روش همحلی چندجمله‌ای های لزونارد برای تقریب جواب معادلات
انتگرال-دیفرانسیل فردهم خطي با تأخیر زمانی

یدالله اردوخانی، میرزا جمجوشی
دانشگاه الزهرا، دانشکده علوم پایه، گروه رياضی

چکیده
هدف اصلی این مقاله حل معادلات انتگرال-دیفرانسیل فردهم خطي با تأخیر
زمانی از مراتب بالا است. روش مبتنی بر بسط لزونارد با استفاده از نقاط هم ملی
گاوس-لزونارد است. در این روش سری لزونارد قطع شده جواب معادله را در نظر
گرفته و معادله انتگرال-دیفرانسیل خطي و شرایط داهه شده را به يک معادله ماتریسی
تبدیل می کنیم، سپس با استفاده از نقاط هم ملی گاوس-لزونارد، معادله ماتریسی تبدیل
به يک دستگاه از معادلات جبری خطي با ضرایب مجزا بسط لزونارد می‌شود که از
حل دستگاه ضرایب بسط لزونارد تابع جواب بهبود می‌آید. در آخر کارایی روش را با
مثال هایی تجزیه و تحلیل می‌کنیم.

مقدمه
معادلات انتگرال-دیفرانسیل ابتدایی در اولین سال ۱۹۰۰ میلادی توسط ولترا معرفی شد [۱]-[۳]. این
معادلات در علوم جوی ویزیک، مکانیک، ارتباطات، نورسیمی، اقتصاد، ساختارهای وصله
نیروگاه‌های هسته‌ای و راکتورها کاربردهای گوناگون دارد [۴]-[۶]. تا کنون روش های منطقی برای حل آنها
ارائه شده است. پیچت [۷] معادلات انتگرال فردهم و ولترا مایکل را بررسی کرده است. کوتین [۸] روش
همحلی را برای حل معادلات انتگرال فردهم- ولترا و برترن [۹] روش همحلی را برای معادلات انتگرال
فردهم- ولترا و ولترا را برای حل معادلات انتگرال-دیفرانسیل مطرح کرده است. ولترا و ولترا
اندازه تجزیه و تحلیل شده است. ضریب اسلاوان [۱۱]، به دست آمده که برای حل معادلات انتگرال
فردهم، ولترا و ولترا را بررسی کرده است. تا کنون روش های همحلی و توابع سیالی [۱۱]، به
بهکم چندجمله‌ای تیمور [۱۲] و بهره‌وری بهکم موجک دانشگز به همراه روش‌های همحلی و گالرکین

وژه‌های کلیدی: معادلات انتگرال-دیفرانسیل فردهم، تأخیر زمانی، نقطه هم محلی گاوس لزوندار، بسط لزوندار
پذیرش: ۱۳۹۱/۹/۳
دریافت: ۱۳۹۱/۹/۳
پیام‌رسانی مسئول: ordokhani@alzahra.ac.ir
۲۲۹
روش هیمالی-جندجمله‌ای‌های لزاتدر برای تقریب جواب معادلات انتگرال

\[
\sum_{k=0}^{m} P_k(x)y^{(k)}(x)+\sum_{r=0}^{m} P_r^*(x)y^{(r)}(x-t) = f(x)+\int_{t}^{b} K(x,t)y(t-\tau)d\tau, \quad t \geq 0, \quad a \leq x \leq b,
\]

(۱)

با شرایط ابتدایی زیر و با فرض داشتن جواب‌های تجربی بررسی می‌شود:

\[
\begin{align*}
L_0(z) &= 1, \\
L_j(z) &= z, \\
L_{j+1}(z) &= \frac{2j+1}{j+1} L_j(z) - \frac{j}{j+1} L_{j-1}(z), \quad j = 1, 2, \ldots.
\end{align*}
\]

(۲)

که نسبت به تابع وزن \(z^n \) و متعددی معلام‌کننده و یک پایه معلام کامل برای \([0,1]\) است [۲۲]. اگر این جندجمله‌ای‌ها را روی بازه بسته \([a,b] \) در نظر بگیریم، به آن صنعتی‌های لزاتدر انتقال یافته‌گیم که در این رابطه بازگشتی صدق می‌کند:

\[
\begin{align*}
L_0(x) &= 1, \\
L_j(x) &= \frac{2x-a-b}{b-a}, \\
L_{j+1}(x) &= \frac{(2j+1)(2x-a-b)}{(j+1)(b-a)} L_j(x) - \frac{j}{j+1} L_{j-1}(x), \quad j = 1, 2, \ldots.
\end{align*}
\]

(۴)

معادله (۱) را به دین شکل در نظر می‌گیریم:

\[
E(x) + R(x) = f(x) + I(x),
\]

(۵)

که در آن

\[
E(x) = \sum_{k=0}^{m} P_k(x)y^{(k)}(x), \quad R(x) = \sum_{r=0}^{m} P_r^*(x)y^{(r)}(x-t), \quad I(x) = \int_{t}^{b} K(x,t)y(t-\tau)d\tau.
\]

فرض کنیم \(y(x) \) قابل پست بر حسب جندجمله‌ای‌های لزاتدر انتقال یافته باشد، پس

\[
y(x) = \sum_{j=0}^{\infty} a_j L_j(x),
\]

(۶)
که در آن ضرایب لازمان انتقال یافته و معیار a\(_j\) ها بینین. صورت به‌دست می‌آید:

\[a_j = \frac{2j+1}{b-a} \int_{a}^{b} y(x)L_j(x) \, dx, \quad j = 0, 1, \ldots . \]

اگر در (4) \(y(x) \) را با (1+1) جمله اول تقیی، خواهیم داشت،

\[y(x) \approx \sum_{j=0}^{N} a_j L_j(x) = L^T(x) A, \]

به طوری که:

\[L(x) = [L_0(x), L_1(x), \ldots, L_N(x)]^T, \quad A = [a_0, a_1, \ldots, a_N]^T. \]

همچنین بردار مشتق \(L(x) \) بینین صورت بیان می‌شود [22] [23]:

\[L'(x) = DL(x), \]

که برای \(N \) های زوج:

\[
D = \begin{bmatrix}
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
1 & 0 & 5 & 0 & \cdots & 2N-3 & 0 & 0 \\
0 & 3 & 0 & 7 & \cdots & 0 & 2N-1 & 0 \\
0 & 1 & 0 & 5 & 0 & \cdots & 2N-3 & 0 \\
1 & 0 & 5 & 0 & \cdots & 0 & 2N-1 & 0 \\
\end{bmatrix}.
\]

و برای \(N \) های فرد:

\[
D = \begin{bmatrix}
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
1 & 0 & 5 & 0 & \cdots & 2N-3 & 0 & 0 \\
0 & 3 & 0 & 7 & \cdots & 0 & 2N-1 & 0 \\
0 & 1 & 0 & 5 & 0 & \cdots & 2N-3 & 0 \\
1 & 0 & 5 & 0 & \cdots & 0 & 2N-1 & 0 \\
\end{bmatrix}.
\]

\[D^{N+1} = 0 \]

در ماتریس \(D' \) هر چه بزرگ‌تر باشد، ماتریس خلوی‌تر است و داریم: 0

با استفاده از معادله‌های (7) و (8) خواهیم داشت:

\[y^{(k)}(x) \approx \left(\frac{d^k L^T(x)}{dx^k} \right) A = L^T(x)(D^T)^k A, \quad k = 0, 1, \ldots, m. \]

با جای‌گذاری \(x - \tau \) به جای \(x \) در (3) نتیجه می‌شود [22] [23]:

\[L_j(x-\tau) = \sum_{k=0}^{j} h_{jk} L_k(x), \quad x > \tau, \quad j = 0, 1, \ldots, N, \]

که در آن:

\[h_{0,0} = 1, \quad h_{1,0} = \frac{-2\tau}{b-a}, \quad h_{j,j} = 1, \quad j = 1, \ldots, N. \]
راه حلی جدید جهانی‌های از این برای تقریب جواب معادلات انتگرال

روش همبخشی ماتریسی

dو\(\text{(1)}\) نتیجه می‌شود:

\[
y^{(r)}(x - \tau) = \frac{d^r L^T(x - \tau)}{dx^r} A = \frac{d^r L^T(x)}{dx^r} H^T A = L^T(x) (D^T)^r H^T A, \quad r = 0, 1, \ldots, n.\]

(17)

برای بدست آوردن جواب معادله (1) به‌همراه شرایط ابتدایی (2)، از نقاط همبخشی گاوس- لوژاندر در معادله

(5) استفاده می‌کنیم. بنابراین داریم:

\[
E(x_i) + R(x_i) = f(x_i) + I(x_i), \quad i = 0, 1, \ldots, N.\]

(18)

لذا شکل ماتریسی معادله (18) بدین صورت است:

\[
E + R = F + I,
\]

(19)

که در آن:

\[
E = \begin{bmatrix} E(x_0) \\ E(x_1) \\ \vdots \\ E(x_N) \end{bmatrix}, \quad R = \begin{bmatrix} R(x_0) \\ R(x_1) \\ \vdots \\ R(x_N) \end{bmatrix}, \quad F = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_N) \end{bmatrix}, \quad I = \begin{bmatrix} I(x_0) \\ I(x_1) \\ \vdots \\ I(x_N) \end{bmatrix}
\]

در نتیجه شکل ماتریسی توسط نقاط همبخشی، بدین صورت بیان می‌شود:

\[
E = \sum_{k=0}^{m} P_k Y^{(k)},
\]

(20)

که در آن:

\[
P_k = \begin{bmatrix} P_k(x_0) & 0 & \cdots & 0 \\ 0 & P_k(x_1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_k(x_N) \end{bmatrix}, \quad Y^{(k)} = \begin{bmatrix} y^{(k)}(x_0) \\ y^{(k)}(x_1) \\ \vdots \\ y^{(k)}(x_N) \end{bmatrix}
\]
با چای گذاری نقاط همبسته در معادله (9)، این رابطه نتیجه می‌شود:

\[Y^{(k)} = \begin{bmatrix} y^{(k)}(x_0) \\ y^{(k)}(x_1) \\ \vdots \\ y^{(k)}(x_N) \end{bmatrix}, \quad (D^T)^k \mathbf{A} = L(D^T)^k \mathbf{A}, \]

که

\[L = \begin{bmatrix} L_0(x_0) & L_1(x_0) & \cdots & L_N(x_0) \\ L_0(x_1) & L_1(x_1) & \cdots & L_N(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ L_0(x_N) & L_1(x_N) & \cdots & L_N(x_N) \end{bmatrix}. \]

لذا از معادلات (20) و (21) داریم:

\[E = \sum_{k=0}^{N} P_k L(D^T)^k \mathbf{A}. \]

هم چنین ماتریس نمایش، را مشابه رابطه (22) و با استفاده از رابطه (17) می‌توان بدین صورت نوشته:

\[R = \sum_{r=0}^{\infty} P_r L(D^T)^r H^T \mathbf{A}. \]

که در آن:

\[P_r = \begin{bmatrix} P_r^*(x_0) & 0 & \cdots & 0 \\ 0 & P_r^*(x_1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_r^*(x_N) \end{bmatrix}. \]

اکنون هسته (1) را بر نظر می‌گیریم. تقریب آن با استفاده از بسط چندجمله‌ای‌های لژانتر انتقال یافته‌ای را از مربوط به بدین صورت نوشته می‌شود:

\[K(x,t) \approx \sum_{r=0}^{N} k_r(x)L_r(t), \]

که در آن:

\[k_r(x) = \frac{2r+1}{b-a} \int_a^b K(x,t)L_r(t) dt, \quad r = 0,1,\ldots,N. \]

بنابراین ماتریس نمایش بدین صورت است:

\[K(x,t) = k^T(x) L(t), \]

که در آن:

\[K(x) = [k_0(x), k_1(x), \ldots, k_N(x)]^T. \]
روش هیمیلی-چندجمله‌ای لازادن برای تقریب جواب معادلات انتگرال.

حال برای بخش انتگرالی معادله (1)، با یک مانند روابط (7) و (15)، داریم:
\[I(x) = \int_a^b K(x, t) y(t - \tau) dt = \int_a^b k_T(x, t) L(t) L^T(t) H^T A dt = k_T(x) Z H^T A. \]

به این در آن \(Z \) یا استفاده از خاصیت تعمیمی چندجمله‌ای لازادن انتقال یافته بیان صورت است:
\[Z = \int_a^b L(t) L^T(t) dt = (b - a) \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{3} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{1}{2N+1} \end{bmatrix}. \]

با یک این با یک گذاری نقطه هیمیلی، رابطه (24) بیان صورت تبدیل می‌شود:
\[I(x) \approx k_T(x) Z H^T A, \]

با یک این جواب داشته که در آن:
\[K = \begin{bmatrix} k_0(x_0) & k_1(x_0) & \cdots & k_N(x_0) \\ k_0(x_1) & k_1(x_1) & \cdots & k_N(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ k_0(x_N) & k_1(x_N) & \cdots & k_N(x_N) \end{bmatrix}. \]

روش حل و دقت جواب

با یک گذاری روابط ماتریسی (22)، (24) و (29) در معادله (1)، این معادله ماتریسی را جواب داشت:
\[\left(\sum_{k=0}^{m} P_k L(D^T)^k + \sum_{r=0}^{n} P_r^e L(D^T)^r H^T - KZH^T \right) A = F. \]

معادله (30) را به این شکل خلاصه‌نویسی می‌کنیم:
\[WA = F, \]

دستگاه (31)، یک دستگاه (1+(1)) معادله با (1+(1)) محور ضرایب لازادن است که در آن:
\[W = [w_{ij}] = \sum_{k=0}^{m} P_k L(D^T)^k + \sum_{r=0}^{n} P_r^e L(D^T)^r H^T - KZH^T. \]

با یک گذاری رابطه ماتریسی (9) در شرايط آمیخته (2) داریم:
\[\sum_{k=0}^{m-1} \left[a_{ik} L^T(a) + b_{ik} L^T(b) + c_{ik} L^T(c) \right](D^T)^k A = \mu_i, \quad i = 0, 1, \ldots, m - 1. \]

لذا با قرار دادن:
\[U = \sum_{k=0}^{m-1} \left[a_{ik} L^T(a) + b_{ik} L^T(b) + c_{ik} L^T(c) \right](D^T)^k, \]

و...
با استفاده از معادله (۴۲) خواهیم داشت:

\[UA = \mu, \]

(۳۵)

که در آن:

\[\mu = [\mu_0, \mu_1, \ldots, \mu_{m-1}]^T. \]

(۳۶)

اگر این برنامه بدست آورده باشد معادله (۲۱) تحت شرایط حدودی برای (2) را با معادله‌ای دیگر انتقال یافته به معادله [2] به‌کاربرده است. به‌طور کلی تقریب جواب (7) تحلیل جواب (1) به‌صورت شرایط مرزی (21) جواب یکتا دارد، بنابراین دستگاه خطي حاصل جواب یکتا دارد.

از آنجا که چندجمله‌ای لامبر (7) یک جواب تقریبی برای معادله (1) است، وقتی که جواب \(y(x) \) و مشتقات \(y'(x), y''(x), \ldots \) در آن برابر هر \(\chi_i \in [a, b] \) قرار می‌دهیم:

\[
D(x_i) = \left| \sum_{k=0}^{N} P_k(x_i) y^{(k)}(x_i) + \sum_{r=0}^{n} P_r^*(x_i) y^{(r)}(x_i) - \int_a^b K(x,t) y(t) dt - f(x) \right| \leq 10^{-s},
\]

که در آن \(s \) عدد صحیح مثبت است.

حال اگر \(\max|D(x_i)| \leq 10^{-s} \) برای عدد صحیح مثبت است (فرض شود، آنگاه \(N \) تا زمانی که \(\max|D(x_i)| \leq 10^{-s} \) که \(s \) در هر نقطه کوچکتر از \(10^{-s} \) به‌طوری‌یکتا باشد برد بازگردی را برای هر تابع محدود می‌باشد. بنابراین تابع خطای بهینه‌تر است:

\[
D(x) = \left| \sum_{k=0}^{N} P_k(x) y_N^{(k)}(x) + \sum_{r=0}^{n} P_r^*(x) y_N^{(r)}(x) - \int_a^b K(x,t) y_N(t) dt - f(x) \right|.
\]

(۷)

که در آن:

\[y_N(x) = \sum_{j=0}^{N} a_j L_j(x). \]

قضیه: هرگاه \(y(t) \in H^k[a, b] \) و \(y^{(k)}(a,b) \) به‌طور کامل مشخص باشد، آنگاه:

\[
\| y(t) - \sum_{j=0}^{N} a_j L_j(x) \|_{L^2[a,b]} \leq c_0 N^{-k} \| y(t) \|_{H^k[a,b]},
\]

که در آن \(c_0 \) مثبت است و به \(c_0 \) و \(N \) بستگی ندارد [۲۳].

ارزیابی روش با مثال‌های عددی:

مثال ۱. معادله انتگرال دیفرانسیل فرد немلی خطي مرتبه اول:

\[\int_a^b f(x,t) dt = g(x), \]

که در آن \(f(x,t) \) و \(g(x) \) شرایط مرزی و \(a, b \) و \(\mu \) مثبت کیت آدر، بنابراین دستگاه خطي حاصل جواب یکتا دارد.

\[\begin{align*}
\text{ Metadata: } & \\
\text{ Document Title: } & \text{روش همحلی جدیدی برای ارزیابی تقریب جواب معادلات انتگرال} \\
\text{Author: } & \text{بی‌دردنا کنی، میرزای جمعیتی} \\
\text{Page: } & \text{۲۷۵}
\end{align*} \]
روش همبندی تجربی‌های افزایشی از این روش برای پیچیده‌تر معادلات انتگرال.

\[y'(x) - y(x) + xy'(x-1) + y(x-1) = x - 2 + \int_{-1}^{x} (x+t) y(t-1) dt, \quad -1 \leq x \leq 1 \]

با شرط آمیخته:

\[y(-1) - 2y(0) + y(1) = 0. \]

را در نظر می‌گیریم [19]. در این مثال داریم:

\[P_0(x) = -1, P_1(x) = 1, P_2^*(x) = x, f(x) = x - 2, K(x,t) = x + 1, \tau = 1. \]

با اعمال روش بخش چهار و برای \(N = 2 \) ضرایب لازندر را به‌دین‌صورت به‌دست می‌آوریم:

\[a_0 = 4, a_1 = 3, a_2 = 0. \]

با چارگذاری این ضرایب در معادله (7) جواب 4 به‌دست می‌آید که جواب واقعی است.

مثال 2. معادله انتگرال-دیفرانسیل فردهلم خطي مربوطه دوم با این شرایط اولیه را در نظر می‌گیریم [19]:

\[y''(x) + xy'(x) + xy(x) + y'(x-1) + y(x-1) = e^{-x} + e^{x} + \int_{-1}^{x} y(t-1) dt, \]

\[y(0) = 1, y'(0) = -1. \]

در این مثال جواب واقعی \(y(x) = e^{-x} \) است. با اعمال روش بخش چهار \(N = 7 \) جواب به‌دست آمده با نتایج موجود در [19] در جدول 1 مقایسه شده‌اند.

جدول 1. نتایج عدید مثلث

<table>
<thead>
<tr>
<th>(x)</th>
<th>جواب دقیق</th>
<th>روش تولبر [19] با (N = 7)</th>
<th>روش آنالیتیک با (N = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.667</td>
<td>0.667</td>
<td>0.667</td>
</tr>
</tbody>
</table>

مثال 3. معادله انتگرال-دیفرانسیل خطي مرتبه سوم با شرایط اولیه

\[y'''(x) - xy''(x) + y''(x-1) - xy(x-1) = -(x+1)[sin(x-1)+cos(x)] - cos 2 + \int_{-1}^{x} y(t-1) dt, \]

\[y(0) = 0, y'(0) = 1, y''(0) = 0. \]

را در نظر می‌گیریم [19]. این مثال دارای جواب واقعی \(y(x) = \sin(x) \) است. برای \(N = 7 \) با استفاده از روش به‌دست آمده با نتایج موجود در [19] در جدول 2 مقایسه شده‌اند. همچنین نتایج برای \(N = 10 \) در این جدول مشاهده می‌شود.
مثال ۴. معادله انتگرال - دیفرانسیل فردولم خطی مرتبه دوم با این شرایط اولیه را در نظر می‌گیریم [۲۲]:
\[y''(x) + x y'(x) - xy(x) = e^x - 2\sin(x) + \int_0^x e^{-t} y(t)\,dt, \quad y(0) = 1, \quad y'(0) = 1. \]

که جواب واقعی آن \(y(x) = e^x \) است. برای \(N = 9 \) خطای جواب تقریبی با خطای نتایج موجود در مرجع [۲۲] در جدول ۳ به هم مقایسه شده‌اند. لازم به ذکر است که خطای نتایج \(x = \sqrt{3} \) برای با صفر است.

![جدول ۲: نتایج عددی مثال ۳](image1.jpg)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(N = 7) و ۹</th>
<th>(N = 9) و ۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۲</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۳</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۴</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۶</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
</tbody>
</table>

مثال ۵. معادله انتگرال - دیفرانسیل فردولم خطی مرتبه دوم با این شرایط اولیه را در نظر می‌گیریم [۲۲]:
\[(x + 4)^2 y''(x) - (x + 4) y'(x) + y(x - 1) - y'(x - 1) = \ln(x + 3) - \frac{1}{x + 3} + 3\ln(3) - 5\ln(5) + \int_1^x y(t)\,dt, \]

\[y(0) = \ln(3), \quad y'(0) = \frac{1}{4}. \]

که دارای جواب دقیق \(y(x) = \ln(x + 4) \) است. خطای جواب تقریبی برای \(N = 7 \) به استفاده از روش بخش ۳ و مقایسه انجام شده با خطای مرجع [۲۲] در جدول ۴ مشاهده می‌شود.

![جدول ۳: خطا در مثال ۴](image2.jpg)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(N = 7) و ۹</th>
<th>(N = 9) و ۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۲</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۳</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۴</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۶</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
</tbody>
</table>

![جدول ۴: خطا در مثال ۵](image3.jpg)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(N = 7) و ۹</th>
<th>(N = 9) و ۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۲</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۳</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۴</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۶</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
<td>۰/۰۹۴۳۴۳۴۵</td>
</tr>
</tbody>
</table>

جایزه از انتخابی، میترا جیمکش‌یُدی
نتیجه‌گیری
در این مقاله روش همبست از لاندر برای حل معادلات انتگرال-دیفرانسیل فردل به با تأخیر زمانی یک ابزار گرفته شد. چنان که مشاهده شده در این روش ابتدا یک معادله برآورد صورت پبطی از تواعی از لاندر در نظر می‌گیرد و سپس با استفاده از نقاط همبسته گامه از لاندر، معادله مورد نظر به یک دستگاه معادله جبری می‌شود. در معادله (2) ماتریس‌های H، Z و ظاهر شده‌اند، جناب این ماتریس‌ها خلوت (D) با افزایش خلوت (K) به‌طور تدریس (است) هستند، مت‌رای حجم و زمان محاسبات کاهش می‌یابد. لذا روش پاپادار و دارای دقت‌های خوب و سرعت و همگرایی بالایی برخوردار است. همچنین با در نظر گرفتن جملات پیش‌تری از بسط لاندر، دقت جواب به‌بست از افزایش می‌یابد. یک ورگی قابل توجه این روش آن است که در حالی که معادله دارای جوابی درست آمده، افزایش نیست. نتیجه‌گیری این است که این روش در حالی که جواب دقیق را بدست می‌آورد با اصلاحات کمی می‌توان این روش را برای حل یک دستگاه از معادلات انتگرال-دیفرانسیل با تأخیر زمانی از مراحل بازار بشرایت امکان‌پذیر نیز به‌کاربرد.

تشکر و قدردانی
این کار با حمایت دانشکده الگرها انجام شده است.

منابع

59 (2010) 2996-3004.

22. S. Yalcinbas, M. Sezer, H. Hilmi Sorkun, "Legendre Polynomial Solutions of High-Order
349.