بررسی میان‌کنش سیستم‌های گابانژیک سپیتمی و دویامینزیک هیپوکامپی در تعیین رفتارهای شبه اضطرابی در رت‌های ناز و ویستار

شهبانو عربان، فرهاد ویزدانگان، طاهره‌السادات طبارطایبی:
دانشگاه خوارزمی، دانشگاه علوم زیستی

چکیده

سپیتم و هیپوکامپ به‌صورت توامان در کنترل اضطراب نقش دارند. در این پژوهش، میان‌کنش احتمالی بین سیستم‌های گابانژیک سپیتمی و دویامینزیک هیپوکامپی در تست EPM به‌عنوان مدل سنجش اضطراب بررسی شد. تزریق دوز ۱۰ نانوگرم موسمول، اگونیست ریسیتور گابا-آ در هسته سپیتم میانی، تأثیر اضطراب‌زا‌داریه داشت. در حالیکه دوزهای یک‌پیوندی آن (۱/۵ و ۵ نانوگرم) هیچ تأثیری نداشتند. تزریق دوزهای بالاتر (۵/۰ و ۱ نانوگرم) باکلوفن، اگونیست ریسیتور گابا-ب ب در هسته سپیتم میانی، در همان جایگاه حضور در باروی‌های باز را کاهش داد. اما دوز پایین‌تر (۱/۰ نانوگرم) تأثیری نداشت. تزریق ایپوامورفین، اگونیست ریسیتور EPM در تست دویامین به‌عنوان هسته‌های هیپوکامپی و دی‌پیامین به‌عنوان دوزهای شناخت‌های رفتار شیما‌اضطرابی بی‌صوتی و ابسته به D1/D2 دوز داشت. دوز پایین ایپوامورفین (۰/۵ میکروگرم) درصد حضور و ورود به باروی باز افزایش داد. در حالیکه دوزهای میانی (۰/۵ و ۰/۰۵ میکروگرم) این پارامترها را تغییر نداد. ولی دوز آن پارامترها را کاهش داد. تزریق دوزهای یک‌پیوندی آن ایپوامورفین (۰/۱ و ۱ میکروگرم) و موسمول (۲/۰ نانوگرم) به‌عنوان هیپوکامپی و سپیتمی، رفتارهای شیما‌اضطرابی را باصوت‌های مصنوعی‌دار کاهش داد. در حالیکه تزریق توموز هیپوکامپی و سپیتمی، رفتارهای شیما‌اضطرابی را باصوت‌های مصنوعی‌دار ایجاد کرد. نتایج نشان می‌دهد که احتمالاً سیستم‌های گابانژیک هیپوکامپی و گابانژیک سپیتمی به‌صورت مستقل در کنترل اضطراب نقش داشته و دوخت دویامین در این زمینه و ابسته به دوس است.

مقدمه

شاوه ممکن است بکم‌کنند که سپیتم در ترس و اضطراب نقش دارد. تخیربی و یا مهار فراماکولوژیکی این ناحیه، و اکتش‌های ترس را در رت‌ها کاهش می‌دهد. این موضوع نشان می‌دهد که سپیتم به‌صورت طبیعی نقش تحریکی در کنترل اضطراب دارد [۱۱]. [۱۰]. به‌ویژه، آسیب‌های الکترونیکی با تحریکی سرم‌های EPM موجب ایجاد تأثیرات شبیه اضطراب‌زا‌داریه در تست EPM می‌شود و وزن ترتیب آن (۲/۰۰۱۹۰۰۰) است. این مطالعات

پذیرش: ۹۹/۱۲/۴۹

shahrbanoo_oryan@yahoo.com

1. elevated plus maze 2. Pesold 3. Treit

۹۳۱
اضطراب‌زاپدایی، هنگامی یک فعالیت سینتومی از طریق تزریقات درون سینتومی اضطراب‌زاپدایی نوع بنزودیازپین
مثل میدازولام که یک آگونیست غیر مستقیم گاست، مهار شود، نیز تولید می‌شود[15].

به‌کارگیری موسمی باعث نیز آگونیست مستقیم نیز جنین باعث را ایجاد می‌کند [2]. هیپوکاپ می‌توان
در تعیین واکنش‌های ترس در رفت‌ها نقش ایفا دارد [2]. از نظر ساختاری، میانکش بین سیتو و هیپوکاپ در تنظیم اضطراب، نشان‌دهنده ارتباط‌های متقابل و وسع بین این دو ناحیه است [12]. هیپوکاپ یک
ارسال گلوباتزیک به سیتو میانی و یک ارسال گلوباتزیک به سیتو جنبی می‌فرستد. ارسال‌های گلوباتزیک از
سلول‌های غیرهرویی در (oriens stratum) CA1-CA3 (ناحیه میکنند [1]. مسیر گلوباتزیک از سلول‌های هرمو برخاسته و روی نورون‌های
گلوباتزیک سیتو جنبی خانه می‌یابد [22]. مسیر اخیر ممکن است بعیضه حالت امپای زیادی باشد، زیرا
تاثیرات اضطراب‌زاپدایی تزریق میدازولام به‌درون هیپوکاپ می‌تواند با تزریق هیپوکاپ به‌درون سیتو
جنبی آنتانگونیزه شود [20].]

هدف پژوهش حاضر، ارائه شواهدی برای میانکش سینتومی. هیپوکاپ در تعیین اضطراب از طریق
تحریک سیستم‌های گلوباتزیک سینتومی و دوبانویزیک هیپوکاپی با بصورت مستقل از هم یا بصورت همزمان
است.

برای نشان دادن میانکش، دوز‌های بی‌ث موسیمول و آیومورفین را به‌ترتیب در سیتو و هیپوکاپ
بصورت همزمان و دوز‌های بی‌ث بالکلون و آیومورفین را در همان جایگاه و با بصورت همزمان تزریق
شد. اگر سیتو و هیپوکاپ متفاوت در کنترل اضطراب نقش داشته باشد، پس دوز‌های بی‌ث باید باصورت
سیترپزیستک عمل کرد و اضطراب را تعیین کند.

مواد و روش‌ها

1. حیوانات مورد آزمایش

رت‌ها از نژاد ویستار (انستیتو پاستور؛ تهران؛ ایران) با وزن 20±2 گرم در زمان جراحی استفاده
شدند. حیوانات با بصورت گروه‌های چهارتیکی در یک فقس و در اتاق حیوانات با چرخه‌های غازی/تاریکی
ساعت (دوره گروه‌های از 7 تا 19) و دمایی معادل 23 درجه سانتی‌گراد نگهداری شدند. حیوانات به‌جز در
زمان آزمایش‌ها، از استفاده به‌عنوان گدازه داشتند. به رت‌ها اجازه داده می‌شد که خود را به‌سنگ‌ها و
همه قبل از جراحی با شرایط آزمایشگاه سازگار کنند. همه آزمایش‌ها بین ساعات 9 و 13 انجم گرفته و
حدود 5 دقیقه در هر روز و قبل از تست رفتاری مورد نواخت (handling) قرار می‌گرفتند. شش حیوان در
هر گروه آزمایشی استفاده می‌شد.
۲. جراحی استرویوتاکسیک و ریزترزیقات

رئاها تا کاملاً هیدروکلرید به نسبت (۱۰۰ میلی‌لیتر) و نسبت زایژین (۲ میلی‌لیتر) که بهصورت درون صفتی تزریق می‌شود، بیهوش شدن سپس در یک دستگاه استرویوتاکسی قرار داده شدند. (USA) مختصات استرویوتاکسی برای تزریق به‌,mid تیمی بر اساس اطلس (stoolting co , Illinois) ۲۰۰۷، عبارت است از ۱/۲ متر به‌درجه یک در بخش جانی خطا میانی و ۵/۵ میلی‌متر در بخش شکمی سطح پشتی جمجمه. یک کانون راهنمای انجام است که ۲۲ گیچ بهصورت پلاستیک در سیستم میانی کاشته شد، بطوری که ۱ میلی‌متر بالای جاجا‌های تزریق قرار گرفت. مختصات استرویوتاکسی برای هیپوکامپ پشتی (CA1) بهطور ۲/۳ یعنی تزریق شکمی از سطح جمجمه، ۲ میلی‌متری در بین ۳/۲ به‌دراکه و ۱ میلی‌متر در بخش جانی خطا میانی است. انتهای کانون راهنما ۱ میلی‌متر بالای نطفه تزریق قرار گرفت. سپس کانون‌های کاشته شده در جمجمه با سیمان اکریلیک دندان‌پزشکی ثابت شدند. برای جلوگیری از بسته شدن کانون‌های راهنما از سر سوزن‌های ۲۷ گیچ استفاده شد، بطوری که آن‌ها تا زمان انجام تست در درون کانون‌های راهنما قرار داشتند. حیوانات به مدت ۷ روز قبل از تست دوره ریکاوری را به‌طور کامل دارو، سروسون مذکور برداشته شد و یک واحد تزریق (شامل یک سر سوزن ۲۷ گیچ دندان‌پزشکی همراه با تیوب لازم برای تزریق) جای‌گذاری شد. انتهای واحد تزریق مذکور در ۵/۴ و ۱ میلی‌متری پایین کانون راهنما بکار رفته برای سیستم میانی و هیپوکامپ پشتی قرار گرفت. هر واحد تزریق که واحده تیوب پلی‌تیتان است از ماده تزریقی مورد نظر پر شده و با سرنگ ۲/۵ میکرو‌لیتری هیپولتن تزریق شد. حیوانات تزریقی معاله ۱ میکرو‌لیتری در طی بیش از ۴۰ ثانیه دریافت کردند.

در مورد تزریق‌های دوتبانی (برای CA1) ۵/۰ میکرو‌لیتری در هر طرف تزریق شد. در پایان بررسی تزریق ۱ میکرو‌گرم محلول ۱ درصد مرتبلو انجام گرفت. سپس رنگ تزریق شده در هیپوکامپ و سیستم میانی بررسی شد تا مورد شناسایی و تأیید درستی جاجا‌های تزریق قرار گیرد.

۳. مازی به‌علاوه بالا رونده

یک تست مشابه برای بررسی اثرات عناصر آنتگرافاژی و اضطراب‌زا در جویدگان است [۶]؛ EPM

[۷] EMP

[۸] Paxinos و Watson

[۹] Elevated plus maze

[۱۰] ۹۳۳
پشتی در EMP رنگ‌ها با صورت افرادی در مکان میکروبا نمی‌دانند. پیشنهای دندان یک چهارم 92 درصد و نتایج در EMP 92 درصد و برای بازوهای بیشتر و منطقه گذاری بیشتر در بازوهای بیشتر استفاده شده است. این انجام‌گیری‌ها در EMP، عبارت است از گزارش‌هایی که نشان می‌دهد که در بررسی به‌طوری‌که رمزنگاری

1. داروها

داروها استفاده شده در یک حاضر شامل 12 (شرکت تمت، ایران)، آیپومورفین (شرکت شیمیایی سیگما، سنت لوئیس، کلیفرنیا، آمریکا) و موسیمول (تکاریک، انگلستان) است. هم داروها درست پیش از آزمایش در سال‌های 9/9 است. 1 استفاده 1. آیپومورفین (آگوئیست رستورب دایرومتریک) به‌طور هیپکمی پرتاب تریک شد و با گاز (آگوئیست رستورب گابا A) و موسیمول (آگوئیست رستور گابا A) به‌طور سپتوم مستقیم تریک شد.

2. تعیین درستی جایگذاری کانال‌ها

بعد از تکمیل مراحل آزمایش، هر حیوان به دوز بالایی از کارفورم کشته شد. متعاقباً 1 میکرولیتر از جوهر محلول آبی میکرو از 1 درصد با یک کانول تریک 27 گیپ به‌طور سنتوم میانی و هیپکمی پشتی تریک شد. انتخاب کانال 27 گیپ یک میلی‌متر بین پیشرفت از انتخاب کانال راهنمای سیستوم و هیپکمی قرار گرفت. مغزه‌های برداشته شده و در محلول فرمالین 10 درصد بسته بعد 10 روز قبل از برخی‌گیری قرار داده شدند. قرارگیری صحیح کانال‌ها با استفاده از اطلس پاکسوس و واشنگن بررسی شد.

3. آنالیز آماری

بيان‌های با صورت افرادی با استفاده از آنالیز یکپارچه یا دو‌طرفه و آماری Mean±S.E.M داده‌ها با صورت افرادی در انجام گرفت (Test: Tukey) Post-hoc (ANOVA) برای مقایسه میانگین. در یک مقدار، آنالیز بی‌پایی مقدار (ANOVA) و به‌ویژه انجام گرفت. تفاوت‌های با P<0.05 میان گروه‌های آزمایشی در هر هفته از نظر آماری معنادار ثبت گردید.

934
به بروزرسانی مینیکانیسی سیستم‌های گانگلیانی سیمونی و پاراگانگلیانی هیپوکامپ

شکل ۱. شکل شماتیک از پرش‌های کنترل مغز رت نشان دهنده موقعیت نسبی چاپ‌گاه‌های تزریق در سیتون میانی در آزمایش ۱ و ۲

شکل ۲. شکل شماتیک از پرش‌های کنترل مغز رت نشان دهنده موقعیت نسبی چاپ‌گاه‌های تزریق در هیپوکامپ پشتی در آزمایش ۳

۷. تیمار‌های دارویی

در آزمایش ۱، دوز‌های مختلفی از موسمول (۵ و ۱۰ نانوگرم) به‌سرعت به‌وسیله میانی تزریق شد و اثرات آن در EPM بررسی شد. هدف این آزمایش، مشخص کردن ارتباط دوز و تاثیر موسمول در این تست و با استفاده از دوز‌های منفی و پوزیتیو موسمول (شکل ۳) در آزمایش ۲، حیوانات دوره‌ای مختلف باکلون (۱/۰،۱ و ۲ نانوگرم) را به‌متغیر بررسی تأثیراتشان بر رفتار رت‌ها در EPM دریافت کردنند (شکل ۴). حیوانات در آزمایش ۲، تزریق درون CA1 با آیومورفین (۰/۵،۰/۰،۱ و ۰/۱ میکروگرم) را دریافت کردنند (شکل ۵). هدف از این آزمایش مانند در آزمایش قبلی بررسی اثر آیومورفین روز رفتار شبه اضطرابی در تست EPM بود.
آزمایش ۴، تأثیر تزریق توأم دوزهای مکروناتورفین (0.01/0.005 میکروگرم) و موسیمول (5/2 نانوگرم) بهترین در هیپوکامپ و سیتوم بررسی شد. هدف از آن آزمایش بیکارگری هیپرآرامان دو داروی مذكور است که به‌نظر می‌رسد که احتمالاً منجر به میانکشی سینتیک در تحریک هیپرآرامان زیراستاتیک آن دو دارو گشت.

توزیع توانام دوزهای زیر اسنتانهای با حضور در بازوی بارا فرازی دهد (شکل ۴). در آزمایش ۵، دوزهای مکروناتورفین (0.01/0.005 میکروگرم) و باکلوفن (1/10 نانوگرم) بهترین در هیپوکامپ و سیتوم تزریق شد. بیکارگری توانام این دو دارو، حضور در بازوی بارا کاهش داد و تأثیرات اضطرابی‌گزایی داشت (شکل ۷).

نتایج

آزمایش ۱

شکل ۳ نشان می‌دهد که تزریق موسیمول به‌طور مستقیم در EPM ایجاد می‌کند. بعدها زیر رتهای تزریق شده با 10 نانوگرم موسیمول در سیتوم مایلی پارامترهای (زمان بازوی بارا) و (ورود به بازوی بارا) (OAT) بیشتری در مقایسه با گروه کنترل مشاهده شد. این اثرات بدون تغییر در فعالیت حرکتی حیوان بود. تزریقات ۲/۵ و ۵ نانوگرم موسیمول، تفاوتی را با گروه کنترل نشان نمی‌دهد.

پس از تزریق ۲/۵ و ۱۰ نانوگرم EPM در تست LA (C) OAE (B) OAT (A) Mean ± SEM موسیمول و 1 میکروناتورفین (0.01/0.005 میکروگرم) در تست

1. Open Arm Time
2. Open Arm Entries
3. locomotor activity
آزمایش ۲

شکل ۴ نشان می‌دهد که تزریق باکلوفن به‌روز سبیوم میانی واحدهای اضطراب‌زایی در تست EPM است. تزریق ۱ نانگرم باکلوفن در سبیوم میانی موجب کاهش ورود به باروی بازی شود. تزریق ۱/۰/۰۵/۰،

نанوگرم باکلوفن تفاوتی را با گروه‌های کنترل ایجاد نکرد.

![A](#)

![B](#)

![C](#)

در تест EPM شامل دوزهای ۱/۰/۰۵/۰ و ۱/۰/۰ نانوگرم باکلوفن و ۱ میکرونتر سالین (۱/۰/۰۰/۰۰/۰۰۰) در پارامترهای (A) OAT و (B) OAE

Mean ± SEM

**p<0.05**, ***p<0.001***
آزمایش ۳

با توجه به شکل ۵، تزریق آپومورفین به هیپوکامپ پشتی دارای اثرات منفی است. تزریق دوز ۰/۰۵ و ۰/۰۱ میکروگرم آپومورفین درصد حضور در باری افزایش داد. در حالی که دوزهای بالاتر (۱/۰ و ۰/۵ میکروگرم) این پارامترها را تغییر نداد.

![آزمایش ۳](image)

شکل ۵ برای پارامترهای EPM (A)، OAT (B) و LA (C) در تست EPM شامل دوزهای ۰/۰۰۵ و ۰/۱ میکروگرم آپومورفین و ۱ میکروگرم اپسیدالبالا و دوز کنترل ۰/۰۰۵ میکروگرم آپومورفین. در دوزهای بالایی از آپومورفین به دو دسته از ۱۰ میکروگرم و ۰ میکروگرم آپومورفین کنترل می‌توانست باعث کاهش عملکرد در EPM شود. در حالی که در دوزهای نسبتاً کمی از آپومورفین به دو دسته از ۱۰ میکروگرم و ۰ میکروگرم آپومورفین کنترل می‌توانست باعث کاهش عملکرد در EPM شود.

آزمایش ۴

![آزمایش ۴](image)
با توجه به شکل، توزیع توانایی بیان دوزهای نسبی آپومورفین و موسیمول، رفتارهای شدید اضطرابی را باعث جدایی می‌کند. این موضوع حاکی از تأثیر سترژستیک دو داروی مذكور در ایجاد اثر اضطراب‌زا دیابی است.

[نمودار A] در پارامتر OAT (A), %Open arm time (OAT) در مدل EPM در دوزهای آپومورفین (آپومورفین/میکروگرم) با تغییرات قابل توجه در درصد زمان بازی بین دو گروه داروهای مورد بررسی قرار گرفت. در این پارامتر بیش از ۷۵ درصد از بازی در بین گروه‌های دریافتگر آپومورفین و موسیمول و خونرودی ایجاد کرد.

[نمودار B] در پارامتر OAE (B), %Open arm entry (OAE) در مدل EPM در دوزهای آپومورفین (آپومورفین/میکروگرم) و موسیمول با تغییرات قابل توجه در درصد بازی بین دو گروه داروهای مورد بررسی قرار گرفت. در این پارامتر بیش از ۷۵ درصد از بازی در بین گروه‌های دریافتگر آپومورفین و موسیمول و خونرودی ایجاد کرد.

[نمودار C] در پارامتر L (C), %Locomotion در مدل EPM در دوزهای آپومورفین (آپومورفین/میکروگرم) و موسیمول با تغییرات قابل توجه در درصد بازی بین دو گروه داروهای مورد بررسی قرار گرفت. در این پارامتر بیش از ۷۵ درصد از بازی در بین گروه‌های دریافتگر آپومورفین و موسیمول و خونرودی ایجاد کرد.

در مجموع، نتایج نشان داد که در پارامتر‌های OAT, OAE و L در مدل EPM در دوزهای آپومورفین (آپومورفین/میکروگرم) و موسیمول با تغییرات قابل توجه در درصد بازی بین دو گروه داروهای مورد بررسی قرار گرفت.

**P<0.01**
آزمایش ۵
شکل ۷ نشان می‌دهد که تزریق توالی دوزهای بیش از اپومورفین باکلوفن، رفتارهای شدید را با صورت معنی‌داری افزایش می‌دهد. در حقيقة تأثیرات سینقنزیک این دوزها موجب کاهش پارامترهای EPM می‌شود.

![Graph A](image1)

![Graph B](image2)

![Graph C](image3)
بحث و تفسیر

نتایج حاصل از آزمایش‌های ۱ و ۲ نشان می‌دهد که دوزهای بالایی موسمول و باکلوفن به‌طور متوسط بی‌تولید موجب کاهش آنزیم‌های اضطرابی می‌شود. در حالی که دوزهای پایین این داروهای تانین اثری ندارند. پیش از این دگروش، همکارانش در سال ۲۰۱۱ نشان دادند که ترکیب دوز واحد موسمول به‌طور متوسط بی‌تولید می‌باشد. سپس بی‌تولیدی اثرات شبه‌هستروفیکی دارد. با توجه به اینکه در یک تحقیق اخیر، ثبت نام آزمایش‌های شکنجه اثرات اضطراب‌زا و در دوز بالا اثرات اضطراب‌زا دارد، هنوز در سطح این اثرات تأثیرات دوگانه باید در آزمایش‌های دیگری باشد، می‌توان دو فرض را در این مورد محصل دانست: فرض اول این است که دوام‌های دارای دو دسته رسته‌های D1 و D2 است. رسته‌های D1 موثر تر از D2 است. سپس این فرض اشاره‌های ایفا شده و اثر تحقیک دانست. در صورتی که موثر ترین مواد D1 است، باید ا томуکه مو اثرات اضطرابی دارد. بر اساس این فرض، ایکورورفین در دوزهای پایین نتیجه D1 اثر می‌کند و موثر ترین مواد افزایش‌های گلپا از هیپکامپ می‌شود. ولی ترکیب ایکورورفین در دوزهای بالا علاوه بر ایکورورفین D1 روزانه گفته اثر ایکورورفین بر دوزهای ایکورورفین، نتیجه گرفت. ایکورورفین بر روزی ایکورورفین وابسته به دوز است. فرصت دور این است که هیپکامپ پشتو علاوه بر ورودش خروجی‌های اصلی، دارای آنتی‌نورون‌های مهاری گابانازیک بی تعداد بسیار زیاد است. این اهمالی ایکورورفین در دوزهای بالا علاوه بر نورون‌های خروجی گلپا، نورون‌های بین‌نیرویی گلپا را نیز فعال می‌کند که به نوبه خود نورون‌های گلپا را مهار می‌کند.

تزریق آگونیست کولینزیک باعث کاهش اضطراب می‌شود [۱۳، ۱۴]. در حالی که تزریق درون هیپکامپ آنتی‌نورون‌های کولینزیک موجب افزایش اضطراب می‌شود [۸]. نتایج حاصل از آزمایش‌های ۴ و ۵ نشان می‌دهد که درمانی که سیستم‌ها گابانازیک و هیپکامپ می‌توانند با‌صرف سینپترژیک می‌کنند، اثر کرده و اضطراب را تغییر داد. تزریقات هیپکامپ در دوزهای بالا ایکورورفین و موسمول و باکلوفن در سیستم میانی با هم جمع شده و هم‌اکنون کاهش و افزایش معنی‌دار در رفتار اضطرابی ایجاد می‌کند.

بر اساس تحقیقات گری که در سال ۱۹۸۲ ارائه‌شده و به سیستم‌های هیپکامپ معروف است، مدیر نورونی که میان‌کش سینپترژیک را به‌طور قطعی بین سیستم‌های کولینزیک و گابانازیک سیستمی ایجاد می‌کند، باید به‌طور پرورشی شود. بر اساس این فرضیه هم این مزایا هم چنین مزایا ایجاد می‌شود. موسمول و باکلوفن باید تأثیرات انسانی مانند اثرات نورون‌های سیستم میانی داشته باشند. هیپکامپ می‌تواند سیستم میانی را از طریق دو سیستم مستقیم و غیرمستقیم مهار کند. سیستم مستقیم پروتئین‌های گابانازیکی این که از هیپکامپ به سیستم ۱. Degroot ۲. Gray

3. A. Degroot, M. B. Parent, "Increasing acetylcholine levels in the hippocampus or the entorhinal cortex reverses the impairing effects of septal GABA receptor activation on spontaneous alternation", Learn Mem, 7 (2000) 293-302.


