سنتز و شناسایی برخی از باریم فسفونات‌ها:
 بررسی برخی از عوامل مؤثر بر مورفولئوزی (ریختشناسی) آنها

على محمودی, سعید دهقانپور, وحیده کرمانی: دانشگاه آزاد اسلامی

چکیده
یک روش هیدروترمال برای سنتز نانوذرات باریم فسفونات در حضور سوروفکتان‌های سیل بر می‌آید. این روش را برای سنتز شمات شده به کمک الگوهایی (CTAB) با سدیم دو دسیل سولفات (SDS) بر پایه pH 6 = 6 طراحی شد. کمپلکس سنتز شده به کمک طیف‌سنجی XRD و XRF و EDAX و IR مشخص گردید. مورفولئوزی کمپلکس با بررسی اکتیون دیوارن‌های کریستالی کمپلکس توسط SEM (سی‌ام‌اس ام) و تصاویر جهانی (SEM) بر نتایج کریستالی و شکل‌های کریستال و تقریباً مشابهی در آن‌ها به دست آمد. با این توجه این مطالعه کمپلکس مورد تحقیق به دست آمد.

مقدمه

پلیمرها باید بدن هم‌سایه باه این نام خوانده می‌شوند که ساختار نامتناهی متشکل از پیوسته‌های کونورپلیمراسیون یون‌های فلزی و لیگاندانه‌های آنی‌ها [21]، [22]، [23]، [24]، [25]، را گسترش می‌دهند. PCP‌ها یک مجمع منظم دارند که ساختار‌های خلل و فرآیندهای اندازه‌زنیهای مطلوب، شکل روزنه و سطوح عمیق‌تر روزنه را ارائه می‌دهند و در کاربردهای مربوط به جداسازی و تفکیک، مفید هستند. [26]. [27]. [28]. [29]، [30]، [31].

ساختارهای توده‌ای PCP‌ها از طریق برخی از مولکول‌ها و یون‌های مسدود شده در حفره‌های ریز می‌باشد. ساختارهای توده‌ای PCP‌ها از طریق برخی از مولکول‌ها و یون‌های مسدود شده در حفره‌های ریز می‌باشد. Pore 1. Porous Coordination Polymer

واژه‌های کلیدی:
Mmirala@ymail.com

1. Porous Coordination Polymer

141

Downloaded from jsci.khu.ac.ir at 8:14 IRST on Thursday November 14th 2019
روش سنترز

بطور کلی PCP با استفاده از حل‌الحال به عنوان حذف‌کننده اغلب اهداف منظم در فاز مايع سنترز می‌شوند. واکنش از طریق ترکیب محلول بی‌هوا فلزی با محلول می‌باشد که با دمای اتاق با تحت شرایط هیدرورتمال سولوورتمال قابل انجم است [32]. سه نوع لیگاندی که اغلب استفاده می‌شوند، لیگاندهای خشک، کاتیونی و اندوئی را شامل می‌شوند.

1. Template By Guest
2. Template For Guest
فسفونهای فلزی

در سال‌های اخیر، فسفونهای فلزی که دسته‌ای غنی از مواد هیبریدی آلی-فلزی هستند، به‌دلیل کاربرد احتمالی‌شان در کاتالیز، تبدیل بیون، رسانش پروتوس، ماده‌جذب کننده، حسگرها و شیمی بین‌الهایی، در معرض رشد و توسعه چشمگیری قرار گرفته‌اند [9].

مواد هیبریدی آلی-فلزی، ترکیبی شامل مولکول‌های آلی و قسمت‌های غیرآلی هستند. چنین موادی به دو بخش تقسیم می‌شوند:

1. پلیمرهای کنورتنینه شده که به عنوان آراپه‌های مربک از انیمه‌های فلزی با کلاسترهای پل شده با مولکول‌های آلی تعریف می‌شوند.

2. اکسیدهای فلزی هیبریدی که چنین از ساختارشان شامل آراپه‌های فلز-اکسید-فلز (M - O - M) است. فنیل فسفونهای قلیایی خاکی معمولاً ساختار لاپه‌ای را تشکیل می‌دهند و می‌توانند به عنوان ماده میزان برای بررسی بهره‌کشی‌های مهم‌اند. میزان و پایداری ساختاری به کاربرده شود، که برای رساندن به یک نوع ماده عفال به عنوان ذخیره‌مواد و کاتالیز انتقال فاز اهمیت بسیاری دارد. [80] (شکل‌های ۱ و ۲).

[شکل ۲: پودر فسفونهای فلز قلیایی خاکی]

در این پژوهش، ما سنتز فسفونهای فلز قلیایی خاکی باریم از هیدروبرماید و سولو و ترمال بررسی کردیم، در حالی که آزمایش (ستیل تری متیل امونیوم برماید) یا SDS (سولی دو دسی سولفات) استفاده می‌کنیم.

1. Can-Zhong Lu 3. nanosheets 4. nanoribbons
بخش تجربی

چند سالی است که بررسی انواع فسفونات‌ها مورد توجه قرار گرفته است. هنگام سنتز کمپلکس‌هایی از نمک‌های باریم با فسفونات تا تحقیق مورفولوژی و خواص آنها است.

سنتز لیگاند (H₃L): برای تهیه لیگاند، مخلوطی از 2/25 گرم از 2/3-بیس (امینو متیل) بینزن (3/16 میلی‌مول) و 1/4 گرم از مسیرو اسید و ۱/۶ گرم از قرم آلدید (CH₂O) و ۶/۵ میلی‌لیتر هیدرو کلریک اسید عضوی در ۵ میلی‌لیتر آب مقطور تهیه شد، سپس این محلول را در یک بالن ریخته و بالن را مجوز به همراه مغناطیس میکمی و می‌گذاریم تا واکنش به مدت ۳ ساعت انجام یابد. سپس مخلوط حاصل را صاف کرده و روابط حاصل را خشک و با هیدروکلریک اسید نیترات می‌کنیم.

سنتز کمپلکس با استفاده از باریم کلرید و لیگاند: در این روش مخلوطی از ۲۰/۲ گرم (5/1 میلی‌مول) از باریم کلرید و ۲۰/۲ گرم از لیگاند در ۱۰ میلی‌لیتر آب مقطور تهیه شد و برای مدت ۵ دقیقه با هم‌مغناطیسی به هم زده شد. سپس قطره‌ قطره محلول نتیج آمونیم هیدروکسیسید ۲۵% به آن اضافه شد و محلول در pH ثابت شد.

![Phenylphosphonic acid](https://example.com/phenylphosphonic_acid.png)
سوزانده‌برای از باریم سولفونات‌ها، برمی‌گردد.

در ابتدا به مدت 5 ساعت دما آزمایش یافت تا به 110 درجه سانتی‌گراد رسید و در این دما به مدت 38 ساعت گرمایش یافت. بعد از این مدت روست سفید رنگی حاصل شد. پس از صاف کردن این مخلوط، رسوپ روزی کاغذی سایه‌بار با آب مغذی و سه بار با اتانول 99% در انتها یک بار با آب مغذی شسته شد. در انتها باریم باقی مانده در مجاورت هوا خشک شد.

از این قسمت به بعد، تأثیرات مواد افزودنی نظیر سورفکانت‌ها بر مورفولوژی کمپلکس‌های این لیگاند به باریم در شرایط مختلف از جمله حلال-تغییر نسبت فلز به لیگاند و... بررسی شد.

سنتر کمپلکس با استفاده از باریم کلراد و لیگاند (H5L) در حضور CTAB و SDS در حلال دی‌تی‌آی‌سولفونکساید (DMSO) در حلال دی‌تی‌آی‌سولفونکساید (DMSO)

سنتر کمپلکس با استفاده از باریم نیترات و (H5L) در حضور SDS در حلال دی‌تی‌آی‌سولفونکساید (DMSO) استفاده کردم و بقیه شرایط مانند سنتر 3-2 (آ) بود.

سنتر کمپلکس با استفاده از باریم نیترات و (H5L) در حضور SDS در حلال دی‌تی‌آی‌سولفونکساید (DMSO) استفاده کردم و بقیه شرایط مانند سنتر 3-2 (آ) بود.

شما هم می‌توانید کردم.
نتایج و بحث

مجموعه‌ای از نانوکریستال‌های باریمفسفونات با روش هیدروترمال در دمای C 110 بدون حضور SDS و CTAB و یا در حضور سورفاکتنت‌های اکسیده شدن که در آب نامحلول بودند.

طیف مادون قرمرز لیگاند در شکل 4 نشان داده شده است. سنتز شدن که در آب P = O

کشی یک نوار در 1300 cm^{-1} O–H مشاهده 815 cm$^{-1}$ P–O و حدود 3300 cm^{-1} نوار بین گروه گروه می‌شود.

طیف مادون قرمرز کمپلکس در شکل 5 نشان داده شده است. به‌همراه مشخصه‌ی طیف ارتقا دریافتی کمپلکس نوار

کشی P = O در ناحیه 1077 cm^{-1} است که در مقایسه با طیف مادون قرمرز لیگاند جابجایی صورت گرفته است. این گروه

تبیین نوار مربوط به گروه O–H نیز جابجایی شده است. این جابجایی گروه کمپلکس را نشان می‌دهد (شکل‌های 4 و 5).

Powder X-ray diffraction Perkin -Elmer Philips Polymer Laboratory

146
شکل ۴. طیف مادون قرمز لیگاند

شکل ۵. طیف مادون قرمز کمپلکس

باتوجه به نتایج این نمونه و محاسبات انجام شده، نسبت فلز (Ba) به فسفر (P)، ۲:۳ بوده است.

از ترکیب در شکل ۶، پیک‌های قوی مربوط به فسفر (P) و باریم (Ba) را نشان می‌دهد.

۱۴۷
شکل ۶. طیف کمپکس EDAX

پودر نمونه‌ها در شکل‌های ۷ و ۸ نشان دهنده فاز کریستالی باریم فسفونات است. با توجه به این شکل‌ها می‌توان گفت دو نمونه‌ای که در سنترهای ۲-۶ (۱) و ۱-۴ تهیه شدند در یک فاز هستند. نتایج بالا می‌تواند باهمکاری SEM نمونه‌های مورد نظر ثابت شود.

شکل ۷. پودر نمونه در سنترهای ۲-۶ (۱) XRD
پودر نمونه در سنتر

XRD ۵-۲

سطح نمونه‌هایی که با میکروسکوپ الکترونی SEM بررسی می‌شوند باید دارای هدایت الکتریکی باشند.

در این تحقیق چون نمونه‌هایی که از نوع های تکاملی پوشیده شدند SEM تصویر نمونه در شکل a نشان می‌دهد که تركیب ساختاری La3Pb2VE دارد. مقایسه تصاویر نمونه در حضور سورفکاننت CTAB و SDS (شکل‌های b و c) با تصویر نمونه بدون سورفکاننت SEM نشان می‌دهد که در حضور سورفکاننت، نمونه ساختار منظم‌تری دارد.

وپ‌دق در سنتر نمونه، نسبت‌های مختلفی از فلز و لیگناد انتخاب شده، مقایسه تصاویر SEM آنها مطابق SEM شکل‌های a و b نشان داد که با تغییر این نسبت، شکل و نظم ذرات نمونه تغییر می‌کند.

چنان‌که در شکل ۱۰ مشخص است، ترکیبی که در حلال دیمیت سولفوساید (DMSO) سنتر شده است، دارای ذرات کروی شکل است و اندازه را نیز ۴۸ نانومتر شده است. مقایسه با سنتری که در حلال شریط وی با حلال آب انجم شده (شکل ۱۰b) مشخص می‌شود که حلال می‌تواند عاملی تعبیه کننده در مورفولوژی این ترکیب باشد.
شکل 9. تصاویر SEM نمونه (a) بدون حضور سورفکتانت و SDS (b) در حضور سورفکتانت CTAB (c) در حضور سورفکتانت DMSO

شکل 10. تصاویر SEM نمونه (a) نسبت 2:1 فلز به لیگاند (b) نسبت 1:1 فلز به لیگاند و (c) با استفاده از لیگاند DMSO
نمودارهای TGA کمپلکس‌ها که در شکل‌های ۱۱ و b نشان داده شده است یک فرآیند کاهش وزن چند مرحله‌ای را نشان می‌دهد. در دمای حدود ۱۰۰۰ C حداً ۱۰% کاهش وزن داریم که می‌تواند مربوط به از دست دادن آب هیدرات ای با به دام افتاده در حفره‌ها باشد.

ساختار کریستالی کمپلکس باریم فسفونات در دمای حدود ۳۵۰۰ C شروع به تجزیه شدن می‌کند که نشان دهنده بکار گرفتن کمپلکس تا دمای C ۳۵۰۰ است.

با توجه به شکل‌های ۱۱ a و b در Rate = ۱۰۰,۵ و Rate = ۵ TGA نمودارهای Rate = ۵ (a) و Rate = ۱۰ TGA (b) مشاهده شد.

جمع‌بندی

بطور خلاصه در این تحقیق، کمپلکس باریم فسفونات طی واکنش لیگاند H۲L۲ به وسیله با روش XRD تهیه شد. سپس کریستالی این کمپلکس با آنالیز CTAB و SDS و نیز تحلیل XRF و EDAX مشخص شد و چه IR و آنالیز‌های XRF وجود کریستالهای باریم فسفونات در نشان دادند.

32. X. M. Chen, M. L. Tong, "On the crystal structures and magnetism of some hybrid organic–
Kwon, "Preparation of pyrenebutyric acid-modified magnesia-zirconia stationary phases
using phosphonate as spacers and their application to the separation of fullerenes", Analytica
34. V. C. Menon, S. Komarneni, "Capillary electrophoretic separation and kinetic study of inert
copper(II) complexes of 1, 8-bis(methylphosphonate) derivative of cyclam", Polyhedron 25
hybrid compounds: Synthesis and characterization of three new metal phosphonates with
similar characteristic structural features", Journal of Solid State Chemistry 179 (2006) 145-
155.
37. X. L. Hong, Y. Z. Li, H. Hu, Y. Pan, J. Bai, X. Z. You, "Single crystals of calcium and
strontium phenylphosphonate grown via hydrothermal crystallization", Cryst., Growth Des.
38. X-L. Wang, C. Qin, E-B. Wang, L. Xu, Z-M. Su, C-W. Hu, "The Importance of the CTAB
39. S. Horike, D. Tanaka, K. Nakagawa, "Kitagawa Identical experimental procedures are
followed for the synthesis of all four metal", phosphonates, J. Am., Chem. Soc. (2007) 2607-
2614.
40. A. Sharath Kirumakki, Z. A. Sandani Samarajeewa, W. A. Robert Harwell, W. A. Atashi
Mukherjee, H. Rolfe, Herberb, A. Abraham Clearfield, "Pore surface engineering of
701-707.