بررسی خواص الکتریکی نمونه‌های سندرمی (Cu/Si/PS/Au) به‌عنوان ساختار گاز‌های $\ce{O_2}$، $\ce{N_2}$ و $\ce{CO_2}$

محمداسامعیل عظیمی‌عراقوی: دانشگاه خوارزمی
"حمیده اسکندری‌تربیان: دانشگاه آزاد اسلامی. واحد کاشمر، باشگاه پژوهش‌گران جوان

چکیده

این پژوهش به‌منظور بررسی اثر حرارت و رفتار الکتریکی نمونه‌های سندرمی برای پیل‌های سلولیکان متفاوت بود که مدل PS/Au (PS) انجام شده است. ناحیه‌های نازک با Cu/Si/PS/Au مقاومت ویژه را پیدا کرده و یک بار نگهداری که به‌منظور در ساخت نمونه‌ها، حالت آنتی‌سازی، فاصله بین آن و مقدار (L) و چگالی جراین انرژی اصلی و غلظت محلول الکترولیت هستند که مولول الکترولیت شامل از مس در نظر گرفته شده است. نمونه‌ها در محل از محلول متفاوت عددی و به‌طور خنثی از حرارت متفاوت به میان آتریک و PH = 1.869 = 1800 S=18 mA/cm2 و PH = 1 و فاصله بین اند و کاتالیست $L=4$ cm است.

مقدمه

شناسایی و کنترل گاز‌هایی نظیر $\ce{CO_2}$، $\ce{N_2}$، $\ce{O_2}$ و $\ce{CH_4}$ در محیط مفید باشد. یکی از مسائل مورد توجه در عصر حاضر است. در حالت که کاهش این کار نیاز به ساخت حسگرهای مناسبی که عاملی بر حساسیت بالا، ارزان قیمت و پایدار باشد، [1] در هبوبکش گاز با یک ماده تناژی نازک از مس (در حدد چند نانومتر) با گاز برهمکنش می‌کند و توده باقی‌مانده هیچ تغییری به گاز نداد. بنابراین برای ارزیابی استفاده از ماده به عنوان حسگر لازم است تغییرات PH به سطح حرارتی تا تمام نزک به میان در داده‌های تشخیصی این ماده در نتیجه ممکن است. برای این هدف، سطح حرارتی پیش‌تر در این مقاله نشان داده شده است.

عملی مفید در بحث حسگرهای است. برای این هدف سطح موثر بیشتری نیاز به پیش‌تر باید برخورد گاز با سطح وجود دارد. سلولیکان متفاوت (PS) به‌دلیل داشتن یا کاهش‌پذیری زیاد، کانون خوبی برای حرارت گاز است. سلولیکان بعد از اکسیژن دو ماده از نظر فرآیند و اکسیژن الکترولیت یا کافیک بوده را به روی نمایش می‌توانند رشد داد. فکرات سلولیکان اصلاح شده خیلی ارزان‌تر از مواد نیترساناتی دیگر هستند.

واژه‌های کلیدی: سلولیکان متفاوت، حسگر گاز، گاز انرژی

نویسنده: مسلا واهی

eskandari_humd@yahoo.com

نویسنده مسئول

125
از طرفی سببی از تبیین‌سازی دارای خواص ایتیکی‌اند که Si به دو روش سیلیکان متخلخل به عنوان حسگر گاز، عملکرد آن در دمای اتاق است. سیلیکان مشتق‌های (PS) روش سیلیکانی و الکتروشیمیایی از زیرالاژی سیلیکان ساخته می‌شود. در روش سیلیکانی نیز در بک مخلخل شام، اسید اکسید و اب برای مدت زمانی به آن پیچیده می‌گردانند، به باربری ویفر سیلیکان به یک ترکیب دیگر اسید هدایت و کاتان را داراست. در طی فرایند تخلخل جاری‌اند و کاتان آب‌تربیتی عوض می‌شود، اما در روش الکتروشیمیایی، اسید هدایت PS در محلول الکترولیت مذکور ساخته می‌گردد که می‌تواند خودکاری از طریق اکسید جریان آنودی ازبایه یا تغییر پتانسیل صورت گیرد که در حالی که جریان ثابت و ازبایه می‌باشد، زیرا ضمن کنترل بهتر و روندی در می‌شود تخلخل و ضخامت قابلیت پایداری خورش خودداری از یک مرحله به مرحله دیگر دارد.

در این پژوهش از روش الکتروشیمیایی برای ساخت نمونه‌های استفاده کرده‌ای. پارامترهای مختلف آن‌دی‌سازی که در روش الکتروشیمیایی قابل تغییر هستند عبارتند از: یک گالی جریان آنودی‌سازی، مقدار محلول الکترولیت، ۳ زمان آنودی‌سازی و... که با تغییر هر یک نمونه مقاومت ساخته شده و با تکراری، امکان ساخت نمونه‌های مشابه وجود دارد. این نمونه‌ها بعد از اعمال گاز خواص الکتریکی و ایتیکی مقاومتی نسبت به قبل از تخلخل از ناحیه می‌بندند [۳].

هر چهار این که به یک محک (نظر ثور، گرمای صوت، فشار از یک حرکت خاص فیزیکی یا شیمیایی) پاسخ می‌دهد و پیغامی را می‌فرستد، حسگر نامیده می‌شود. بنابراین یک حرکت یک پیغامی را که احساس انسان قادر به درک یافته‌اند. این نیست و باعث اندازه‌گیری شود، دریافت کند و آن را به یک خروجی مناسب می‌پذیرد. کمیت الکتریکی که ورودی‌گیری تبدیل کند.

در این پژوهش رفتار الکتریکی شاخه‌های ازبایه می‌شود. برای بررسی خواص الکتریکی نمونه‌های ساخته شده، مشخصه‌های الکتریکی ساختارها در شرایط مختلف قبل و بعد از اعمال گاز با هم مقایسه می‌شود.

مراحل ساخت نمونه

در این کار یکی از سطوح ویفر سیلیکان نوع P با مقاومت پیچیده ۲۶۵ ۴/۲۴Va و ۲/۵Va با روش تأخیر حرارتی می‌باشد. با یک لایه نازک در حد توان‌تقلید از فلز می‌پوشانی سپس از روش الکتروشیمیایی برای ساختن کردن نمونه‌ها استفاده می‌کنیم. (مقدار آن در مقادیری [۴] و [۵] اورده شده است. در این تحقیق محلول استفاده شده شامل نسبت‌های مختلف (x:y:z) از اسید هیدروفلوریک HF (۳% و ۹/۳% و ۹۹/۳%) و آب مفرط است. فاصله بین آنود و کاتان بین ۴ تا ۶ سانتی‌متر، جریان آنودی‌سازی ۱۰۰ تا ۱۰۰ mA/cm۲ و زمان‌های آنودی‌سازی را بین ۲۰ تا ۵ دقیقه تغییر می‌دهیم و بقیه شرایط یکسان در نظر گرفته می‌باشند. سلول الکتروشیمیایی استفاده شده در ساخت نمونه‌ها در شکل ۱ اورده شده است. سطح نمونه‌ها بعد از تخلخل با SEM (میکروسکوپ الکترونی روبشی) اساسا شده و برای مقایسه در شکل ۲ اورده شده است.

۱۲۶
شکل ۱. سلول الکتروشیمیایی ساخته شده برای متخلخل کردن سیلیکان و نمای داخل آن به صورت شماتیک

شکل ۲. تصاویر SEM نمونه‌ها قبل و بعد از انجام عمل خورشیدی

پس انجام عملیات سوختن، یک لایه طلا برای ایجاد تماس اهمیک روی لایه متخلخل شده به روش تبخیر حرارتی در فشار ۵×۱۰⁻۵ mBar تشکیل میشود. هجینان سیم‌های مس نازکی با نسبت جسم به نقطه بر روی لایه‌های مس و طلا چسبانده می‌شوند. در نهایت قطع، مورد نظر بهصورت شکل ۳ خواهد بود.

شکل ۳. نمایی از مقطع عرضی نمونه‌های تهیه شده

جدول ۱. مشخصات و شرایط تهیه نمونه‌ها

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>درجه حرارت (mA/cm²)</th>
<th>غلظت الکتروشیمیا</th>
<th>زمان (S)</th>
<th>PH</th>
<th>فاصله بین آند و کاتاد (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۶۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>۲</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۹۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۱۲۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>۴</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۱۵۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۱۸۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>۶</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۲۱۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>۷</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۲۴۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
<tr>
<td>۸</td>
<td>۱۰</td>
<td>۱:۲:۱</td>
<td>۲۷۰۰</td>
<td>۱:۸۴۹</td>
<td>۴</td>
</tr>
</tbody>
</table>
مشخصات و شرایط ساخت نمونه در جدول ۱ و در هر مرحله با تغییر
یکی از پارامترهای نوع گاز مورد آزمایش و مدت زمان اعمال گاز، حساسیت نمونه‌ها را بررسی و مقایسه
می‌کنیم.

شکل ۳. نمایی از مدار مربوط به
اندازه‌گیری جریان و محل فشارگیری
نمونه در آن

بحث و بررسی
اندازه‌گیری گاز انرژی قطعات
در این قسمت، با ثابت نگه داشتن ولتاژ، تغییرات شدت جریان بر حسب دما اندازه‌گیری می‌شود. قبل از
گرم‌کردن، سیس ولتاژ ثابت نگه داشته شده و با گام‌های بیش از چهار کیفیت جریان داده می‌شود که در
اندازه‌گیری ثابت می‌گردد. با توجه به نمودار I-V شکل ۵، برای دو نمونه ۴ و ۷ که با شرایط متفاوت
تنهایی شده‌اند، مشاهده می‌شود که افزایش دما فقط تا مرز مشخصی افزایش جریان را به‌همراه خواهد داشت. حد بالای دما برای نمونه‌ها با
رشد سخت مختلف، متفاوت است، اما برای همه نمونه‌ها تا دمای مشخصی افزایش جریان و از آن به بعد
کاهش جریان خواهی داشت. برای همین دو نمونه و نمونه مختلط نشده در شرایط بالاسیان، در ولتاژ ثابت ۷/۰۰۰
نمودار Ln(I) - ۱/T را رسم کرده و با توجه به رابطه (۱) از روی شیب نمودار گراف انرژی نمونه‌ها را
محاسبه می‌کنیم (شکل ۴).

۱. forward bias ۲. reverse bias

۱۶۸
محمدمصطفى اسلامی، علی اصغر، محمد اسعدی، مهدی اسدیاندیچی

\[I = B \exp\left(-\frac{E_g + eV}{k_B T}\right) \]

(1)

در رابطه بالا با توان ۲ از درجه حرارت به‌صورت \(T^{3/2} \) وابسته است. اما جنرال تمایل خلی، سریع‌تر افزایش پیدا می‌کند. در برادر وابستگی تمایل جریان به دما مشی‌دان از تغییرات مربوط به جمله \(T^{3/2} \) آورده است. بنابراین ثابت فرض کرد و محاسبات را ساده‌تر انجام داد. طبق آنچه در منبع [8] آورده شده است، این افزایش بیش نسبت به قبل انجام عملیات خوراگی‌گری را می‌توان به‌خوبی توجیه کرد. بعد از تخلخل شدن نمونه هم‌کفایی که در شکل ۲ مشاهده می‌شود، سطح مؤثر نمونه سیلیکانی نسبت به قبل از تخلخل افزایش پیدا کرده و مقاومت نمونه افزایش می‌یابد، در نتیجه افزایش مقاومت قطعات رساندنگی نمونه بعد از تخلخل کاهش می‌یابد. بنابراین را در نمودار V-I دو نمونه ۶ و ۷ در مقایسه با قبل از تخلخل نیز می‌توان مشاهده کرد.

(شکل ۷)

شکل ۵. تغییرات جریان با دما برای دو نمونه V و ۷ و نمونه متخلف نشده در ولتاژ ۵/۰۰ V

مشاهده می‌شود که رساندنگی نمونه پس از تخلخل کاهش بی‌پاک‌تر است

شکل ۶. نمودار اندازه‌گیری گراف انرژی نمونه قبل از تخلخل. گراف انرژی محاسبه شده برابر ۱/۲۰۳۳/۱ است

سه نمونه اورده شده شامل دو نمونه متخلف نشده است. گراف انرژی نمونه متخلف نشده یعنی شکل ۴ برای ۲/۰۱۹۲ به‌دست آمده است که از گراف انرژی دو نمونه متخلف شده دیگر کلی است. شکل ۴ نمودارهای است که با غلظت محلول الکترولیت کیت (محیط استدیاتر) متخلف شده است. با توجه به آنچه قبل گفت شد،

۱۲۹
نمودنگی که در محیط استاتیک ساخته شود، بهتر مخلخل می‌شود. هم‌اکنون الکتریکی آن کمتر است و بعنوان نرمال، گراف افزایش سایر کرده به‌کار رفته باشد به‌کار خواهند رفت. هرچه PH محلول الکترولیت کمتر باشد گراف از نظر بیشتری به‌دست می‌آید.

شکل ۹. (b) نمودار اندازه‌گیری گراف از نمونه بعد از تخلخل با PH = ۲/۱۸۹

شکل ۹. (c) نمودار اندازه‌گیری گراف از نمونه بعد از تخلخل با PH = ۱/۸۴۹ در مقایسه با نمونه‌ای که با PH = ۱/۸۴۹ تهیه شده افزایش پیدا کرده است یعنی نمونه بیشتر مخلخل شده.

شکل ۷. نمایش اثر خورداری بر رساندگی نمونه‌ها. مشاهده می‌شود که پس از تخلخل رساندگی نمونه‌ها کم می‌شود. این نتیجه با آنچه در شکل ۶ آمده است در تطبیق است. هرچه گراف از نظر بیشتر نمونه بیشتر باشد رساندگی آن کمتر است.
بررسی تغییر رفتار الکتریکی نمونه‌ها پس از اعمال گاز

در شکل 8، نمودار شدت جریان ولتاژ مربوط به نمونه‌ای که بطور تصادفی از بین نمونه‌ها انتخاب شده (نمونه 5)، قبل و بعد از اعمال گاز‌های مختلف اکسیده شده است. مشاهده می‌شود که پس از اعمال گاز، سرساندگی نمونه 5 تا حد افت‌گیری افزایش ییدا می‌کند. این افزایش سرساندگی دلایل متعددی داشته باشد. به‌نظر می‌رسد بدلیل وجود پیوندهای هم‌سایه در سطح سیلیکان مخلوط پس از تخلخل، گاز عبوری از روی نمونه مخلوط شده به عنوان یک نوار تافلی بین نوار رسانش و ترمیمی عمل کرده و باعث کاهش اثرات فعال‌سازی نمونه و در نتیجه افزایش سرساندگی نمونه پس از اعمال گاز می‌شود. این اثر برای همه نمونه‌های آزمایش شده نتیجه یکسانی داشته است. شکل 8 این نتیجه را برای هر 3 گاز آزمایش شده بروی نمونه 5 نشان می‌دهد. این نتیجه با [۵] مطابقت دارد.

![نمودار شدت جریان ولتاژ مربوط به نمونه‌ها پس از اعمال گاز](image1)

![نمودار شدت جریان ولتاژ مربوط به نمونه‌ها پس از اعمال گاز](image2)
بررسی اثر شرایط ساخت نمونه‌ها بر حساسیت آن‌ها

1. اثر زمان آندوسازی:

شکل 9: اثر افزایش زمان آندوسازی بر حساسیت نمونه در برای اعمال گاز O2
این نتیجه در اکثر مواد صحیح به نظر می‌رسد و در مواردی به‌خاطر افزایش بیش از حد زمان آنودسازی ممكن است نتیجه دقیقاً برعکس شود و این زمانی است که سطح سیلیکان به‌خاطر شکنند شدن ستون‌ها در اثر نازک شدن، تغییر شود، لذا با توجه به اینکه دیگر شرایط در نظر گرفته شده، مانند چگالی جریان، غلظت محلول الکترولیت و فاصله بین آند و کاتود چگونه تعیین شده‌باشد، افزایش حسیت فاصله مت‌زمان براً انجام خورده‌گش‌تا مقدار مشخصی امکان‌پذیر است.

2. اثر فاصله بین آند و کاتود:
سلول ساخته شده چنانکه در شکل 1 مشاهده می‌شود، طولی تهیه شده که فاصله بین آند و کاتود باز تغییر باند. برای طول‌های 4 و 5 سانتی‌متر منحنی جریان بر حسب ولتاژ نمودارها در شکل 10 مقایسه شده است و از روی شیب نمودارها برای هر سه گاز می‌توان دریافت که چه این فاصله کمتر باشد نمودار به‌طوری به‌وجود می‌آید. زیرا در فواصل کم بین آند و کاتود میدان با یکدیگر ایجاد شده است. در نتیجه تعداد بیشتری مولکول‌گاز در سطح سیلیکان مخلوط گیر می‌افتند و جریان افزایش می‌یابد. این نتیجه در مورد حساسیت ساختار به هر سه گاز O₂، CO₂ و N₂ صدق می‌کند.
شکل ۱۰. (a) اثر افزایش فاصله بین آند و کاتد بر حساسیت نمونه در برای اعمال گاز

शکل ۱۰. (b) اثر افزایش فاصله بین آند و کاتد بر حساسیت نمونه در برای اعمال گاز \(\text{CO}_2 \)

شکل ۱۰. (c) اثر افزایش فاصله بین آند و کاتد بر حساسیت نمونه در برای اعمال گاز \(\text{O}_2 \)
اثر چگالی جریان اندرسازی:
چنانکه در شکل 11 (a-c) آورده شده است، با افزایش چگالی جریان جریان خوردگی الکتروشیمیایی، سیلیکان بیشتر مخلوط می‌شود و جریان تغییرات بیشتری از خود نشان خواهد داد. این اثر نیز مانند آنچه در قسمت لف مربوط به زمان اندرسازی گفته شد محدودیت دارد و چگالی جریان از هد معنی نماینده فرآیند رود.

شکل 11. (a) اثر افزایش جریان اندرسازی بر حساسیت نمونه در برای اعمال گاز CO₂

شکل 11. (b) اثر افزایش جریان اندرسازی بر حساسیت نمونه در برای اعمال گاز N₂

شکل 11. (c) اثر افزایش جریان اندرسازی بر حساسیت نمونه در برای اعمال گاز O₂
* اثر محصول الکترولیت:

در این مرحله برای هر دو نمونه همیا پارامترهای آنود کردن، غیر از نسبت اسید، الكل و آب (PH محصول) ثابت می‌باشد. با توجه به شکل 12 (a-c) (*a-c) (*a-c) می‌توان نتیجه گرفت که هر چه PH محصول کمتر و محیط اسیدتر باشد، سیلیکان بیشتر مخلوط می‌شود و مولکول‌های گاز بیشتری در داخل تخلخل‌ها جای می‌گیرند و افزایش مقدار یلدن و تناژ، افزایش جریان بیشتری نسبت به نمونه دیگر خواهد داشت.

\[\text{شکل 12 (a) اثر کاهش PH محصول الکترولیت بر حساسیت نمونه در برابر CO}_2 \]

\[\text{شکل 12 (b) اثر کاهش PH محصول الکترولیت بر حساسیت نمونه در برابر N}_2 \]

136
مقایسه حساسیت نمونه‌ها با یکدیگر

پس از اعمال شرایط مختلف در ساخت نمونه‌ها حال مقایسه‌ای روی حساسیت آنها توسط به‌گزار انجام می‌گردد. تا بهترین نمونه انتخاب شود. در شکل 13 (a-c) نمودار V-I همه نمونه‌ها برای گاز نیترس N۲، CO۲ و O۲ در همدامان 0.1 سانتی‌متر است. به‌طوری‌که میزان تغییرات جریان و نیروی نمونه‌های دیگر از جمله نمونه‌های دیگر استفاده کرد.

شکل 13 (a-c) مقایسه اثر همه نمونه‌ها در برای عواطف گاز N۲. مشاهده می‌شود که نمونه 6 بهترین پاسخ را داشته است.
بررسی اثر گازهای مختلف بر تغییرات شدت جریان

حال اثر گازهای مختلف

\(O_2 \) و \(N_2 \), \(CO_2 \) بر بهترین نمونه بررسی می‌شود. در شکل 14 نمودار تغییرات جریان بر حسب ولتاژ برای بهترین نمونه، برای هر 3 گاز \(CO_2 \), \(N_2 \) و \(O_2 \) رسوم شده است. برای نمونه به گاز \(N_2 \) بهتر از \(O_2 \) و \(CO_2 \) است. ترتیب حساسیت نمونه به گاز‌های اعمال شده به‌صورت \(CO_2 < N_2 < O_2 \) است. می‌توان این رفتار را به نوع گاز و چگونگی ساخت نمونه وابسته کرد. در این قسمت از یک نمونه برای انجام آزمایش استفاده شده است، پس عامل مؤثر در حساسیت و تغییر جریان در این بخش به نوع گاز مورد آزمایش بستگی دارد. پس باید از عوامل مؤثر در افزایش حساسیت میتواند قطر مولکول‌های گاز باند. اگرچه به نظر می‌رسد که \(N_2 \) و \(O_2 \) مولکول‌هایی

\[138 \]
نتایج
در این پژوهش رفتار الکتریکی ساختار Cu/Si/PS/Au برای شرایط مختلف بررسی گردیده و دریافت که رساندگی نمونه به‌صورت بیشتری در مخلوط شسته، بعلت افزایش گاز اندزه‌ای ساختار کاهش پیدا می‌کند. اما پس از اعمال گاز، رساندگی افزایش می‌یابد که این نتیجه را می‌توان ناشی از ایجاد یک تراز ناخالصی بین تراز طرفیت و رسانش در داخل نوار ممکن دانست که باعث کاهش اندزه‌ای فعالیت سازی و در نتیجه کاهش گاز اندزه‌ای خواهد شد. با توجه به حس سنجش شرایط ساخت نمونه اولین و مهم‌ترین عامل دستیابی ما به حس‌گزار است. در این کار پارامترهای مختلفی جوش چگالی جریان و فاصله بین آند و کاذب، علی‌ال الحظ محدود گردیده و سه سطح زمان آن‌سازی را در ساخت نمونه‌ها در نظر گرفته شد و شرایط ساخت نمونه‌ها اثر گاز‌های مختلف \(O_2 \) و \(N_2 \) و \(CO_2 \) و در حساسیت آن‌ها سنجیده شد. نمونه‌ها به شکلی که بیان شده و فاصله بین آند و کاذب سانتی‌متر تهیه شده است، به عنوان بهترین نمونه از نظر پاسخ به گازها انتخاب شد. با اعمال چهار گاز، \(O_2 \) و \(N_2 \) و \(CO_2 \) روز دو نمونه، دریافت که در بین این گاز \(CO_2 \) بهترین پاسخ را نسبت به \(N_2 \) دارد. پس می‌توان در کارهای بعدی از مشخصات این نمونه در ساخت حس‌گزار گاز استفاده کرد.

شکل 14. مقایسه اثر گاز‌های \(O_2 \), \(N_2 \), \(CO_2 \) بر افزایش شدت جریان برای نمونه ۶