طرحی و ساخت پلاسمید حاوی زن‌های "هر۲" و "جی‌پی۶" به شکل فیوزن و بیان آن با استفاده از زن کد کننده پروتئین سبز فلورسنت

نفیسه پاکروان، حوریه سلیمانی‌جاوه، زهیر محمد حسن:
دانشگاه تربیت مدرس، دانشکده پزشکی

چکیده
واکنش‌های"دی. ای." که با استفاده از زن "هر۲" ناکنون طراحی و در مدل‌های آزمایشگاهی استفاده شده‌اند، موثری نسبی داشته‌اند. این امر نیاز به افزایش پتاسیم این واکنش‌ها را نشان می‌دهد. شکل موجود حاکی از این است که مکمل‌های شوک حرارتی انجوده‌های قوی در این مدل درمانی تومور می‌سند. این مکمل‌ها قسمت‌های مختلف سیستم ایمنی دانی و اختصاصی را تحت تأثیر قرار می‌دهند. در این پژوهش از گلیکوپروتئین ۴۴ (ععضو خانواده خلوده پروتئین‌های شوک حرارتی ۱۰۰) به دلیل خصیصی ادجوتنی آن استفاده شد و نتیجه‌گیری دو هدف انجام شد. اولاً تولید ساختار زن‌های (پلاسمید) و فیوزن هد و دو زن "هر۲" و "جی‌پی۶" به شکل فیوزن و ترایا بررسی بیان ساختار تولید شده با استفاده از زن کد کننده پروتئین سبز فلورسنت به این منظور انجام شد. نتایج، مشابهی توند باعث شده که "جی‌پی۶" به قسمت جزئی سلولی و بین غشاء زن "هر۲" در پلاسمید "پی‌سی‌دی. ای. ای.۳" متصل و تحت عنوان "پی‌سی‌پی/هر۲۳" نامگذاری شد. زن "جی‌اف. پی" در پای دست این دو قسمت کلون مشکل که تحت عنوان "پی‌سی‌پی/هر۲۳" انرژی بردی فیبر. همین‌طور بر روی محصول اتصال دو زن "هر۲" و "جی‌پی۶" نشانگر کلون شدن دو زن به شکل متصل به هم بود. به‌طور مسی، پلاسمید "پی‌سی‌تی/هر۲اف. پی" با استفاده از پلاک فکت به سلول‌های "هکت" ۲۳۹ متصل شدند. بررسی میکروسکوپی سلول‌های "هکت" ۲۳۹ تی نشان داد که این سلول‌های رنگ سیز فلورسنتی دارای قدری در حالت کشیدن شد. سلول‌های حاوی پلاسمید بدون زن رنگ سیز فلورسنت را تولید نکردند. نتایج این پژوهش حاکی از طراحی و بیان موفق ساختار است زیرا تولید رنگ سیز فلورسنت شناسه قابل پیوند ساختار زن‌های حاوی دو زن "هر۲" و "جی‌پی۶" بود. همین‌طور امکان پریکس تولید قسمتی از پروتئین "هر۲" به صورت فیوز شده به "جی‌پی۶" با استفاده از زن "جی‌اف. پی" که در مقایسه با روش‌های متفاوت مانند واکسن بلات" و "ارتی. پی‌سی‌آر" روشن ساده و ارزان است، نشان داده شد که این کنکین "دی. ای. ای" این آماده شده در این پژوهش قابل استفاده در ایمنی درمانی مدل‌های کانسری "هر۲" می‌باشد.

وژده‌های کلیدی: فیوزن، "هر۲"، "جی‌پی۶"، "جی‌اف. پی"

hasan_zm@modares.ac.ir

5. Green Fluorescent Protein or GFP 6. C-terminal 7. pcDNA3 8. pCT/Her2/GFP

879
مقدمه

واکسن‌های "دی.آن.ای" به دلیل تولید پاسخ‌های ایمنی سلولی و مکمل کوی در مدل‌های جسم‌انداز مورد توجه قرار گرفته‌اند. این نوع واکسن‌ها کاندیدای برای درمان بیماری‌های الگویی و سرطان هستند. بررسی بیان زن کششونده با واکسن "دی.آن.ای" با استفاده از روش‌های مبتنی بر پلائنتگن "(پ. س. آر" و یا ایمنو/هیستوسومی" انجام می‌شود.

از جمله بیماری‌هایی که "دی.آن.ای" واکسن برای آن طراحی شده است‌ تومور‌های با مارکر "هر" 2 است.

پروتوکولونژ "هر" 2 پروتئینی به وزن مولکولی 185 کیلو دالتن را تولید می‌کند. این پروتئین فعالیت تروژین کینازی دارد و عضو خانواده گیرنده فاکتور رشد است. افزایش تولید این پروتئین در سرطان تخم‌انداز، پستان، و گوارش دیده می‌شود که با پیش آمده بحران اِست [1]. وجود پاپیدا و پاپس سلول‌های "اته" 7 علیه این مولکول در بیماران مبتلا به تومور "هر" 2 مثبت نشان داده شده است. در نتیجه تحمل سیستم ایمنی بدن به این مولکول مطلق نیست [2]. به عبارت دیگر این انسان تولید پاسخ ایمنی نسبت به این مولکول وجود دارد. معمولاً، پاسخ‌های ایمنی موجود در این بیماران برای مامات با رشد تومور کافی نیست. وجود این پاسخ‌های ایمنی درکگرد این مولکول در پیشرفت تومور و پیش آمده بدان باعث شده که این مولکول نامزد ایمنی درمانی شود. به عبارت دیگر به منظور استفاده از این مولکول در ایمنی تومور تیازه به طراحی و ساخت واکسن شود تا پاسخ ایمنی افزایش دهد. اثرات نسبی درمانی و پیشگیری کندنه "دی.آن.ای" واکسن‌های حاوی "هر" 2 در برخی از بررسی‌ها نشان داده شده است [4][3].

همچنین پژوهش‌ها نشان داده‌اند که مکمل‌هایی که صورت حرارتی به عنوان ادجونتهای قوی عمل می‌کنند [7]. آن‌ها خانواده‌هایی از مکمل‌های هستند که توانایی‌شان در طول تکامل حقایق‌شده است. و در داخل سلول به مقابله زیادی یافته می‌شوند. این مکمل‌های چاروپن‌هایی هستند که در فعالسازی سلول‌های عرضه کننده انتروپی نقش دارند. پژوهش‌ها نشان‌داده‌اند که مکمل "جی. پی 49" نقش مهمی در پاسخ‌های ایمنی ذاتی و اکتسابی [8] و [9] دارد. پژوهش‌های دیگر نشان داده‌اند که اتصال مکمل‌های حرارتی به آنتی‌ژن مورد نظر باعث افزایش ایمنی‌زایی واکسن شده است.

با استفاده از نتایج این پژوهش‌ها ما "دی.آن.ای" واکسن‌ها را طراحی کرده و ساختارهایی که حاوی سنتی از زن‌های "هر" دو مکمل "جی. پی 49" و "هر" 2 "شست سر هم و به پیوسته است. به علاوه ایمنی ایمنی بین این ساختار با استفاده از کلون کردن زن کششونده پروتئین سایر فلورست در انتها زن‌های "هر" 49 "و "هر" 2 نشان داده شده است. این روش ار روش‌های مبتنی بر پلائنتگن "پ. س. آر" و یا ایمنو/هیستوسومی ساده‌تر است.

مواد و روش‌ها

(pHer2) Her2/neu ساخت پلاسمید حاوی قسمت خارج سلولی و بین‌شایی
نورکلون‌تهای 90 تا 2180 از زن "هر2" (اهدافی از طرف بروفسور کاوالو، دانشگاه تورین ایتالیا، که قسمت خارج سلولی و بین‌شایی آن را کد می‌کند بین سایت‌های انزیمی "هیند۳/ای‌کو.آر۱" پلاسمید "پی". سی. دی. ان. ای۳" [۹] کلون شد. به این منظور پلاسمید "پی". سی. دی. ان. ای۳" با انزیم‌های "هیند۳" و "ای‌کو آر۱" هضم شد. از طرف دیگر پلاسمید حاوی قسمت خارج سلولی و بین‌شایی "هر2" با انزیم‌های "هیند۳" و "ای‌کو آر۱" هضم و با استفاده از کیت کیژن از زد آگارز تخلیص شد. قطعه تخلیص شده با استفاده از واکنش اتصال در پلاسمید "پی". سی. دی. ان. ای۳" کلون شد (شکل ۱).

قسمت خارج سلولی و بین‌شایی زن EcoRI و HindIII میان Her2
کلون شد

شکل ۱. نمایی از پلاسمید "پی". سی. دی. ان. ای۳" و محلی که "هر2" در آن کلون شده است (این ویترژن، بریتانیا)
با استفاده از محل بریش انزیم "گار" "هر2" در ابتدای زن "هر2" قرار دارد (شکل ۲)، سایت انزیمی لازم برای کلون کردن زن "جری پی۹۴" در قسمت فرآیند زن "هر2" ایجاد شد. به این منظور لینکر ۱ (جدول ۱) در قسمت فرآیند "هر ۲" بین محل "هیند۳/ای‌کو.آر۱" کلون شد. آراشی انزیم‌های محدود‌الثبات پس از این که لینکر ۱
در فرآیند زن "هر ۲" قرار گرفت در شکل ۲ نشان داده شده است.

لینکر ۱ علاوه بر اینکه فضای لازم برای کلون کردن "جری پی۹۴" در قسمت بالای "هر ۲" را فراهم می‌آورد، همچنین حاوی توالی کدنده سه گلیسین است که بین "هر2" و "جری پی۹۴" قرار می‌گیرد.

881
ساخت پلاسمید حاوی قسمت خارج سلولی و بین غشایی "هر 2" متصول به انتهای سی زن ("پی.سی.تی/هر 2")

انتهای C زن "جی.پی.ای" انسان (هادیا دکتر سید، بیمارستان ماساچوست، امریکا، و نوکلوتیدهای 1300 تا 1550) که 210 اسید آمینه انتهای "جی.پی.ای" انسان را کد می‌کنند (شکل 3) با استفاده از انزیم‌های "ای.کی.آر/5/نت" و "پی.وی.یو/2/نت" موجود در پلاسمید "پی.تندم-1" (نوازن) کلون شد. (شکل 3) در واقع از پلاسمید "پی.تندم-1" فقط به عنوان یک حامل پیش انتظار استفاده شد تا توامین لینکر 2 را در

انتهایی "جي.بي.96" کلون و کدون خانمه را در زن "جي.بي.96" حذف کرده‌ام. امکان حذف کدون خانمه در پلاسمید "بي.هر.2" (بي.سير.دي.إي.3) یحوز و تداشت چون این پلاسمید حاوی مخل اثر آنزیم "بي.رو.بی.2" است. به علاوه محل اثر آنزیم "بي.اس.آی.دی.بی.1" در فردیت و وجود دارد که کمک به حذف کدون خانمه و جدا سازی "جي.بي.96" با کمک برز آنزیم "بي.ام.ال.1/بي.آی.دی.بی.1" می‌کند. قطعه "بي.ام.ال.1/بي.آی.دی.بی.1" این ساختار جدا و در حد واسط سایتهای مشابه در فردیت زن "هر.2" در پلاسمید پی "هر.2" کلون شده و تحت عنوان پی.سی.تی/هر.2 ناپگاری شد.

شکل ۲. تایپ‌های "پی.لندم ۱" (پریکل) نشان داده است (a) که انتهای سی از زن "جی.بی.۹۶" بین "بی.ای".

کوارت ۱۷ کلون گردید. قبل توجه است که اتصال "بی.ای" کو.آ.ر.۱ موجود در "جی.بی.۹۶" بی.ای.و.بی.۱" موجود در "پی.لندم ۱" باعث از بین رفتن "پی.ای.بی.۲" در "پی.لندم ۱" می‌شود و در این صورت می‌توان از "پی.ای.بی.۲" نزدیک به کدون خانمه در "جی.بی.۹۶" استفاده نمود. با کلون کرون لینکر ۲ کدون خانمه حذف شد. این فرایند در قسمت (h) نشان داده شده است.

1. PmlII/BsiWI

883
ساخت پلاسمید واجد ذن سیز فلورستن (پی.سی/ت/هر/2/جی.اف.پی)

به منظور کلون کردن ذن کد کننده پروتئین سیز فلورستن در انتهای "جی.پی۶"، منتظر "جی.اف.پی" "پلاسمید "پی.ای.جی.اف.پی-ان" (کلون تکی) انژیمی" آس.ام.ای/نت"، جد ی و در بین سایت‌های "پی.کیو.اگ/نت"، از پلاسمید پی.ت/هر۲ کلون و "پی.سی/ت/هر/2/جی.اف.پی" یک ثبت ناپاگاری شد. به منظور حذف کدون خانه "هر۲" در این پلاسمید ابتدا لینکر (جدول 1) بین سایت‌های "پی.اس.ای.دی.لی.ی/ایکس.ام.ای/نت" در پلاسمید "پی.ت/ند/نت". کلون شد. از طرف دیگر قطعه "ایکس.اچ.او/1/ای.سی/نت" از "هر۲" (شکل 2) بین سایت‌های مشابه از پلاسمید "پی.ت/نت"، ۱ حاوی لینکر ۲ کلون شد و متعاقبا، قطعه "پی.کیو.اگ/نت/ایکس.کر.اگ/نت" آن جدا و در حد فاصل سایت‌های مشابه از "پی.سی/ت/هر/2/جی.اف.پی" ناپاگاری شد. همه آن‌زمی از شرکت فرمونتا تنظیم شدند.

\[\text{قطعه I از Xhol/AccI} \]

\[\text{قطعه 2 از HindIII} \]

\[\text{قطعه 3 از Eco47 III} \]

\[\text{قطعه 4 از EcoRI} \]

\[\text{قطعه 5 از Xhol/AccI} \]

\[\text{قطعه 6 از HindIII} \]

\[\text{قطعه 7 از EcoR/NotI} \]

\[\text{قطعه 8 از Eco/NotI} \]

\[\text{قطعه 9 از SmaI/NotI} \]

\[\text{قطعه 10 از pEGFP-N} \]

\[\text{قطعه 11 از pCT/Her2/GFP1} \]

\[\text{قطعه 12 از BsiWI/Xma I} \]

\[\text{قطعه 13 از Eco47III/EcoRI} \]

\[\text{قطعه 14 از EcoRI/BsaWI-XmaI} \]

\[\text{قطعه 15 از BsiWI-Eco RI-XmaI} \]

\[\text{قطعه 16 از HindIII} \]

\[\text{قطعه 17 از EcoRI} \]

\[\text{قطعه 18 از EcoR/NotI} \]

\[\text{قطعه 19 از SmaI/NotI} \]

\[\text{قطعه 20 از pEGFP-N} \]

\[\text{قطعه 21 از pCT/Her2/GFP1} \]

\[\text{قطعه 22 از BsiWI/Xma I} \]

\[\text{قطعه 23 از Eco47III/EcoRI} \]

\[\text{قطعه 24 از EcoRI} \]

\[\text{قطعه 25 از EcoR/NotI} \]

\[\text{قطعه 26 از SmaI/NotI} \]

\[\text{قطعه 27 از pEGFP-N} \]

\[\text{قطعه 28 از pCT/Her2/GFP1} \]

\[\text{قطعه 29 از BsiWI/Xma I} \]

\[\text{قطعه 30 از Eco47III/EcoRI} \]

\[\text{قطعه 31 از EcoRI} \]

\[\text{قطعه 32 از EcoR/NotI} \]

\[\text{قطعه 33 از SmaI/NotI} \]

\[\text{قطعه 34 از pEGFP-N} \]

\[\text{قطعه 35 از pCT/Her2/GFP1} \]

\[\text{قطعه 36 از BsiWI/Xma I} \]

\[\text{قطعه 37 از Eco47III/EcoRI} \]

\[\text{قطعه 38 از EcoRI} \]

\[\text{قطعه 39 از EcoR/NotI} \]

\[\text{قطعه 40 از SmaI/NotI} \]

\[\text{قطعه 41 از pEGFP-N} \]

\[\text{قطعه 42 از pCT/Her2/GFP1} \]

\[\text{قطعه 43 از BsiWI/Xma I} \]

\[\text{قطعه 44 از Eco47III/EcoRI} \]

\[\text{قطعه 45 از EcoRI} \]

\[\text{قطعه 46 از EcoR/NotI} \]

\[\text{قطعه 47 از SmaI/NotI} \]

\[\text{قطعه 48 از pEGFP-N} \]

\[\text{قطعه 49 از pCT/Her2/GFP1} \]

\[\text{قطعه 50 از BsiWI/Xma I} \]

\[\text{قطعه 51 از Eco47III/EcoRI} \]

\[\text{قطعه 52 از EcoRI} \]

\[\text{قطعه 53 از EcoR/NotI} \]

\[\text{قطعه 54 از SmaI/NotI} \]

\[\text{قطعه 55 از pEGFP-N} \]

\[\text{قطعه 56 از pCT/Her2/GFP1} \]

\[\text{قطعه 57 از BsiWI/Xma I} \]

\[\text{قطعه 58 از Eco47III/EcoRI} \]

\[\text{قطعه 59 از EcoRI} \]

\[\text{قطعه 60 از EcoR/NotI} \]

\[\text{قطعه 61 از SmaI/NotI} \]

\[\text{قطعه 62 از pEGFP-N} \]

\[\text{قطعه 63 از pCT/Her2/GFP1} \]

\[\text{قطعه 64 از BsiWI/Xma I} \]

\[\text{قطعه 65 از Eco47III/EcoRI} \]

\[\text{قطعه 66 از EcoRI} \]

\[\text{قطعه 67 از EcoR/NotI} \]

\[\text{قطعه 68 از SmaI/NotI} \]

\[\text{قطعه 69 از pEGFP-N} \]

\[\text{قطعه 70 از pCT/Her2/GFP1} \]

\[\text{قطعه 71 از BsiWI/Xma I} \]

\[\text{قطعه 72 از Eco47III/EcoRI} \]

\[\text{قطعه 73 از EcoRI} \]

\[\text{قطعه 74 از EcoR/NotI} \]

\[\text{قطعه 75 از SmaI/NotI} \]

\[\text{قطعه 76 از pEGFP-N} \]

\[\text{قطعه 77 از pCT/Her2/GFP1} \]

\[\text{قطعه 78 از BsiWI/Xma I} \]

\[\text{قطعه 79 از Eco47III/EcoRI} \]

\[\text{قطعه 80 از EcoRI} \]

\[\text{قطعه 81 از EcoR/NotI} \]

\[\text{قطعه 82 از SmaI/NotI} \]

\[\text{قطعه 83 از pEGFP-N} \]

\[\text{قطعه 84 از pCT/Her2/GFP1} \]

\[\text{قطعه 85 از BsiWI/Xma I} \]

\[\text{قطعه 86 از Eco47III/EcoRI} \]

\[\text{قطعه 87 از EcoRI} \]

\[\text{قطعه 88 از EcoR/NotI} \]

\[\text{قطعه 89 از SmaI/NotI} \]

\[\text{قطعه 90 از pEGFP-N} \]

\[\text{قطعه 91 از pCT/Her2/GFP1} \]

\[\text{قطعه 92 از BsiWI/Xma I} \]

\[\text{قطعه 93 از Eco47III/EcoRI} \]

\[\text{قطعه 94 از EcoRI} \]

\[\text{قطعه 95 از EcoR/NotI} \]

\[\text{قطعه 96 از SmaI/NotI} \]

\[\text{قطعه 97 از pEGFP-N} \]

\[\text{قطعه 98 از pCT/Her2/GFP1} \]

\[\text{قطعه 99 از BsiWI/Xma I} \]

\[\text{قطعه 100 از Eco47III/EcoRI} \]

\[\text{قطعه 101 از EcoRI} \]

\[\text{قطعه 102 از EcoR/NotI} \]

\[\text{قطعه 103 از SmaI/NotI} \]
نتایج
بررسی پلاسمید واجد زن‌های "هر" 2 و "جی‌پی 9" به قرم قیوژن

در این واکسن واجد زن‌های "هر" 2 و "جی‌پی 9" با استفاده از لینکر مذکور در جدول 1 ساخته شد. این ساختار با استفاده از بشق با انزیم‌های محدودنافذ و تکمیل تا دو مولکول "هر" 2 و "جی‌پی 9" تولید کرد. کمک گذاری پلاسمید نمایش دادکه که شناختا، این لینکر با استفاده از لینکر، به نه "جی‌پی 9"، حفظ گذاری از اثرات احتمالی در توالی زن‌ها ممکن شود و دقت توالی کد کننده مذکور

در باکی در مورد استفاده قرار گیرد.

نهایتاً کل کودک‌های متولی باعث تولید دو ساختار شد: اولی ساختاری بر پلاسمید "جی‌پی 9" که در آن به ترتیب "جی‌پی 9"، "هر" 2 به شکل یک سل موارد گرفته‌اند. دومی ساختاری بر پلاسمید "جی‌پی 9"، "هر" 2 به شکل یک سل موارد گرفته‌اند. در واقع ساختار دوم به این منظور تولید شد تا نشان دهنده ساختارول قادر به پروتئین است. در ساختار دوم که حاوی "جی‌اف 9" است در واقع پروتئین تولید شده با پروتئین سری فلوورسنت برچسب‌دار شده و 1. DH5α 2. DMEM 3. HEPES
ما فقط رنگ سبز را پس از بیان ساختار مشاهده می‌کنیم. ساختارهای تولید شده هضم آنزیمی شدند که با الکترورفورز روز آگارز صحت ساختار تایید شد (شکل 5).

هضم آنزیمی ساختار پی.سی.تی/هر ۲ با آنزیم های "پی.ام.آل۱" (موجود در توالی "جی.پی.تی و "ایکس. ای. اول" (موجود در توالی "هر۲" منجر به تولید سه باند به ترتیب به اندازه‌های حدود ۲۰۰۰ و ۵۰۰۰ (شکل ۵) یافت شد. نتیجه‌های هضم آنزیمی ساختار پی.سی.تی/هر ۲/جی.اف.پی با آنزیم های "هیند۳" (موجود در توالی "جی.پی.تی و "ایکس. ای. اول" (موجود در توالی "هر۲" منجر به تولید سه باند به ترتیب به اندازه‌های حدود ۲۰۰۰ و ۱۴۰۰ یافت شد (شکل ۵) می‌شود. نتیجه تبعیض توالی نیز صحت ساختارها را تایید کرد.

شکل ۵. تصویر الکترورفورز روز آگارز از هضم آنزیمی ساختارهای پی.سی.تی/هر ۲ و پی.سی.تی/هر ۲/جی.اف.پی.

لاین ۱ مارکر (فرمنتاز) که اندازه هریک از باندها از بالا به پایین نشان داده شده است.

لاین ۲ هضم ساختار پی.سی.تی/هر ۲ با آنزیم‌های "پی.ام.آل۱" و "ایکس. ای. اول" باندهای ۲۰۰۰ و ۵۰۰۰ یافت.

پاز به ترتیب با یک ستاره و دو ستاره مشخص شده است.

لاین ۳ هضم ساختار پی.سی.تی/هر ۲/جی.اف.پی با آنزیم‌های "هیند۳" و "ایکس. ای. اول" باندهای ۲۰۰۰ و ۱۴۰۰ یافت.

۸۸۴
پیامد انجام آزمایشگاهی

به منظور ارزیابی پیامد ساختار تولید شده از لاین سلولی "هک 293"، استفاده شد. 68 ساعت پس از انتقال ساختار های پی/سی/هک/2/جی.اف.پی، "پی سی دی ان ای 3" (کنترل منفی) و "پی ای. جی.اف.پی-این" (کنترل مثبت) به داخل سلول، تولید رنگ سبز فلورسنت بررسی شد. تولید سبز فلورسنت که نمایانگر بیانزن در سلول های حاوی ساختار "پی سی/هک/2/جی.اف.پی-این" است در مقیاس مشاهده شد (شکل 4). سلول های حاوی وکتور بدون زن که به عنوان کنترل منفی استفاده شد، رنگ سبز تولید نکرده و عکس گرفته نشد.

به علاوه سلول هایی که حاوی "پی ای. جی.اف.پی-این" بودند نیز رنگ سبز تولید کردند. در شکل 6 تصویر سلول‌های بدون استفاده از فیلتر فلورسنت نیز نشان داده شده است.

شکل 6. نمای میکروسکوپی (پرگراماژ ۵۰x) سلول های ترانسفت شده با ساختار های "پی، سی/هک/2/جی.اف.پی-این" با میکروسکوپ فلورسنت با فیلتر فلورسنت (a) و بدون فیلتر فلورسنت (b). تولید رنگ سبز در نتیجه بیان ساختار است. تصویر سلول‌های ترانسفت شده با ساختار "پی، ای. جی.اف.پی-این" با میکروسکوپ فلورسنت با فیلتر فلورسنت (c) و بدون فیلتر فلورسنت (d).

سلول های در کلاس پلاسمید "پی سی" دی. ان. ای 3، به عنوان کنترل منفی، ترانسفت شده بودند تولید رنگ نکرده (تصویر نشان داده نشده است).

بحث

هدف از انجام این پژوهش تولید ساختار زننده وارد هر دو زن "هر 2" و "جی پی ۴" به شکل فیوزن و

1. pEGFP-N 2. Transfect

887
بررسی بیان این ساختار تولید شده با استفاده از زنک کننده پروتونی سوز فلورستن بود. به همین منظور، ساختاری به پایه بی. س. دی. ان. ای. که در آن این بیان آتریک چیپ 96 و "سر" 2 به شکل چشم سر هم قرار گرفته، ساختار خود را می‌کند. در این بیان از یک یا بیش از دو پلاکی که ساختار خود، به واسطه یک مجموعه نوید کردن، شد. این امر نشان می‌زند که زنک کننده "چیپ 96"، این ابزار محل‌دار است. از آنجایی که می‌گویند به نیاز می‌کند که اولاً صحیح‌الجوار باشد. چون تألیف‌های وابسته به می‌کند که اولاً قابل‌توجه در وقت است و ثانیاً باعث نیاز به نزدیک تولید زنک مورد استفاده است. قبلاً از معرفي‌های موجود در این واکسن کاندید، به دقت بیان کننده ساختار از دست دیده شده و بیان این از زنک کننده پروتونی سوز فلورستن استفاده شد. در دید اول ممکن است استفاده شود که در پلاسمید حاوی زنک کننده پروتونی سوز فلورستن تولید پروتونی سوز فلورستن می‌کند. اما به‌طور کلی ساختار تولید در همان زنک کننده فورتگت که تولید رنگ سوز فلورستن معرف بیان زنک های "هر "و "چیپ 96" به شکل فیوزن است. زنک های "هر" و "چیپ 96"، مورد استفاده در این پژوهش به ترتیب حدود 2100 و 1250 حرف باز طول دارد. در انتهای این دو "چیپ 96" با طول حدود 800 حرف باز قرار گرفته است. در نتیجه سری طولانی از کدون شروع در زنک "چیپ 96"، دو تا کدون خاتمه در زنک کننده پروتونی سوز فلورستن (حدود 3150 حرف باز) وجد دارد. به‌همین دلیل، قوانین طراحی بازها در زنک ها ایجاد دارند و در زنک ها با دقت طراحی و استفاده شدند. بنابر این، در کتیپت که زنک ها ایجاد می‌کنند، آن را در نظر بگیرید. پس می‌توان نتیجه گرفت که به دلیل قرار گرفتن زنک سوز فلورستن در انتهای "هر" در زنک "هر" و "چیپ 96"، قرار می‌گرفت. به‌طور کلی "چیپ 96"، زنک کننده پروتونی سوز فلورستن در ابتدای "هر" دو در "هر" "چیپ 96" قرار می‌گرفت. احتمال وجود شناختی در بیان زنک های "هر" و "چیپ 96"، قابل بررسی بود.

بیان زنک با استفاده از روش‌های منظوری از جمله وسترن بلت و "آتریک بی. سی. آر"، تأیید می‌شود. روش مورد استفاده در این پژوهش استفاده از زنک کننده پروتونی سوز فلورستن ساده و ارزان است و می‌تواند راه دیگری برای بیان زنک، علاوه بر روش‌های وسترن بلت و "آتریک بی. سی. آر" باشد. چرا که تولید پروتونی را در زیر میکروسکوپ به تصویر می‌کشد. از مزایای دیگر این روش کاربردی آن در تایید بیان زنک های کوچک، مانند شناخته‌ها با ای پی توبه.های وریوستی و باکتریایی است که قابل انتقال با روش وسترن بلت نیست.

اگرچه "هر" و "چیپ 96" مورد استفاده در این پژوهش حاوی توالی که کننده قسمت بین‌قابلی است، ولی این ساختار قابل تولید و ترشح است زیرا در یک یا بیش از دو پلاکی که ساختار خود، به واسطه یک مجموعه نوید کردن شد. این امر نشان می‌زند که زنک کننده "چیپ 96"، این ابزار محل‌دار است. از آنجایی که می‌گویند به نیاز می‌کند که اولاً قابل‌توجه در وقت است و ثانیاً باعث نیاز به تولید زنک مورد استفاده است. قبلاً از معرفي‌های موجود در این واکسن کاندید، به دقت بیان کننده ساختار از دست دیده شده و بیان این از زنک کننده پروتونی سوز فلورستن استفاده شد. در دید اول ممکن است استفاده شود که در پلاسمید حاوی زنک کننده پروتونی سوز فلورستن تولید پروتونی سوز فلورستن می‌کند. اما به‌طور کلی ساختار تولید در همان زنک کننده فورتگت که تولید رنگ سوز فلورستن معرف بیان زنک های "هر "و "چیپ 96" به شکل فیوزن است. زنک های "هر" و "چیپ 96"، مورد استفاده در این پژوهش به ترتیب حدود 2100 و 1250 حرف باز طول دارد. در انتهای این دو "چیپ 96" با طول حدود 800 حرف باز قرار گرفته است. در نتیجه سری طولانی از کدون شروع در زنک "چیپ 96"، دو تا کدون خاتمه در زنک کننده پروتو

 تشکر و قدردانی

از پروفسور کاوایو و دکتر سید به خاطر اهدا سخاوت‌اندیشان، هر-2 و جپی-۹۳ قدردانی می‌شود.

منابع

1. Shed
2. Chaperokine
3. Cytokine

