیان سفید که هیزمان به رودخانه وارد می‌شوند در هر روز در دو نوبت صبح (5-9) و شب (20-24) نسبت به صید و بررسی نموده‌ها از نظر طول و وزن و جنسیت اقدام می‌شود. ماهیان صید شده ابتدا از لحاظ علامت‌دار بودن (وجود تگ الاستمور) بررسی شده (ماهی در صورت داشتن علامت به ازام‌شگاه ارسال می‌گردد) و سپس طول (با خشک‌کردن بیومتری و دقت 1 میلی‌متر)، وزن (با ترازوی دیجیتال با دقت 1 گرم) و جنس (با استفاده از خصوصیات ظاهری و درموداری) با انجام تشريح و برنزی گردانه نتایج‌گیری شده و در فرم مخصوص ثبت گردید.

داده‌ها و اطلاعات به‌صورت آماده در قالب طرح‌های آماری آزمون کای جی X یا آزمون منفی واریانس (ANOVA) بررسی و تجزیه و تحلیل شد. برنامه کامپیوتری SPSS15 نژد در نهایت نمودار، دسته‌بندی و تحلیل آماری استفاده شدند. نرخ بازگشت بخانه‌ها (Retention Rate) با استفاده از این فرمول‌ها صورت گرفت:

\[
P = h/s \times 100
\]

که در آن:
\[P = \text{نرخ بازگشت بخانه} = \frac{\text{تعداد ماهی علامتی در صید}}{\text{تعداد کل ماهیان نگهداری شده}} \times 100\]

که در آن:
\[R = \text{نرخ بازگشت شیلاتی} = \frac{\text{تعداد ماهیان علامتی دار در صید}}{\text{تعداد کل ماهیان صید شده}}\]

(Brennan and Leber, 2005; Tilson and Scholz, 1997)
نتایج
در مجموع، پس از ۲۵ روز صید در دهانه رودخانه خشک‌رود تعداد ۵۰۵ عدد ماهی سفید در سال ۱۳۸۷ صید گردید. پس از صید ماهیان با استفاده از نور موراری بافتی، نمونه‌ها از حیاط داشتن علامت بررسی شدند. نتایج این بررسی نشان‌گرفت که ۳۲ عدد از ماهیان و ۹ عدد علامت رنگی بودند. حداکثر، حداکثر و میانگین طول کل ماهی‌های صید شده بین‌ترین معادل ۴۰، ۳۶ و ۳۳ سانتی‌متر بود. حداکثر، حداکثر و میانگین وزن کل ماهی‌های صید شده معادل ۱۰۰۰ و ۱۲۰۰ و ۱۳۳۳ گرم بود.
نتایج کلی نشان دهنده افزایش معنی‌دار (P<0.01) نرخ پاسیفتی به خانه کل ماهی سفید به هنگام تاثیرپذیری از مورفولوژی‌ها غلط‌های مختلف (P<0.01) در مقایسه با شاخص ۷۰-۰-۳ (۰/۰ درصد) است.
(جدول ۱)
جلوی ۱. درصد پاسیفتی به خانه و نرخ پاسیفتی ماهیان سفید صید شده در خشک‌رود (۱۳۸۷)

<table>
<thead>
<tr>
<th>وزن رهگذاری</th>
<th>نرخ پاسیفتی</th>
<th>تعداد ماهی‌ها</th>
<th>تعداد پاسیفتی</th>
<th>درصد پاسیفتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰ گرم</td>
<td>۲۰٪</td>
<td>۱۰۰۰</td>
<td>۱۰۰</td>
<td>۲۰٪</td>
</tr>
<tr>
<td>۱۲۰۰ گرم</td>
<td>۳۰٪</td>
<td>۱۲۰۰</td>
<td>۱۲۰</td>
<td>۳۰٪</td>
</tr>
<tr>
<td>۱۳۳۳ گرم</td>
<td>۴۰٪</td>
<td>۱۳۳۳</td>
<td>۱۳۳</td>
<td>۴۰٪</td>
</tr>
<tr>
<td>شاخص</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*سطح معنی‌دار بیون ۰.۰۵ در نظر گرفته شد.

چنان‌که در جدول ملاحظه می‌گردد نتایج در زمینه تاثیرپذیری به‌جای ماهیان از مورفولوژی حاکی از اختلاف معنی‌داری در نرخ پاسیفتی به خانه است. در تحقیق‌های قبلی، مولی‌گرم بر لیتر به‌عنوان موثرترین دوز (با نرخ پاسیفتی ۷۰٪ درصد برای به‌جای ماهیان ۸۵ گرم) تعیین گردید. نرخ پاسیفتی کل برای این دوز (۷۰٪ درصد) محاسبه شد (P<0.01). در عین حال، دوز ۱۰ مولی‌گرم بر لیتر موثری محدود ندارد و نرخ پاسیفتی به خانه کل معادل (با نرخ پاسیفتی ۷۴٪) درصد برای به‌جای ماهیان ۸۵ گرم است. نرخ پاسیفتی به خانه برای کل نمونه‌های رهگذاری شده در مجموع ۲۱ درصد محاسبه شد.

نتایج حاصل از بررسی نرخ پاسیفتی شیلاتی نشان دهنده وجود بیشترین نرخ پاسیفتی در دوز ۱۰ مولی‌گرم بر لیتر بوده (۲/۹ درصد در کل و ۲۹٪ درصد برای به‌جای ماهیان ۸۵ گرم) و پس از آن دوز ۵ مولی‌گرم بر لیتر نرخ پاسیفتی شیلاتی کل ۳ درصد (با نرخ پاسیفتی شیلاتی ۲٪ درصد برای به‌جای ماهیان ۸۵ گرم) و دوز ۱ مولی‌گرم بر لیتر با نرخ پاسیفتی شیلاتی کل ۵/۹ درصد (با نرخ پاسیفتی شیلاتی ۳/۹ درصد برای به‌جای ماهیان ۸۵ گرم) محاسبه شد.
تاثیر مورفولین بر رانش پر در حوضچه

درجه حرارت آب در حوضچه ۱۹ و در رودخانه ۱۱ درجه سانتی‌گراد. pH در حوضچه ۸ و در رودخانه ۸ قسمت درآماده بوده و میزان شوری در حوضچه ۸۰ و در رودخانه ۸۰ تغییر نهاده‌گیری شد.

بیشترین طول و وزن به‌هم‌گام صدای باتری کلی ۲۲۰ میلی‌متر و ۱۷۰۰ گرم بود. متوسط وزن و طول رهاسازی و همچنین وزن و طول ماهیان صدای شده در جدول ۲ آمده است.

جدول ۲. وزن و طول اولیه به‌هم‌گام رهاسازی (۱۳۸۴) و صید (۱۳۸۷)

<table>
<thead>
<tr>
<th>تیمار مورفولین</th>
<th>وزن اولیه</th>
<th>طول اولیه</th>
<th>وزن نهایی</th>
<th>طول نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۱۰</td>
<td>۴±۰/۱</td>
<td>۸۰</td>
<td>۳۵۵±۲۵</td>
<td>۸۰</td>
</tr>
<tr>
<td>۰.۲۰</td>
<td>۴±۰/۱</td>
<td>۸۰</td>
<td>۳۶۴±۲۵</td>
<td>۸۰</td>
</tr>
<tr>
<td>۰.۳۰</td>
<td>۴±۰/۱</td>
<td>۸۰</td>
<td>۳۹۱±۲۵</td>
<td>۸۰</td>
</tr>
<tr>
<td>۰.۴۰</td>
<td>۲±۰/۱</td>
<td>۸۰</td>
<td>۴۱۸±۲۵</td>
<td>۸۰</td>
</tr>
</tbody>
</table>

۹۵۵ روز پس از عملیات علامت‌گذاری و رهاسازی به‌هم‌گام (۱۳۸۴/۰۸/۱۳) در رودخانه خشک‌رود، اقدام به صید ماهیان صید (۱۳۸۴/۰۶/۱۳) با دام سالیکان در همان رودخانه گردید. طی ۳۰ روز عملیات صید، در مجموع ۸۰۰ عدد ماهی صید شد.

درخ پازگشته به‌خانه در تیمار مورفولین ۰.۱ میلی‌گرم بر لیتر با استاندارد بیشتری از سایر تیمارها بوده است و این در حالی است که سایر تیمارها نیز نسبت به شاهد از نرخ پازگشته زیادتری برخوردار است (شکل ۱).

شکل ۱. مقایسه نرخ پازگشته به‌خانه در پازگشته به‌خانه در چهار ماهی ۵.۵ میلی‌گرم تحت تاثیر مورفولین با دوزهای مختلف

طرح پازگشته شیلاتی نیز در مجموع معادل ۲/۷ درصد به‌خست آمد. این در حالی است که این نرخ برای تیمار مورفولین با غلظت ۱۰×۰.۱ میلی‌گرم بر لیتر معادل ۲ درصد، مورفولین با غلظت ۱۰×۰.۴ میلی‌گرم بر لیتر معادل ۲ درصد معادل ۲ درصد محاسبه شد (شکل ۲).
شکل ۲. تغییرات نرخ پاژشگت شیلاتی در تیمارهای مختلف مورفولین در بررسی نتایج حاصل از تعیین جنسیت در مجموع از تعداد ۵۰۵ عدد ماهی سفید صید شد. تعداد ۲۱۰ عدد ماده و ۲۹۵ عدد نر بخش اند. بررسی ماهیان تغذیه نیز بینانگر وجود ۱۴ عدد ماده در مقایسه با ۲۰ عدد نر است (شکل ۳). نتایج حاکی از وجود اختلاف معنی‌دار در نسبت جنسی (۲۱۰ ماده و ۲۹۵ نر) در کل ماهیان صید شده است (۰/۱۰۳/۰۰). نسبت جنسی در ماهیان تغذیه بیش‌تر است (۱۴ ماده و ۲۰ نر) با نرخی معادل ۱/۴/۲۷ درصد با غلیظی نرها محاسبه شد (۱.۶/۴.۴، α = ۰.۰۵، df = ۱). (X₂ = ۶.۴).
کپترین طول مادها ۲۴ سانتی‌متر و بیشترین ان ۲۲ سانتی‌متر و میانگین ۱۳/۷±۳/۵ سانتی‌متر. وزن مادها ۶۰۰ گرم و بیشترین وزن ۱۲۰۰ گرمی بوده و بیشترین وزن مادها ۳/۱±۳/۵ گرم بوده.

در خصوص نمونه‌های تغییری در پهنای کپترین طول مادها ۲۷/۵ سانتی‌متر و بیشترین طول آنها ۳۹ سانتی‌متر؛ کپترین طول نرها ۲۳/۵ از بیشترین ان ۳۹ سانتی‌متر؛ کپترین وزن نرها ۱۰۰ گرم و کپترین وزن مادها ۹۰۰ گرم و بیشترین وزن نرها ۸۵۰ گرم بوده.

بررسی فراوانی طولی ماهیان صید شده در سال ۸۷ نشان‌دهنده وجود بیشترین فراوانی در گروه طولی ۱۹۲۵-۲۴۵۰ بوده و با برای نرها و مادها است. این در حالی است که گروه‌های طولی ماهیان نر از ۲۰ تا ۲۵ و ماده و ۳۰ تا ۳۴ تبعیض گردیده (شکل ۴). دانمان طولی در ماهیان نر سفید صید شده در رودخانه خشک‌رود در مجموع کوچک‌تر از دانمان نر در جنس ماده است.

شکل ۴. فراوانی طولی ماهیان صید شده به تفکیک نر و ماده در رودخانه خشک‌رود

پرسی فراوانی وزنی ماهیان صید شده در سال ۸۷ نشان‌دهنده وجود بیشترین فراوانی در گروه وزنی ۳۰۰-۴۰۰ گرم بوده و ۷۹گرم برای مادها و ۷۹-۸۹ گرم برای نرها است. این در حالی است که گروه‌های وزنی ماهیان نر از ۳۰۰ تا ۴۰۰ گرم و برای ماهیان ماده از ۳۰۰ تا ۳۱۰ گرم تبعیض گردیده (شکل ۵). دانمان وزنی در ماهیان نر سفید صید شده در رودخانه خشک‌رود در مجموع کوچک‌تر از دانمان وزنی در جنس ماده است.
بحث

رهاسازی پچ‌ماهیان سفید در دستور کار چند دهه اخیر شیلات ایران قرار داشته است. از طریق بررسی‌های حاکی از واکنش و پاسخ مثبت ماهی‌های مهاجر رودخانه‌ای به ترکیبات شیمیایی (از طریق تقویت حافظه) و پازگشته به رودخانه‌های است [16], [23].

در این پژوهش پس از تقویت حافظه به ماهی‌ها از طریق تائرگت‌گذاری مواد شیمیایی نظیر مورفولین بر حافظه آن‌ها که اصطلاحاً Imprinting (تایرگت‌گذاری) نامیده می‌شود، ماهی نسبت به شرایط محیطی خود حساسیت است و اطلاعات را بهتر ضبط می‌کند و در نهایت با در معرض قرار گرفتن مولفه در سال‌های پس از رهاسازی به ماهی‌ها، به مدت ۶۰ ثانیه در معرض ماده شیمیایی مورفولین قرار داده‌اند و رفتار آن‌ها نسبت به نور جویان آب حاوی این ماده در طول دوران مهاجرت تولد مشابه بررسی کرده‌اند [15], [21]. واژنی (۱۹۵۲) دریافت که مورفولین (C₄H₉NO) ترکیبی هتروسیکلیک آمینی است که توسط آزاد ماهی اقیانوس آرام با غلظت ۱۰⁻⁴ می‌باشد.

شناسایی است.

هرسچِل (۱۹۹۷) ثابت کرد که ماهی‌ها علاوه بر اینکه قادر به درک محرک بو هستند، قادرند دو محرک بی‌مخفی را از یکدیگر تشخیص دهند. در عین حال ماهی‌ها می‌توانند مورفولین را در غلظت ۱۰⁻۶ ۲۰۰ و نه در غلظت ۱۰⁻⁴ به آسانی تشخیص دهند [15]. بررسی نتایج تائرگت‌گذاری مورفولین در مرحله اول نشان‌دهنده تأثیر مثبت این ترکیب بر پازگشته به خانه در ماهی سفید بود. در مجموع پس از ۲۵ روز صید

1. Wisby 2. Hirsch
دراهمی بودن و افزایش میزان آمار مبتلاگان به روده‌خانه در سال‌های ۱۳۸۷ و ۱۳۸۸ باعث تعداد نرخ بیمارانی مبتلا به این بیماری می‌شود.

نتیجه‌گیری‌های مورفولوژیکی و نتایج برخی از این بیماران به خاطر می‌آید که مبتلاگان در این بیماری مبتلا به چندین عامل طبیعی به وجود می‌آیند. این عوامل شامل این عوامل می‌باشد که در گذشته‌ها و در حال حاضر وجود داشته‌اند.

در نتیجه این مطالعه، افزایش میزان بیماری به دلیل عوامل مختلف و ناشناخته در جامعه می‌تواند باعث درمان مبتلاگان به این بیماری شود. این امر نیازمند بررسی‌های بیشتری در زمینه مقایسه فاکتور آماری و ناشناخته در جامعه می‌باشد.

در این مطالعه، استفاده از فناوری نوین در بهترین پیش‌بینی و شناسایی عوامل و اثرات مختلف درمان مبتلاگان به این بیماری که در این بیماری مبتلا به چندین عامل طبیعی به وجود می‌آیند، از مهم‌ترین ابزاری است که در این مطالعه به کار برده شده است.

در این مطالعه، افتتاحیه این بیماری، مبتلاگان به این بیماری در این بیماری مبتلا به چندین عامل طبیعی به وجود می‌آیند. این عوامل شامل این عوامل می‌باشد که در گذشته‌ها و در حال حاضر وجود داشته‌اند.

در نتیجه این مطالعه، بیماری به دلیل عوامل مختلف و ناشناخته در جامعه می‌تواند باعث درمان مبتلاگان به این بیماری شود. این امر نیازمند بررسی‌های بیشتری در زمینه مقایسه فاکتور آماری و ناشناخته در جامعه می‌باشد.

بیماری‌های مزمن و متغیر در جامعه می‌تواند باعث درمان بیماران در این بیماری شود. این امر نیازمند بررسی‌های بیشتری در زمینه مقایسه فاکتور آماری و ناشناخته در جامعه می‌باشد.

در این مطالعه، افتتاحیه این بیماری، مبتلاگان به این بیماری در این بیماری مبتلا به چندین عامل طبیعی به وجود می‌آیند. این عوامل شامل این عوامل می‌باشد که در گذشته‌ها و در حال حاضر وجود داشته‌اند.

در نتیجه این مطالعه، بیماری به دلیل عوامل مختلف و ناشناخته در جامعه می‌تواند باعث درمان مبتلاگان به این بیماری شود. این امر نیازمند بررسی‌های بیشتری در زمینه مقایسه فاکتور آماری و ناشناخته در جامعه می‌باشد.

بیماری‌های مزمن و متغیر در جامعه می‌تواند باعث درمان بیماران در این بیماری شود. این امر نیازمند بررسی‌های بیشتری در زمینه مقایسه فاکتور آماری و ناشناخته در جامعه می‌باشد.

در این مطالعه، افتتاحیه این بیماری، مبتلاگان به این بیماری در این بیماری مبتلا به چندین عامل طبیعی به وجود می‌آیند. این عوامل شامل این عوامل می‌باشد که در گذشته‌ها و در حال حاضر وجود داشته‌اند.

در نتیجه این مطالعه، بیماری به دلیل عوامل مختلف و ناشناخته در جامعه می‌تواند باعث درمان مبتلاگان به این بیماری شود. این امر نیازمند بررسی‌های بیشتری در زمینه مقایسه فاکتور آماری و ناشناخته در جامعه می‌باشد.

بیماری‌های مزمن و متغیر در جامعه می‌تواند باعث درمان بیماران در این بیماری شود. این امر نیازمند بررسی‌های بیشتری در زمینه مقایسه فاکتور آماری و ناشناخته در جامعه می‌باشد.
خاصی در لبه بوقابی ماهی چار وجود دارد که به موادشیمیایی متفاوت و یا اکتش نشان می‌دهد. در هر حال تشخیص بوده توسط ماهی‌های جوان هرگاه گروهی بیش از جمله جوانان‌های ماهی‌های (زمان بلع، تغذیه و محوک‌های محیطی) می‌توانند نام برد. جهت‌بندی ماهیان عمده بر اساس محرک‌های محیطی به سه دسته یک مرحله‌ای شناخته و راهبرد نظمی تقسیم می‌شود (کنکاکنتور و پارتیرت، ۱۹۷۸؛ بیکر، ۱۹۸۸). در بررسی نتایج حاصل از این پژوهش حداکثر و میانگین طول کل ماهی‌های صید شده بهترین معادل ۲۰ و ۶/۰۰±۲/۳۳ سانتی متر بود. حداکثر و میانگین وزن کل ماهی‌های صید‌شده بهترین معادل ۷۰۰ و ۵۳۶±۱۶ گرم بود. کیت‌ترين طول مادها ۲۴ سانتی‌متر و بیشترین آن ۲۵ سانتی‌متر و میانگین ۳/۵ بسته آمد. کیت‌ترين وزن مادها ۲۰۰ گرم و میانگین ۳۷۹ گرم بسته آمد کیت‌ترين وزن نرها ۱۰۰ گرم بیشترین آن ۷۲۰ گرم و میانگین ۳۵۸ گرم بسته آمد. در صورت نمونه‌های تک‌ترين گروهی کیت‌ترين طول مادها ۲۷/۵ سانتی‌متر، بیشترین طول ۹۳ سانتی‌متر بسته آمد. کیت‌ترين طول نرها ۳۵/۰، بیشترین آن ۹۹ سانتی‌متر بود. کیت‌ترين وزن مادها ۲۰۰ گرم و کیت‌ترين وزن نرها ۱۱۶ گرم بود. بیشترین وزن مادها ۴۰۰ گرم بسته آمد.

با مقایسه نسبت جنسی بسته آمد در این پژوهش با نسبت‌های جنسی قبلی، مشاهده شده که این نسبت به میزان چشمگیری از نر به ماده تغییر یافته که می‌تواند نشان از تأثیر پیدا از زمان و محل صید و نیز شیوه صید باشد.

در مجموع با استفاده از تگ‌گذاری الاستمرو، ضرب بیشتر در مراحل ناشی از تأثیر غیر عمده در مورفولوژی در ماهی‌های سیف ۵ درصد محسوب گردید که با توجه به نتایج حاصل و بررسی نرخ بیشتر در طی دوره پنج ساله رهاسازی ماهی‌های سیف در گزارش‌های قبلی و نتایج حاصل از بیشتر بوده که این در این پژوهش می‌توان به کار گرفته این تک‌ترين در کارگاه‌های تک‌ترين و پارسیزی نخایر ماهی‌های سیف و نیز ادامه تحقیقات در این زمینه را پیشنهاد کرد.

تشکر و قدردانی

از همه عزیزان و همکاران در مجموع تک‌ترين و پروئر شهید انصاری رشت و مرکز تحقیقات ایزی پروئر شمال شیراز که بازی نماینده در اجرای مراحل مختلف پروئر مهاری صمیمانه‌ای داشته‌اند مراقب تشکر و قدردانی خود را اعلام می‌دارم.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
منابع

1. ب. رضوی صید، مقدمه‌ای بر اکولوژی بریای خزر، مؤسسه تحقیقات شیلات ایران، تهران (1378).

2. ب. رضوی صید، ماهی سفید، Rutilus frisii kutum، مؤسسه تحقیقات و آموزش شیلات ایران تهران (1374) 125.

3. ب. رضوی صید، ارزیابی نخاع و مدیریت ماهیان استخوانی و اقتصادی دریایی مازندران، شرکت سهامی شیلات ایران. تهران (1379).

4. م. صید بورانی، م. طلوعی، ش. عبدالملکی، ا. پورعلی‌نژاد، ج. خداوردی، د. گزارش‌بازی، بررسی کمی و کیفی به‌وجود آمدن ماهیان استخوانی، انتقالی در شهر دماوند، مرکز تحقیقات ماهی‌های استخوانی دریای خزر (1379).

5. ک. کمالی‌نژاد، ه. همکاران، گزارش فنی اقتصادی در مورد تولید نخاع ماهی‌های تولیدی دریایی در سال‌های 1383-1384.

6. سالنامه اموری شیلات ایران، 1379، سالنامه اموری شیلات ایران، 1384.

7. ر. شاه‌پور، گزارش نهایی پلاک گذاری ماهی سفید در استان گیلان، مرکز تحقیقات شیلاتی استان گیلان، بندر انزلی (1373).

8. د. گزارش‌بازی، م. پورعلی‌نژاد، ش. عبدالملکی، م. بورانی، ا. پورعلی‌نژاد، ج. فاضلی، ک. عباسی، خ. گناب، ارزیابی نخاع ماهیان استخوانی دریای خزر در سال‌های 1382.

9. د. گزارش‌بازی، م. مریم، ش. عبدالملکی، ارزیابی نخاع ماهیان استخوانی دریای خزر در سال‌های 1382.

10. د. گزارش‌بازی، م. مریم، ش. عبدالملکی، ارزیابی نخاع ماهیان استخوانی دریای خزر در سال‌های 1382.

11. ب. فریبرز، م. حسینی، م. توکلی، م. خوشقلب، م. دریایی، پ. برادری، د. انتقالی ماهیان خاویاری با استفاده از پلاک گذاری، انتقالی تحقیقات نهایی ماهیان خاویاری نکردن دامادان (1384).

12. ا. کازانچف، ترجمه ایفولوژی شریعتی ماهیان دریایی خزر و جزیره ابریز آن، مؤسسه تحقیقات شیلات ایران (1381).

36. H. Ueda, "Recent Progress of Mechanism of Salmon Homing Migration, Laboratory of Aquatic Ecosystem Conservation Field Science Center for Northern Biosphere", Hokkaido University, Japan (2002).

39. e, Rutilus frisii kutum