تهیه و بررسی خواص نانو کامپوزیت‌های رسانا از پلی‌آلیلن/پلی(استايرن-مینتاوب-مالنیک اسید) ترکیب شده با پلی‌استايرن سولفونیک اسید

احساس نظرزدانه زارع، پیمان نجمیقدم: دانشگاه ارومیه، دانشکده علوم، گروه شیمی

چکیده
نانوذرات رسانای پلی‌آلیلن دویی گره با کریکریک اسید با روش فراصوت هیمالی سنتز شدند. نانوکامپوزیت‌های پلی‌آلیلن/پلی(استايرن-مینتاوب-مالنیک اسید) پلی‌استايرن سولفونیک اسید، با تغییر نسبت پلی‌آلیلن در محلول پرآگند، و با شکاف مخلوط به‌هم اند. انرژی‌گرد کوله‌پشتی (استايرن، مینتاوب، مالنیک اسید) و پلی‌استايرن سولفونیک اسید در ساختار نانوکامپوزیت بررسی شد. محلول پرآگند شده کامپوزیت در حلال تراپیفوئرون، فیلیها رسانایی تولید گردند که این فیلیها با تغییر تراپیفوئرون ایجاد شدند. با فرآیند مخلوط بدون اضافه کردن هیچگونه دی‌پرس کندنده نانوذرات پلی‌آلیلن بخوبی در ماتریکس پلی‌پورامید پرآگند شدند، تصاویر گرفته شده با میکروسکوپ الکترونی این را بخوبی نشان داد. رسانایی نانوکامپوزیت‌های بسته اماده با سیستم چهار نطفه اندامگیری شده. همه نانوکامپوزیت‌های بسته اماده رسانا بودند و بین آنها بالاترین رسانایی کریکریک به‌همان‌نواز UV-Vis و FT-IR وجود داشت. نانوکامپوزیت‌های بسته اماده با طیف سنجی‌های S/Cm 20 وجود داشت.

مقدمه
پلی‌مرهای رسانای زیره‌های جالبی در دو دهه‌ای اخیر بوده‌اند. متداول‌ترین این پلی‌مرها پلی‌تیوفن، پلی استیلن، پلی‌آلیلن، پلی‌پیورا و پلی‌پیارا ونیل هستند [1], [2]. از میان پلی‌مرهای رسانا، پلی‌آلیلن به‌دلیل ویژگی‌های مانند سرتاریت، قیمت پایین، کاربرد وسیع و بازده بایلی پلیمرایزاسیون، توسعه و ویژگی‌های به‌خود جلب کرده است. ویژگی‌های الکتریکی، الکتروشیمیایی و تبلیغ پلی‌آلیلن آن را به محسوپلی چاپ برای کاربرد در صنایع الکترونیکی، پوشش‌های ضالکریستی سایک و پوشش‌های صدخرودیگی تبدیل کرده است [3], [4], [5]. با این حال، پلی‌آلیلن در امور صنعتی است که استفاده صنعتی از این پلی‌مر را با مشکل مواجه کرده است، که از آنجا جمله می‌توان به محصولات فرآیندنشی و ویژگی‌های مکانیکی کم آن اشاره کرد [6]. برای حل این مشکلات، جدیدین روش ارائه شده است. برای مثال، فرآیندنشی و پایداری گرمایی پلی‌آلیلن را می‌توان با

واژه‌های کلیدی: پلی‌آلیلن، نانوکامپوزیت، کوله‌پشتی، دویی گره، کامپوزیت

نویسنده‌سن مسئول

Ehsannazarzadeh@Yahoo.com

177
به عنوان یکی از روش‌های بررسی خواص نانوکامپوزیت‌های رسنا از پلی‌انیلن...
روش‌ها
سنترزیانت در پلی‌اکنیلین با استفاده از امواج فراصوت
پلی‌اکنیلین (PANI) در مقایسه نانو با اکسایش آنیلین در کلریدریک اسید و با استفاده از اغازگر امونیوم پراکسی در حضور امواج فراصوت سنترزیانت. نام آنیلین با ازودن 4 میلیلیتر (م) آنیلین در 100 میلیلیتر کلریدریک اسید (مول) تهیه شد. محلول اکسید به حلالیت گرم گرم مول) آنیلین پراکسی در حضور 50 میلیلیتر آب مکث دهنده تهیه شد. هر دو محلول در دما 4 درجه سانتی‌گراد قرار داده شد. محلول نمک آنیلین در یک بالانس 3 دهانه مجع به ورودی و خروجی گاز نیتروژن، سود فراصوت و قیف چکانده ریخته شد و محلول با گاز بی‌ثابت، مانند نیتروژن گاز‌ترازی شد. جباهای گاز بی‌ثابت، اکسیژن محلول را حذف کردند و محلول اکسید بهصورت قطره در مدت یک ساعت تحت امواج فراصوت با قدرت 100 وات (4 کیلو هرتز) به محلول نمک آنیلین اضافه شد. مخلوط به مدت 4 ساعت در دمای 40 درجه سانتی‌گراد تحت امواج فراصوت قرار داده شد تا براین پلی‌پیراماسیون به‌طور کامل انجام شود. بعد از ساعت پودر سیزرتیگی بهدست آمد که به مقطر و متانول بر روی کاغذ صافی شستشو داده شد و سپس رسواب به‌دست آمد به محلول امونیاک دوپیداپی شد تا محلول خنثی تولید شود که در دمای 5 درجه سانتی‌گراد خشک شد. پلیمر به‌دست آمده امرادین باریّ تام دارد. برای دییه کردن نمونه‌ها 5 گرم امرادین باریز در 150 میلیلیتر کلریدریک اسید (مول) به مدت 3 ساعت در دمای اتاق روی هیدرو مغناطیسی قرار داده شد. سپس نانوپیانیلین نیمه شده با کلریدریک اسید، با متانول شستشو داده شد و در دمای 40 درجه سانتی‌گراد به مدت 34 ساعت خشک شد. سنترز پلی‌استارین سولفوراتیک اسید
ابتدا به یک بشر 100 میلیلیتر، مقدار 50 میلیلیتر سولفوراتیک اسید (8%) به‌دست آمده، سپس 10 گرم پنی‌پلکسیفس و نیز به طرف واکنش افزوده شد و به مدت 1 ساعت در دمای اتاق روی هیدرو مغناطیسی قرار گرفت. در طرف دیگر، 1/5 گرم پلی‌استارین در 25 میلیلیتر سیکلوهگان حل شد و به‌صورت قطره قطره به محلول اولیه اضافه شد. سپس محلول بعدد 30 دقیقه روی هیدرو مغناطیسی در دمای اتاق قرار داده شد. بعد از 25 گرم یخ به طرف واکنش اضافه شد و رسواب زردرتگی به‌دست آمد. سپس رسواب به‌دست آمده صاف شد و با 100 میلیلیتر آب مقوطر شستشو داده شد و در دمای 4 درجه سانتی‌گراد خشک شد.[5]

سنترز کوپلیر (استارین- مالتیک اسید)
مقدار 2 گرم مالتیک اسید در یک بالانس دو دهه 100 میلیلیتر ریخته شد سپس 1/2 میلیلیتر استارین تقطیر شده، و مقدار 50 میلیلیتر خنثی‌دار هیدروپوران به محروقات درون بالا اضافه شد و بالا به بهد [20]

<table>
<thead>
<tr>
<th>APS</th>
<th>Oxidant</th>
<th>Emeraldine Base</th>
<th>P2O5</th>
</tr>
</thead>
</table>

179
دقيقة تحت گاز بی‌ثر، N\textsubscript{2} قرار داده شد، تا اکسیژن محلول گرفته شود. بعد از گذشت ۲۰ دقیقه با برداشت و رودی GAZ مقدار ۲۰۰/۰۰۰ گرم بی‌پروپانیل پراکسید (BPO) به دو رنگ بالان اضافه شد. سپس با بستن قسمت و رودی گاز با در یوش، گاز نیترورن از روی محلول عبور داده شد و این کار با قرار دادن اتصال در بالای میرد رفلاکس انجام گرفت. سپس بالا بسته در ۶ ساعت روى هیدروگلیسی در دمای ۸۴ درجه سانتی‌گراد قرار داده شد. تا تحت گاز بی‌ثر، رفلاکس شود. بعد از گذشت ۴ ساعت بالان از روی هیدروگلیسی برداشت شد و بعد از ۵ دقیقه محلول خنک شد. حدود دو برای حجمی طرف واکنش، متابول به بالان اضافه شد و روابط سه‌بعدی تشکیل شد، سپس روابت با کاغذ صافی، صاف شد و با متابول یا آب مکثر شستشو داده شد تا ایکسیرهای با جرم مولکولی بالاین حل شوند، روابت به‌هم بسته در ۲۴ ساعت در دمای ۳۰ درجه سانتی‌گراد خشک شد. روابت به‌هم بسته، کولیپرم اسید، پاناپی‌اکسید (PSMA) (استاریون، منتاون. مالئینک اتیدید) (BPO) به دو مراحل به‌هم بسته در ۱/۲ گرم هیدروکسید سدیم در ۱۰۰ میلی‌لیتر آب مکثر حل شد و کولیپرم (PSMA) سنتز شده به آن اضافه شد و به‌هم بسته در ۱ ساعت روى هیدروگلیسی در دمای آتاق قرار داده شد. بعد از یک ساعت محلول صاف شد و ناخالصی‌های حل نشد، جدا شدند، سپس به طرف واکنش ۳ میلی‌لیتر اسید کولیدریک ۱۲ مولار اضافه شد و روابت سفیدستیگ به‌هم بسته امید روابت به‌هم بسته، امید و با آب مکثر شستشو داده شد و ناخالصی‌های آن حل شدند. روابت تشکیل شده که کولیپرم (استاریون، منتاون، مالئینک اسید) نام دارد به‌هم بسته در دمای ۳۰ ساعت در دمای ۳۰ درجه سانتی‌گراد خشک شد. شکل ۱ مکانیسم تبدیل کولیپرم (استاریون، منتاون، مالئینک اتیدید) به پاناپی‌اکسید (PSMA) (استاریون، منتاون، مالئینک اسید) (PSMAC) نشان می‌دهد.

![شکل ۱: مکانیسم تبدیل کولیپرم (استاریون، منتاون، مالئینک اتیدید) به پاناپی‌اکسید (PSMA) (استاریون، منتاون، مالئینک اسید)](image)

تهدفه فیلم‌های نانوکامپوزیتی پلی‌آتیلن/پلی(استاریون- منتاون، مالئینک اسید)/پلی(استاریون- سولفونیک اسید)

ابتدا در یک بسّر ۲۵ میلی‌لیتری ۱۰ میلی‌لیتر تترای‌هیدروفوران اضافه شدند. سپس به‌طور واکنش مقدار اضافه شد و بسته در دمای ۱۰ دقیقه در دمای اتاق روى هیدروگلیسی قرار گرفت. PSMAC ۵/۰ گرم.
بحث و نتیجه‌گیری

جدول 1 نشان می‌دهد که با افزایش مقدار گرم‌های PANI/HCl رسانایی نانوکامپوزیت افزایش می‌یابد. همچنین، با افزایش مقدار گرم‌های PSS و PSMAC رسانایی نانوکامپوزیت افزایش می‌یابد. این افزایش رسانایی بعلت وجود گروه‌های عاملی کربوهیژنالیک اسید و سولفونیک اسید در ساختار نانوکامپوزیت باعث افزایش سطح دوپینگ در پلی‌اکنیل می‌شود و در نهایت رسانایی را افزایش می‌دهد. همچنین وجود پلی‌استایرن سولفونیک اسید علاوه بر پشتیبانی کندند خارجی تا حدودی، ممکن است در انتخاب‌های نانوکامپوزیت بخطور می‌شود.

جدول 1. رسانایی فیلم‌های نانوکامپوزیت

<table>
<thead>
<tr>
<th>شماره فیلم‌های نانوکامپوزیت</th>
<th>PANI (گرم)</th>
<th>PSS (گرم)</th>
<th>PSMAC (گرم)</th>
<th>(S/Cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
</tbody>
</table>

شکل 2. تصویر دیجیتال فیلم‌های نانوکامپوزیتی PANI/PSMAC/PSS
در شکل ۳ تصاویر SEM مربوط به پلی‌اکسیلین و داتیکومپوزیت پلی‌اکسیلین/ پلی (استایره- متکوب- مالتیک اسید)/ پلی‌استایره سولفونیک اسید، دیده می‌شود. شکل ۳ A نشان می‌دهد که آدازه ذرات پلی‌اکسیلین در حدود ۱۰۰-۱۵۰ نانومتر است و شکل ۳ B ذرات نانوپلی‌اکسیلینی را نشان می‌دهد که بر روی سطح داتیکومپوزیت پراکنده‌اند.

![تصاویر A و B](https://example.com/image1.png)

B نانوکومپوزیت PANI/PSMAC/PSS (B) و **A** PANI/HCl (A SEM)

شکل ۳ تصاویر PANI/PSMAC/PSS (B) و PANI/HCl (A SEM)

در شکل ۴ طیف‌های IR مربوط به A (PANI/HCl) و B (PANI/PSMAC) نشان می‌دهد. ارتعاشات شیمی‌ای XJ/۸ از صفحه بینزن در واژه بزرگ‌ترین می‌باشد. نوار A نیز به حلقه کیتوئیدی دلالت دارد. نوارچندی Q به حلقه کیتوئیدی دلالت دارد. نوارچندی N=Q=N جنوبی ۱۱۳۱ cm⁻¹ ارتعاشات متقارن N=Q=N جنوبی ۱۱۴۷ cm⁻¹ مربوط به ارتعاشات نامتقارن N=Q=N جنوبی ۱۴۷۶ cm⁻¹ مربوط به ارتعاشات بدن‌پذیری، و نوارچندی B نوارچندی ۱۵۵۹ cm⁻¹ مربوط به ارتعاشات کیتوئیدی است. در شکل ۴ حلقه A C=O هم‌بودت مربوط به ارتعاشات C=O به حلقه آروماتیک و نوارچندی جنوبی ۱۸۵۲ cm⁻¹ و حلقه C=O به حلقه آروماتیک و نوارچندی جنوبی کشی متقارن و نامتقارن C=O اندیده‌های ناحیه ۲۳۴۲-۲۰۳۰ cm⁻¹ مربوط به حلقه آروماتیک است. در شکل ۴ حلقه C=O اندیده‌های ناحیه ۲۳۴۲-۲۰۳۰ cm⁻¹ مربوط به حلقه آروماتیک است. در شکل ۴ نوارچندی D-H حوالی ۳۰۰۰ cm⁻¹ مربوط به حلقه آروماتیک است.

1. Disperse
اهسان نظرزاده زارع، بیمار نجفی مقدم

۱۲۳-۱۲۴۸۴\text{cm}^{-1}

ارتعاشات نامتناسب گروه O-H هستند. نوارجنبی‌های S=O ۳۵۰-۴۶۰۰\text{cm}^{-1} ۱۲۷۷-۱۲۳۷\text{cm}^{-1}

امیدی است.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig}
\caption{شکل ۴. طیف‌های IR مربوط به PANI/PSMAC/PSS (B) و PANI/PSMAC/PSS-PANI (A) در حلال دی‌متیل سولفونیک اسید (DMSO) را نشان می‌دهد. طیف مربوط به سه نوارجنبی در نواحی ۴۲۰-۴۴۰۰\text{cm}^{-1} \text{ DMSO}.

\end{figure}
400-4500 نانومتر را نشان می‌دهد. پهن‌شکلی موجود در ناحیه ۷۰۰ تا ۷۵۰ نانومتر مربوط به افزایش پیوستی

بحث دوپینگ و افزایش رسانایی است. چسب در ناحیه ۷۵۰-۲۰۰ نانومتر، مربوط به انتقالات

به وسیله هسته‌ای چسب‌های دوم و سوم بیان کننده سطح دوپینگ هستند. نوارهای جنبی مربوط به کامپوزیت

پیوستار نوارهای جنبی مربوط به PANI/PSMAC/PSS هستند که نشان‌دهنده افزایش سطح

دوپینگ، و افزایش رسانایی را ثابت می‌کنند.

DMSO در حلال PANI/PSMAC/PSS(A) , PSS-PANI (B) مربوط به UV-Vis طیف‌های

نتایج‌گیری

فیلم نانوکامپوزیتی پانی/پیکر مخلوط با روش مخلوط فیزیکی تهیه می‌شود.

فیلم آماده شده دارای انعطافپذیری و رسانایی الکتریکی خوبی است. حضور گروه‌های اسیدی در پلی استاترین

سولفونیک اسید و پلی(استاترین- متناوب- مالئیک اسید) افزون بر کمک به پایداری فیلم نانوکامپوزیتی در افزایش

رسانایی فیلم نیز مزیت است.

منابع

1. H. Liu, X. Hu, J. Wang, R. Boughton, "Structure, conductivity, and thermopower of

crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method",

2. P. Najafi Moghadam, J. Khalafy, T. Taheri, "Sonochemical synthetic methods to produce

235.

3. Y. Wang, X. Jing, "Formation of polyaniline nanofibers: A morphological study. Journal of

184

