بررسی ارتباط پروفیل اسیدهای زرد تخمک با برخی خصوصیات گندی
موقفیت لقاح، نرخ تخمگشایی و اندمازه لاروی در ماهی سفید

محمدرضا ایمانپور، طاهره باقری دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

با توجه به ارزش اقتصادی بالای ماهی سفید و نقش و جایگاه اسیدهای زرد پر موافقیت لقاح و تولید مثل، در تحقیق حاضر به بررسی ارتباط اسیدهای زرد تخمک با برخی خصوصیات زیست‌شناسی ماهی، موافقیت لقاح، نرخ تخمگشایی و اندمازه لاروی در ماهی سفید پرداخته شده است. در مجموع بین اسید مرستیک (C14:0) با نرخ تخمگشایی و اندمازه لاروی C20:1n9 (P<0.05) وجود دارد. بین اسید پالمیتیک (C16:0) با تعداد تخمک در گرم ارتباط مستطیلی (P>0.05) وجود دارد. ارتباط اسید گالرولیک (C20:4n6) با تعداد تخمک در گرم (P>0.05) وجود دارد. ارتباط اسید گالرولیک (C20:4n6) با ژن و بیان شده، هماوی کاری و دامپوش، ارتباط معنادار مستطیلی (P<0.05) با بیان شده، هماوی کاری، دامپوش، ارتباط معنادار مستطیلی (P<0.05) با بیان شده، هماوی کاری و دامپوش، ارتباط معنادار مستطیلی (P<0.05) با بیان شده، هماوی کاری، دامپوش

مقدمه

ماهی سفید عمداً در حوزه جنوبی دریای خزر از رودخانه کورا در غرب تا رودخانه آرک در جنوب شرق پراکنده است. امروزه به‌دلیل کاهش ذخایر ماهی سفید، تکثیر و پروپورش این گونه در بسیاری از کشورهای حاشیه دریای خزر و دریای سیاه از اهمیت خاصی برخوردار است و به‌عنوان اصل‌ترین راه حل در افزایش ذخایر ماهی سفید مطرح است [16]. بررسی ماهی اکثری حاوی اسیدهای زرد گیشه‌اف و مایع است.

واژه‌های کلیدی: ماهی سفید، تخمک، اسید چرب، تولید مثل

پیرامون 9/1/89

پیرامون 9/1/89

imanzpoor@gau.ac.ir

1. Direct acid catalysed transestrification

207
جربه‌های ماهی به غنی بودن در اسیدهای جرب چند غیر‌اشباعی با زنجیره طول مخصوصاً ایکوزا پنئاتونیک اسد و دوکوزاهژتنامونیک است. این اسیدهای جرب نقش حیاتی در تغذیه بیشتری از ایمپاری و توسعه سلامتی انسان بازی می‌کنند [9]. نوع و مقدار اسیدهای جرب در بافت ماهی، با موقعیت جغرافیایی، اندازه، سن، نوع تغذیه ماهی، وضعیت تولید مثل و فصل تغییر می‌کند [20]. تخم‌های ماهی، حاوی سطوح n_3 HUFA بالایی از DHA به صورت n_3 -1 HUFA ماهیان آب شیرین مهم‌اند. اسیدهای جرب چند غیر‌اشباعی و n-3 در ماهیان دریایی بیشتر از ماهیان آب شیرین است. اسیدهای جرب چند غیر‌اشباعی به‌طور این‌حل اسیدهای جرب چند غیر‌اشباعی دوکوزاهژتنامونیک است [22]. در کنار اهمیت دوکوزاهژتنامونیک است، به عنوان اسید جرب غیر‌اشباعی، اسید اراشیدنونیک نیز نقش بسیاری در اهمیت مصرف ماهیان دارد. تحقیقات انجام شده نشان داد که اسید اراشیدنونیک به‌صورت دیلیک به عنوان ماده پرور و در تولید ایکوزاهژتنامونیک مطرح است. در می‌تواند باعث رشد و رشدکاری ماهیان شود [18]. اسید اراشیدنونیک مهم‌ترین بیشتر از ایکوزاهژتنامونیک در سرولهای ماهی اسید اراشیدنونیک در کنترل اولالسیون، کنترل جنین‌زایی، تکامل سیستم ایمنی، نرف تغییراتی به‌کلی اولالسیون و نرف در تربیت سلاحیتی در بخش‌های مختلف تغییر یافته که به‌عنوان ماهی به‌صورت دیلیک داده می‌شود [6]. مهم و اساسی در دیواره سولولی مطرح هستند [11]. بین نرخ افراک و مقدار سفولیدری در تخم‌های هالیبوت اتلاف‌شکن، ارتباط منفی ماهیان شد [23]. بین سن مولدین ماهیان و قطر تخم‌ها تفاوت معنی‌داری وجود ندارد. همچنین ارتباط منفی دارد بین قطر تخم و پروپر اسیدهای جرب آنها مشاهده شد. اما مقدار اسیدهای جرب اشاعته شده در تخم‌ها و افزایش قوی در تخم‌ها و پرور اسیدهای جرب آنها مشاهده شد. در تخم‌های بیشتری، در ایلامیه که مقدار اسیدهای جرب اشاعته شده در تخم‌ها با نرخ رشد لازم متاسب است. در نرحی رشد پیشرفت در ایلامیه که مقدار اسیدهای جرب اشاعته شده در تخم‌ها و پرور اسیدهای جرب در عوامل متاسب است. عوامل متاسب است. عوامل متاسب است. صدها داده‌های مختلف از (DHA و n-3 HUFA و EPA) نشان می‌دهند که در نظر سطوح جربی و اسیدهای جرب تخم (چربی کل، DHA و n-3 HUFA) به‌طور می‌تواند راه‌هایی در کاهش تخم کمک کند. تکثیر مصنوعی مشخص گردید [1].

در دو گونه ناسالمان‌های آمریکایی، مقدار لیپید و اسیدهای جرب تخم اندازه‌گیری شد و مشاهده گردید که دو گونه از لحاظ مقدار لیپید با هم اختلاف معنی‌داری دارند. در ماهی سیم دریایی، بین موقعیت افراک تخم با n_3 HUFA و n_3 HUFA داده‌های مختلف از (DHA و n-3 HUFA و EPA) نشان می‌دهند که در نظر سطوح جربی و اسیدهای جرب تخم (چربی کل، DHA و n-3 HUFA) به‌طور می‌تواند راه‌هایی در کاهش تخم کمک کند. تکثیر مصنوعی مشخص گردید [1].

208
پژوهش دیگری در مورد ماهی فلادنر زاپنی، حاکی از تأثیر EPA و DHA به رشد و بقاء این ماهی بر مصرف مصرف این ماهی است [12]. در ماهی سیم دریایی سفید، ماهیان وسیع دارای نسبت اسید آراشیدونیک/کربنات در تخمدان نسبت به تخمدان و تخمدان ماهی پرورشی بودند [18]. در بررسی دیگری روی فلادنر زاپنی، مشخص شد که وزن تخمدان در مولولگی تعیینی شده با جیره حاوی درصد کربن اسید آراشیدونیک (6/0/10)٪ داده وزن بیشتری نسبت به مولولگی تعیینی شده با جیره حاوی درصد بیشتر اسید آراشیدونیک (6/0/10)٪ است [13].

اثبات اسیدهای چرب تخمدان و از نوع ماهیان وسیع و تخمدان ارتواسیومیک از (ARA) و (DHA) و در مقیاس مقدار آنتیک ایکوزاپانتونیک اسید (EPA) [16]. با توجه به ارشد اقتصادی بایائل ماهی سفید و نئش و جایگاه پرورشی اسید چرب بر موافقت لقاح و تولید مثل، در تحقیق حاضر به بررسی ارتباط اسیدهای چرب تخمدان با برخی خصوصیات زیستشناسی گذاشته، موافقت لقاح، نخ تحقیقاتی و ادعا اور توزیع در ماهی سفید می‌پردیزد.

مواد و روش‌ها

تأمین مولولگی و تهیه تخمک و مایع سلومیک

تعداد 15 و 15 قطعه ماهی سفید بی‌خیال ماده و نر با سن و اندازه یکسان، از رودخانه تجربیٔ دانشگاه تجربیٔ صيد و از نظر ارتباط میان برخی خصوصیات زیستشناسی تخمک (قطر، سطح، حجم و نسبت سطح به حجم)، تخمک (قطر، سطح، حجم، نسبت سطح به حجم، قطر زرده، قطر زرده، قطر زرده، قطر زرده، قطر زرده)، دارای قیمت‌های مادری (ظرفی طول، وزن و هم آوری محل)، تکثبات بیوشیمیایی مایع سلومیک (سیمی، نیترات، نیترات، بی‌خیال ماده و نر، بی‌خیال ماده و نر)، پروپلی که در خاک و در داخل نقش شکمی، با توجه به حاکمیت شکمی تخمکی شدند.

سپس برای جلوگیری از وقوع هرگونه مشکل احتمالی در انجمان لقاح موفق و همین طور برفاری شرایط یکسان بین نمونه‌ها اسپرم تمامی مولولگی نر با یکدیگر مخلوط شدند [19].

لقاء

دسته‌ای از تخمدان‌ها که پژوهش گشایانه از مولولگی بایائل ماده بود، با اسپرم‌هایی که از قبل آماده شده بود لقاح داده شدند. پس از آن برای جلوگیری از چسبندگی تخمک، چند دقیقه یکبار تخمک‌ها با آب تازه شستشو و هم زده می‌شدند. این عمل در زمان رفع چسبندگی کامل تخمک‌ها (حدود ۴۵ دقیقه) ادامه یافت.

۱. Paralichthys olivaceus ۲. Dilodus sargus

۲۰۹
چنان‌که ذکر شد در ابتدا از هر مولد به‌طور جداگانه تخمک استحصال و سپس لقاح (توسط استرس‌های مخلوط شده) داده و در مرحله تقسيم دوم سلولی (میترز دو) موفقیت لقاح آنها تعیین شد. برای تعیین موفقیت لقاح، ابتدا با توجه به ضخیم بودن کورون، تخم‌ها به‌دست 60 دقیقه در محلول 5 درصد استناب فرارگرفته و سپس زیر لوب مجهز به میکروترشیمی (با دقت 0.001 میکروتر) تعداد و نحوه تکثیف‌های لقاح (موفقیت لقاح) تعیین گردید.

همواری کاری و نسبی

تخم‌های موجود در 3/4 گرم شمشرش شدت (ابن کار برای هر نمونه 3 پار انجام شد) و بعد حاصل با استفاده از تئاسب به 1 گرم رسانیده شد و به وزن کل تخم‌های (توزین شده با ترازیوا با دقت 5 گرم) با استفاده از این فرمول تعمیم داده شد:

\[F = n \times W \]

که در آن \(F \) هم‌اری کاری، \(n \) تعداد تخمک در یک گرم و \(W \) وزن کل تخم‌های است.

همواری نسبی نیز با تقسیم هماوری کاری به وزن مولد به‌دست آمد.

\[\text{همواری نسبی} = \frac{F}{W} \]

اندازه‌گیری خصوصیات زیست‌شناسی تخمک و تخم

قبل از لقاح، 50 تخمک و پس از آن 50 تخم هیدراتی شده در بافت و بعد از فیکس شدن در محلول استناب

5 درصد، با استفاده از لوب مجهز به میکروترشیمی (با دقت 0.001 میکروتر)، اقدام به سنجش قطر تخمک، تخم و زره‌های گردید. به منظور محاسبه نسبت سطح به حجم، از این فرمول‌های استفاده شد (با توجه به کروی بودن تخمک و تخم):

\[V = \frac{4}{3} \pi r^3 \]

\[S = 4 \pi r^2 \]

در فرمول‌های بالا S حجم و r شعاع تخم و تخمک است. برای محاسبه نسبت فضای زره به دور زره، ابتدا با استفاده از این رابطه فضای اطراف زره محاسبه شد:

\[Ps = V - Ys \]

\[Ys \]

پینتریب فضای اطراف زره، حجم تخم و فضای زره است. به‌دست آمده از آن با تقلیل فضای زره به دور زره، این نسبت به‌دست آمد [7].

اندازه‌گیری نرخ تخم‌گذاری

تفهم‌های لقاح یافته به‌صورت جداگانه به سالن انکوباسیون منتقل شد. پس از آن و در زمان ترخیص، نرخ تخم‌گذاری و طول از این آندازه‌گیری شد. برای تعیین نرخ تخم‌گذاری هر مولد، تعداد تخم‌های لقاح یافته و منتقل شده به هر انکوباتور و همچنین تعداد لاوه‌ها حاصل از هر انکوباتور (متصل به هر مولد) به‌روش وزنی (با ترازیوا با دقت 1/10 طبق این رابطه محاسبه شد: 210.
بررسی ارتباط بروز مشاهده‌های خاص در تخمک با خصوصیات گندان

معادله (۶) وزن کل تخم (الارو)‌های نتیجـت کاری (به گرم)× تعداد تخم (الارو) در گرم= تعدـد تخم (پا لارو) با تقـسم این دو عدد و طبق این رابطه موافقت تجمیع‌شونده محاسبه شد:

\[\text{معادله (۷) } 100 \times \text{تعداد تخم} = \frac{\text{تعداد تخم}}{\text{تعداد الارو}} \times \text{فوتیه تخم گستانی} \]

اندازه‌ای لاروی

اندازه‌ای لاروی بروز این آنها در محلول فرماین 1/2 درصد باعث زیر لوب می‌گردد. میکروتری تخم‌شناسی (با دقت 100 میکرومتر)، انداده‌گری گردید. این عمل تا زمان نابودی شدن کامل کیسه زرد‌های غیرفوتیت قرار گرفت.

اندازه‌گری اسید چرب

برای آنالیز اسیدهای چرب و برخی جلوگیری از افزایش هزینه‌ها، از بین نمونه‌ها به طور اتفاقی ۱۰ نمونه انتخاب شد و هر نمونه بار تزریق شد تا جمع نمونه‌ها به ۳۰ عدد پرداخت.

آمادسازی نمونه‌ها

برای آمادسازی تخم‌کهای براش انداده‌گری اسیدهای چرب، وزن نمونه‌ها با ترازوی با دقت ۱۰۰۰/± گرم توزین شد و سپس با استفاده از فیلتری در کف پری دیش به‌صورت لایه‌ای با حداکثر ضخامت یک خشک‌گرد و بعدها ۴۸ ساعت در داخل آن با درجه حرارت ثابت ۶۰ درجه سانتی‌گراد کامل خشک شد. بعد از خشک کردن، وزن خشک آنها با ترازو انداده‌گری شد و با استفاده از این فرمول‌ها درصد رطوبت و درصد وزن خشک آنها محاسبه گردید:

\[\text{معادله (۱۳) } 100 \times (\text{وزن خشک} - \text{وزن تر}) = \text{درصد رطوبت} \]

\[\text{معادله (۱۴) } 100 = \text{درصد وزن خشک عضله کیور توده‌های خشک شده} \]

توپه‌های خشک شده به ظرف در بردار منتقل و تا استخراج چربی و آنالیز آن در فریزر با دمای ۸۰-۹۰ درجه سانتی‌گراد دچار شدند.

استخراج چربی

نمونه‌های خشک شده در آن با استفاده از بیاخ‌خس در به‌آمادگی داشته‌گاه اروپیه منتقل گردیدند و بعد از آنکه در هاون کوکنوت کاملاً پودر و همگی شندند برای هر دست در آن ۴۰ برنج در رسانه‌گردي قرار داده شدند تا کاملاً خشک گردند. ابتدا با استفاده از ترازوی با دقت ۱۰۰۰/± گرم نمونه وزن گردید و در لوله‌های به‌پنجره بسته شد. برای استخراج اسیدهای چرب از روش استخراج ابتدا از روی استخراج انر این استخراج شد و میلونیت دیترات بسته‌بندی شد. سپس لوله در پیچدار با روبردی با روندیک فریزر ثانیه‌ای و کاملاً محکم شد. به‌دست آورده ۱۰ ساعت با استفاده از آپناد سوخته ۲۰۰ دور در دقیقه عمل هیدرات انجام شد. سپس چربی
استخراج شده در اثر از پودر و آشغال نمونه جدا و در لوله آزمایش دیگری ریخته شد و در آن با دمای ۴۰ درجه سانتی‌گراد بهم‌تاریخ ۱۲ ساعت قرار گرفت. تا اثر تبخير شده از ان خارج شود. این که در ته لوله باقی ماند.

چربی است. این عمل سبار نکنار شد تا تمام چربی از بافت جدا گردد.

پس از استخراج چربی با استفاده از آنالیز اسیدهای چرب روی چربی استخراج شده محصول ۲ مولار هیدروکسید پتاسیم در منالول به‌مدت ۵۰۰ میکرولیتر اضافه، سپس روی آن ۱ میلی‌لیتر HCl ترمال اضافه گردید و پس از بستن سر لوله در حمام آب ۰۸ درجه سانتی‌گراد بهم‌تاریخ ۲۰ دقیقه قرار گرفت. سپس بهم‌تاریخ ۲ دقیقه با شیکر با سرعت ۲۰ دور در دقیقه هم زده شد (هدف از این کار تبدیل اسیدهای چرب مصالح به گلیسرول با تری‌گلیسریدها به متیل‌استر اسیدهای چرب است. اسیدهای چرب آزاد فرآیندها کمتری دارند و معمولاً یک آنها پهن‌می‌شود ولی متیل‌استرات‌ها قرار است و پیکده‌های تیزی می‌دهند که امکان آنالیز حساس را فراهم می‌آورد).

سپس با قرار دادن در آب داغ ۸۰ درجه سانتی‌گراد اجراه داده شد که فاز هیتان-۱ از منالول کامل جدا شود.

اسیدهای چرب گاه با KOH منالولی به متیل‌استر تبدیل شدند که نسخه‌ی H ۲۰ درجه سانتی‌گراد کوک در نیم ساعت مخصوص نمونه ریخته شد ، در این پرس گردی و تا زیری به دستگاه گاز کروماتوگراف در فریزور ۲۰ درجه سانتی‌گراد نگه‌داری شد [۲۱].

نتایج

طول و وزن ماهیان مولد

چنان‌که در جدول ۱ نشان داده شده است، میانگین وزن (گرم) و طول (سانتی‌متر) ماهیان سفید ماده به‌ترتیب

<table>
<thead>
<tr>
<th>طول</th>
<th>وزن</th>
<th>میانگین (گرم)</th>
<th>میانگین (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۵۵</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
</tr>
</tbody>
</table>

۱، Direct acid catalysed transestrification ۲. bar

۲۱۲
بررسی ارتباط پروفیل اسیدهای چرب تخمک با برخی خصوصیات گذشته...

جدول ۱. دانه‌ای میانگین و انحراف معیار وزن و طول مولید مادر

<table>
<thead>
<tr>
<th>مWr</th>
<th>وزن مادر (گرم)</th>
<th>طول مادر (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرخ</td>
<td>۷۷۷±۲۲۶ (5/۱-۱۴۵/۱۲۰۰)</td>
<td>۳۹/۱۲±۲ (۳۵/۱-۱۰۹/۱۲۰۰)</td>
</tr>
</tbody>
</table>

ارتباط پروفیل اسیدهای چرب تخمک با برخی خصوصیات گذشته موثری ندارد. نرخ تخم‌گذاری و نژاده‌ای در ماهی

سفر

جدول ۲. میانگین و انحراف معیار دانه‌ای اسیدهای چرب تخمک (میلی‌گرم در هر گرم وزن خشک)

<table>
<thead>
<tr>
<th>اسید چرب</th>
<th>میانگین</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0</td>
<td>۹/۸۸±۲/۸</td>
<td></td>
</tr>
<tr>
<td>C16:0</td>
<td>۷/۸۱±۱/۷</td>
<td></td>
</tr>
<tr>
<td>C18:0</td>
<td>۶/۷۸±۱/۶</td>
<td></td>
</tr>
<tr>
<td>C18:1n9</td>
<td>۶/۵۷±۱/۶</td>
<td></td>
</tr>
<tr>
<td>C18:2n6</td>
<td>۶/۴۲±۱/۶</td>
<td></td>
</tr>
<tr>
<td>C18:3n3</td>
<td>۶/۱۶±۱/۶</td>
<td></td>
</tr>
<tr>
<td>C20:4n6</td>
<td>۶/۰۹±۱/۶</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>۶/۰۹±۱/۶</td>
<td></td>
</tr>
<tr>
<td>DHA</td>
<td>۶/۰۹±۱/۶</td>
<td></td>
</tr>
<tr>
<td>PUFA</td>
<td>۶/۰۹±۱/۶</td>
<td></td>
</tr>
<tr>
<td>SFA</td>
<td>۶/۰۹±۱/۶</td>
<td></td>
</tr>
</tbody>
</table>

تنها یکی از نمونه‌ها دارای این اسید چرب است.

میانگین، انحراف معیار و دانه‌ای اسیدهای چرب تخمک در دو نمونه است. با توجه به جدول ۲، این اسید مرسیتیک (C14:0) با نرخ تخم‌گذاری تخم ارتباط معنی‌دار مستطیم (P<۰/۰۵) وجود دارد. بنابراین پروفیل اسیدهای چرب تخمک در گرم ارتباط مستطیم معنی‌دار (P<۰/۰۵) وجود دارد. ارتباط اسید استاتریک و اسید پلینیک با چرخ میکروسکوپی روز پس از تخریب (P<۰/۰۵) و قطر سر لانه تازه تخریب شده (P<۰/۰۵) معکوس است. ارتباط اسید لینولئیک (C18:2N6) با وزن گندم سیال شده

۲۱۳
پرسی ارتباط پروافیل استهای چرب تخمک با برخی خصوصیات گندی.

جدول ۳. ارتباط پروافیل استهای چرب تخمک با برخی خصوصیات گندی، موافقت نمای. نرخ تخم گشایی و اندامه

<table>
<thead>
<tr>
<th>لاوری در ماهی سفید</th>
<th>اسید چرب</th>
<th>C18:1n7</th>
<th>C18:0</th>
<th>C16:1n7</th>
<th>C16:0</th>
<th>C14:1n5</th>
<th>C14:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول مولد (cm)</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>وزن مولد (gr)</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>طول سر اثر (mm)</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>قطر تخمک (mm)</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>قطر زردگه (mm)</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>قطر زردگه (mm)</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>قطر هماوری (mm)</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
</tbody>
</table>

۲۱۴
<table>
<thead>
<tr>
<th>C20:2n6</th>
<th>C20:1n9</th>
<th>C20:0</th>
<th>C18:3n3</th>
<th>C18:2n6</th>
<th>C18:1n9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.37</td>
<td>-0.33</td>
<td>-0.35</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.32</td>
</tr>
<tr>
<td>-0.43</td>
<td>-0.45</td>
<td>-0.48</td>
<td>-0.47</td>
<td>-0.47</td>
<td>-0.47</td>
</tr>
<tr>
<td>-0.42</td>
<td>-0.44</td>
<td>-0.46</td>
<td>-0.45</td>
<td>-0.45</td>
<td>-0.45</td>
</tr>
<tr>
<td>-0.41</td>
<td>-0.43</td>
<td>-0.45</td>
<td>-0.44</td>
<td>-0.44</td>
<td>-0.44</td>
</tr>
<tr>
<td>-0.40</td>
<td>-0.42</td>
<td>-0.44</td>
<td>-0.43</td>
<td>-0.43</td>
<td>-0.43</td>
</tr>
</tbody>
</table>

Ademe جدول 3					
C20:0n6	C20:1n9	C20:0	C18:3n3	C18:2n6	C18:1n9
-0.37	-0.33	-0.35	-0.32	-0.32	-0.32
-0.43	-0.45	-0.48	-0.47	-0.47	-0.47
-0.42	-0.44	-0.46	-0.45	-0.45	-0.45
-0.41	-0.43	-0.45	-0.44	-0.44	-0.44
-0.40	-0.42	-0.44	-0.43	-0.43	-0.43

<p>| Ademe جدول 3 | | |
|---|---|---|---|---|---|
| C20:0n6 | C20:1n9 | C20:0 | C18:3n3 | C18:2n6 | C18:1n9 |
| -0.37 | -0.33 | -0.35 | -0.32 | -0.32 | -0.32 |
| -0.43 | -0.45 | -0.48 | -0.47 | -0.47 | -0.47 |
| -0.42 | -0.44 | -0.46 | -0.45 | -0.45 | -0.45 |
| -0.41 | -0.43 | -0.45 | -0.44 | -0.44 | -0.44 |
| -0.40 | -0.42 | -0.44 | -0.43 | -0.43 | -0.43 |</p>
<table>
<thead>
<tr>
<th>درصد</th>
<th>عناصر کیفیت</th>
<th>Ara/EPA</th>
<th>Σ n-6/Σ n-3</th>
<th>Σ n-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>طول مولکول (cm)</td>
<td>0.28</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>0.3</td>
<td>وزن مولکول (gr)</td>
<td>0.3</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>0.28</td>
<td>تعداد تخمک در گرم</td>
<td>0.28</td>
<td>0.22</td>
<td>0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>درصد</th>
<th>عناصر کیفیت</th>
<th>n-3 HUFA</th>
<th>PUFA</th>
<th>HUFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>طول مولکول (cm)</td>
<td>0.28</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>0.3</td>
<td>وزن مولکول (gr)</td>
<td>0.3</td>
<td>0.22</td>
<td>0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>درصد</th>
<th>عناصر کیفیت</th>
<th>AA/EPA/DHA</th>
<th>MUFA</th>
<th>SFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>طول مولکول (cm)</td>
<td>0.28</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>0.3</td>
<td>وزن مولکول (gr)</td>
<td>0.3</td>
<td>0.22</td>
<td>0.27</td>
</tr>
</tbody>
</table>
بحث و نتیجه‌گیری

در نتایج پیش آمده اسد پالمنیک در بین اسیدهای چرب اشباع تخمک ماهی سفید، بالاترین میزان را داراست. اسیدهای چرب موجود در جیره غذایی مولدن، اثر زیادی روی پروپول فیبرال اسیدهای چرب لاش‌های ملونین و تخم آنها، می‌گذارند [16]. با توجه به این مطلب و همین‌طور ارتباط معنی‌دار این اسید چرب با تعداد تخمک در ماهی سفید، می‌توان بیان کرد که وجود مقادیر مناسبی از این اسید چرب در تخمک که خود تحت تاثیر جیره غذایی ملونین، به‌خصوص در ایام رسیدگی جنیس و نزدیک شدن مولد به‌صورت تکثیر است، به‌عنوان افزایش تعداد تخم‌های استحصالی، منجر به تکثیر خوب الگه از نظر کمی خواهد شد. پایه در نظر داشت که در کنار افزایش تعداد تخم‌های حاصل در یک گرم، معمولاً گروه‌های کوچک‌تری (بعلیل کاهش اندازه تخمک) تولید خواهد شد که این چندان نتیجه مطلوبی نیست [17]. مشابه این توضیح در مورد روابط معنی‌دار دیگر اسیدهای چرب با تعداد تخمک در گرم صادق است. ارتباط مستقیم و معنی‌دار اسید پالمنیک با نرخ تخم‌گذاری نیز جلب توجه می‌کند. در مورد روابط معنی‌دار اسید استاتراسکیک و اسید ولنتیک به‌طور یک‌طرفه تخمک گروه و روی تخم‌های تخمک ماهی سفید، مقدار اسید استاتراسکیک بر خلاف اسید ولنتیک به‌طور نسبی کمتر است [18]. بین اسید ولنتیک و اسید لیونتیک بی‌درنگ ارتباط وقوع دارد ولی این ارتباط معنی‌دار نیست (جدول 3) [19]. ارتباط معنی‌دار اسید لیونتیک با وزن گراند سیال شده که در واقع حالتی نامطلوب است، علوا بر اینکه گروه‌های اهمیت این اسید چرب در ماهی سفید است، بلکه حتی بیانگر اثر منفی و به‌چندان مناسب این اسید چرب در ماهی سفید است که الگه از نظر کمی بزرگ‌سازی ماهی سفید و ایفای این‌گونه به‌عنوان گونه‌های لس‌چین محسوب می‌شود، نتیجه‌گیری قابل قبول بیشتری است؛ زیرا معمولاً اسیدهای چرب امگا 6، معرف ماهیان آب شور است. در این اسید گانولنیک تخمک با طلوع لازه تخم‌گذاری و نتیجه‌گیری وارد مقدار مستقیم و جاری دارد. با توجه به مطلوبیت زیاد بودن طول لازه در زمان تخم‌گذاری، این اسید چرب به‌عنوان فاکتوری مثبت محسوب شده و در جیره غذایی ملونین و لازه‌ها ناحیه‌گرد. در مورد رابطه اسید چرب با تعداد تخمک در گرم گراند سیال شده، علوا بر مطالعه عناوین شده در مورد ارتباط همین فاکتور C20:2n6 و...
پرسی ارتباط روندی اسیدهای چرب تخمک با برخی خصوصیات گانی

مقدمه‌ای‌ها و مدل‌های

تلخاد تخمک در گرم) با استاد پالاالتیک، نکته جالب توجه اینکه رابطه معنادار این اسید چرب با وزن مولد

معقوس است (جدول 9)، این بدان معناست که برخلاف حالت معمول که با افزایش اندازه و در حقيقة وزن

مولدین، تعداد تخمک‌های حاصل افزایش می‌یابد [3]. استفاده از این اسید چرب در جریه مولدین موجب شود

که مولدین کوچکتر، تعداد تخمک‌های بیشتری تولید کند. در صورت نظر گرفتن این وضعیت، این روش

دو نتیجه بحران مثبت و منفی در یک دارند: نتیجه مثبت وقتی اهمیت پیدا می‌کند که هدف تکثیر محض باید،

به این ترتیب که با تغذیه پیش مولدین با جریه غذایی حاوی مقدار معنادار این اسید چرب، زمان و هزینه کاهش

صرف تغذیه و تغذیه پیش مولدین می‌شود تا بر م(RE)محل تغذیه‌ی پرستند که این حالت برای یک تکثیرکننده

حالتی ایده‌آل محصول می‌شود. این جنبه منفی قضیه در مورد گرفتار رسته‌های صادق است، زیرا برای تولید

ماهیان بازار‌ فرد تکثیرکننده به‌همان نسبت سرد، دیج اکثر می‌شود. پس در صورت تأیید طبق‌ ریزی این ارتباط

توسع تحقیقات گسترش‌دهنده، می‌توان از این اسید چرب بسته به نیاز بهره جست. در مورد ارتباط استدلال

با طول سر ازاد و روز پس از تغذیه می‌تواند شده در مورد استاد استارکیک و اوینیک

C20:2n6.

قابل پیان است.

آنالیز اسیدهای چرب تخمدان و ازور نورس ماهیان و حیوانی و تخم و لازورهای مولدین نواحی گرم‌سیری،

گویای نمایندگی اسید آراسیتونیک (ARA) و دوکوگوهراتونیک اسید (DHA) و در مقال مقادیر انگک

DHA/EPA و ARA/EPA ایکزپیرتزیونیک اسید (EPA) است که این مطلب گویای بالا بودن نسبت‌های

قباس با گونه‌های نواحی سردسیری است [3]. با توجه به مطلب اخیر و در نظر گرفتن این نکته که ماهی سفید

دریای خزر، نه گونه‌ای گرم‌سیری است و نه سردسیری، بکه متعلق به نواحی معنادار است، می‌توان بهدیل

مقادیر حد واسط اسیدهای چرب و نسبت‌های بالا بوده در این ماهی پی برد (جدول 2). نتیجه مذکور حامل این

پیشنهاد است که ممکن است اسید آراسیتونیک نقش تغذیه‌ای چندان حیاتی در تخم و هیچ‌نین نقش با اهمیت در

نمو و ناقی لازوری ماهی سفید نداشته و همین‌طور ممکن است محکم‌های غذایی حاوی این اسید چرب با اهمیت

در جریه غذایی مولدین، در ارتباط توندنه‌ی تولید ملی چندان ارگان‌زبان [4].

در مورد ارتباط معنادار اسیدهای چرب اراسیتونیک، EPA و نسبت

DHA/EPA در مورد دما تخمک در EPA و نسبت

DHA/EPA با نسبت مطلق با حجم

گرم، مطالب عنوان شده در مورد اسید پالاالتیک مصداق دارد. ارتباط معنادار

EPA با نسبت سطح به حجم

تخم، که با در نظر گرفتن این دکه که نسبت مطلق به حجم بالین تخم، جنب این در حال رشد و نمرو را در شرایط

بهینه قرار می‌دهد [24)، به معنی اثر مثبت این اسید چرب اگر 3 روزی خصوصیات زیستی ماهی سفید است.

با وزن گنگ سیبی، همه‌ها و هم‌ها و نسب مولدین، این

EPA با نسبت گرفت روابط معنادار

DHA/EPA با برخی خصوصیات ذکر شده صادق است (جدول 3). ارتباط معنادار

روابط مشابه نسبت DHA/EPA

با 218
بررسی ارتباط امتیازی علائم اسیدهای چرب تخمک با برخی خصوصیات گاندی... مهدی وارنی، طاهره بهاری

اسیدهای چرب امگا 3 با هماوری کاری و نسبی، برخی اسیدهای چرب امگا 6، تأثیر دیگری بر اهمیت این دسته از اسیدهای چرب در ماهی سفید است. در مورد نسبت n-6/n-3، علاوه بر ارتباط منفی با رود جنینزاپی [13]، با وزن گانی ماهی سفید نیز که به عنوان یکی از شاخصهای تکنیکی موفق، در تضاد است (جدول 3). زیاد بودن نسبت مورد نظر به عنوان یک مدل برتری می‌شود.

میزان تولید تخم اغلب مولدن تنگی سه به‌صورت غذایی طبیعی یا عضای میکروبی از n_3 HUFA، به‌صورت این بیانانی که فیل تخم، نظر می‌رود n_3 HUFA بالاتر است [14]. ارتباط مستقیم و منعی دار جریهای غذایی طبیعی یا فلزی بر اثر میکروبی از n_3 HUFA با نرخ تخشیشی در ماهی سفید مشاهده نشد (جدول 3). ارتباط مستقیم با قطر تخم و وزنه و نسبت ارتباط معکوس با نسبت میکروی یا اثرات قطر از تخم و وزنه سطح به حجم تخمک، بیانگر نوعی رابطه نسبی است که از دو جنبه میثت و منفی قابل بررسی است: جنبه میثت در مورد نسبت سطح به حجم تخمک که ممکن قبلاً یافته و لازم است [15]. جنبه منفی نیز در مورد کوچکی لاروها تولید نشده مطرح است. در مورد رابطه مستقیم با قطر تخم و رابطه معکوس با نسبت SFUFA اثر مثبت این نسبت تا حدی در مورد شرایط چرخ دو روز 1-9 به طور مستقیم با نسبت تخم و طول نسبت واقعیهای طبیعی همان چرب امگا 3 EPA و DHA در ماهی سفید است. همان‌طور که پیشتر ذکر شد، ماهی سفید علاوه بر اینکه جزء ماهیان نواحی مع的女人 محبوب می‌شود، از نظر زیستی جزء ماهیان آب‌های لب شور با حساب می‌آید (با توجه به زیستن در دریای خزر)، لذا از نظر دارا بودن اسیدهای چرب امگا 3 EPA و DHA در وضعیت حاصل از این تحقیق تهیه 2 کپسول به ماهیان آب شور قرار داده شد (جدول 2 و 3) [22]. نتایج حاصل از این تحقیق نیز تا حدی در زیان تصویب کننده مطلب اخیر است. در مورد ارتباط مستقیم و منعی دار در زمان‌های مختلف 2 کپسول به ماهیان سفید که از این تحقیق، می‌توان به این نتیجه کلی رسید که تعداد در جیره‌گذاری که روی ترکیب شیمیایی لاشه و در پی آن تخمک و مواد تناسلی مولدنی و همین‌طور کیفیت بقای لارو تولیدی مؤثر است. جزو شرایط لازم برای انجام تکنیکی موفق است.

1. N. A. Abrosimova, S. S. Abrosimova, A. A. Biryokova, "Effects of the lipid composition of stellate sturgeon eggs on commercial quality of this species", 3th ISS Abstracts, 97 Italy (1997).

منابع

