بررسی تنوع گونه‌ای گیاهان آبزی مکروفویت استان مازندران

شماره و ثبت ناشر:
نگارش عمده دانشگاه تربیت معلم
تاریخ پایه: 1391

چکیده

اکوسیستم‌های آبی یکی از مهترین عرصه‌های زیست‌شناسی است که در گیرنده‌های تناک‌سوزی و گونه‌های متنوع از آن است. تحقیق این اکوسیستم‌ها باعثی در بین فراغت گونه‌های گیاهی آبزی و موجودات وابسته به آنها می‌شود. تاکنون تحقیقات جامعی در مورد تنوع گونه‌ای گیاه‌های آبزی و امواج موثر بر پراکنش آنها در استان مازندران انجام نشده است. در این تحقیق، تنوع گیاهان آبزی در شرق و غرب استان مازندران در مرکز‌های دامی، مرکز‌های فصلی، نتایج دانل و مزارع برنج بررسی شد. این تحقیق بر روی نشست انتخاب گردید و با استقرار 121 واحد نمونه‌برداری به روش سیستماتیک تصادفی، تعادل 120 نمونه نیازمند شد و هر فهرست، این گونه‌ها هریک بر اساس سطح انتخاب شده در هر کودار تعدادی داشتند. در مصاحبه و مقایسه

تنوع گونه‌ای نشان داد که تنوع گونه‌ای مکروفویت‌های آبزی در شرق و غرب تابعی از گردانی و رطوبیت است. بر اساس روش دومارتن، آب و هوای غرب استان بسیار مرطوب و آب و هوای شرق مطبوع‌های است. بر اساس شرایط مناسب برای رشد گیاهان آبزی در غرب استان بیشتر است و تنوع گونه‌های آبزی در مرکز‌های دامی و مزارع رطوبیتی از گیاهان مکروفویتی نیز در سطح تابعی است. این تحقیق نشان می‌دهد شاخص‌های تنوع گونه‌ای برای گیاهان رطوبیتی و بالاست. گیاهان آبزی‌های بالاترین تنوع را در این بخش گیاهان مکروفویت‌های برای گیاهان رطوبیتی داشتند و کنتینن تنوع در مورد گیاهان مردمی مشارکه شد. نتایج نشان داد که از نظر اماری بین شاخص تنوع گونه‌ای نشان داد. در قسمت و غرب نیز تنوع گیاهان مکروفویت‌های رطوبیتی دسته گیاهان مکروفویت

مقدمه

پژوهش گیاهان گیاهان آبزی در اکوسیستم‌های آبی یکی از مهم‌ترین پدیده‌های طبیعت و بهترین راهنمای قضاوت درباره

واژه‌های کلیدی: تنوع گونه‌ای، گیاهان رطوبیتی، گیاهان آبزی، حیاتیت، گیاهان مردمی، استان مازندران

1. den Hartog 2. Veld

1047
روش‌هایی که در توضیحات و اشاراتی که در متن وجود دارد اشاره دارند، رخدادهای ممبیتی زیست را تحت کردنی و یا تشکیل دهنده از این دسته‌ای به‌ستوری می‌باشد که ضرورت طبیعی و وسعت مسئله اساسی در حفاظت محبیت زیست است. امروزه بررسی تنش گیاهان آبزی در اکوسیستم‌های آبی یکی از موضوعات حاشیه‌ای و مهم در آن‌ها که در نقش‌مندی و وسعت رشد گیاهان آبزی استان مازندران در شمال ایران، حاشیه‌ای نوبه‌ای دیگری خارج است. این استان بآب و هوا مطلوب و زمین‌های آب‌رفتی پهنه، دارای مرداب‌های فراوان آب شیرین است که محل مناسبی برای رشد گیاهان آبزی به‌شمار می‌آید. هدف اصلی این تحقیق بررسی و مقایسه تنش گیاهان آبزی در سطح و غرب استان مازندران با توجه به گرایش مربوط است. مطالعه و بررسی تنش گیاهان آبزی بر اساس تحقیقات و تعیین دی ارتونگ و ولد (۱۹۸۸) برای گیاهان آبزی انجام شده است. مطابقهکلی گیاهان جمع‌آوری شده، دو دسته گیاهان آبزی و رشد گیاهانی و رشد گیاهانی در این تحقیق بررسی شدند و تنش گونه‌ای آن‌ها محاسبه شد. بر این اساس محاسبه شیوع‌های تنش گونه‌ای در منطقه بررسی شده به عنوان پایگاه اطلاعاتی برای پژوهش‌های آینده نیز می‌تواند ثبت شود. از طرفی چون محل واحدهای نمونه‌برداری با کمک GPS ثبت می‌شود با تکرار نمونه‌برداری در حالی‌که، می‌توان سبک تغییرات انجام گهونه‌ای را در منطقه مشاهده کرد.

پژوهش‌های آنگام انجام شده در این زمینه در ایران، بررسی فلوستیک آبزی مرداب‌های شمال در کارشناسهای [۱] و جامعه‌شناسی گیاهی و تهیه نشانه‌های جنبه‌گرایی تالاب‌های انزلی [۲] و بررسی اکولوژی فلور آبزی دریاچه بزنتان [۳] است. اما در سطح جهانی بررسی‌های زیادی دارد اگر نه در محله‌های مکانیکی با این تحقیق قویترین اثرات غیرطبیعی روز به‌راک گیاهان آبزی دمای آب، گیاه‌شناسی سطح سیستم‌های تحقیق و افزایش نشان داد. طبق این تحقیق، قویترین اثرات غیرطبیعی روز به‌راک گیاهان آبزی دمای آب، گیاه‌شناسی سطح سیستم‌های تحقیق و افزایش نشان داد. طبق این تحقیق، قویترین اثرات غیرطبیعی روز به‌راک گیاهان آبزی دمای آب، گیاه‌شناسی سطح سیستم‌های تحقیق و افزایش نشان داد. طبق این تحقیق، قویترین اثرات غیرطبیعی روز به‌راک گیاهان آبزی دمای آب، گیاه‌شناسی سطح سیستم‌های تحقیق و افزایش نشان داد. طبق این تحقیق، قویترین اثرات غیرطبیعی روز به‌راک گیاهان آبزی دمای آب، گیاه‌شناسی سطح سیستم‌های تحقیق و افزایش نشان داد. طبق این

۵. Emergent
آن با بود مشاهده شد [6]. پان و همکاران (2001) نقش عوامل محیطی را در تنوع گیاهان هم در داخل آب و هم در کرانه‌های رودخانه‌ها بررسی کردند. آنها به این نتیجه رسیدند که
رودخانه‌هایی که در معرض فرسایش سیلاب‌های نیستند و از نظر مواد غذایی بالترین عناصر به اثر رودخانه‌های
منحصر به فرد کمتری دارند [7]. در تحقیق دیگر، هولاند و فانبلای [8] جامعه در سال 2003 اثر گونه‌های مهاجم را
روی تنوع گیاهان در مناطق مختلف بررسی کردند. نتیج شان داد که ارتباط بین گونه‌های مهاجم و
غیربومی مثبت است و گونه‌های خارجی و غالب هر دو اثرات به شدت منفی روي سرعت رشد جوامع بومی
دارند [8].

مواد و روش‌ها

منطقه بررسی شده

ماساندران در فاصله بین دریاچه خزر و رشته‌کوه البرز قرار دارد و با با ٣٣٧٥٣٦٩ کیلومتر مربع وسعت،
۶/۴ درصد مساحت کشور را در بر می‌گیرد. این استان بین ۲۵ درجه و ۴۷ دقیقه تا ۳۵ درجه و ۳۵ دقیقه
عرض شمالی و ۵۰ درجه و ۴۳ دقیقه تا ۶۴ درجه طول شرقی از نصف‌النهار گرینویچ قرار گرفته
است.

توجه اجرایی رطوبت در دامنه‌های شمالی البرز بارندگی‌های فراوانی ایجاد می‌کند که با توجه به جهت
وزش باد، ناهماواری‌ها و عرض جغرافیایی دو نوع آب و هوای معتدل مرطوب چنگ‌های و کوهستانی را پدید
آورده است. بر اساس طبقه‌بندی دومارتین، نواحی غربی ماساندران بسیار مرطوب، نواحی مرکزی ماساندران
مرطوب و نواحی شرقی ماساندران مدیترانه‌ای و نواحی کوهستانی ماساندران نیمه‌مطوع است (تصاویری از
منطقه نمونه‌برداری در ضمیمه ١).

عملیات صحراوی و جمع‌آوری گیاهان

ایندا ایستگاه‌های مناسب از شرق به غرب یک دقیقه استان مشخص گردید. سپس عملیات صحراوی برای
نمونه‌برداری در طی سه فصل مختلف (زمستان و پاییز و تابستان) در این استان‌ها مشخص شده انجام
شد. شرایط ایستگاه بسته به وسعت منطقه مورد نظر انتخاب و تعیید می‌گردند و موضع طبقه‌بندی‌ها با
GPS انجام شد. تعداد ۱۴۶ نمونه از حدود ۲۰ مدلگیری گیاهان انتخاب و از ۱۴۶ گونه
نمونه‌برداری انجام شد. با توجه به اینکه گیاهان آبزی کوهک هستند، و احتمال نمونه‌برداری کودک‌های
انتقال شد و با توجه به مقدار مصالحی که تاک پوشش گیاه‌های ۱۰۰ درصد گیاهان که از یک دوره ای
ایندا ایستگاه سه گونه‌ای در جدول‌های به صورت تخمینی در هر واحد ثبت شد و در تجزیه و تحلیل‌های تنوع
گیاهان استفاده شد.

١٠٩
شناخت و توزیع گونه‌ای گیاهان آزمایشگاهی استان مازندران

شناخت و توزیع گونه‌ای گیاهان آزمایشگاهی استان مازندران
نتایج
برای محاسبه تنوع گونه‌ای، از شاخص‌های شانن، سیمپسون، N1 و N2 هیل، برگر-پارکر و مکاپنتاش استفاده شد. در جدول ۱ مشاهده می‌شود که تمام این شاخص‌ها در غرب بیشتر از شرق مازندران است. با انتزاع بودن میزان شاخص‌های N1 و N2 در غرب نشان‌دهنده بالاتر بودن غنیت و غالپیت در غرب است. برای بررسی معنی‌دار بودن تفاوت‌ها از آزمون t استفاده شد و نتایج حاصل از این آزمون بر منابع داده‌های موجود نشان داد در سطح ۵ درصد در مورد شاخص‌های ویژه و روش‌گاه تفاوت معنی‌داری وجود دارد.

جدول ۱. محاسبه شاخص‌های تنوع مکرو‌فیتی‌ها از غرب و شرق استان مازندران بر اساس داده‌های پوششی

<table>
<thead>
<tr>
<th>شاخص‌های N1</th>
<th>N2</th>
<th>N1، N2 Hill</th>
<th>Log normal distribution</th>
<th>Logarithmic series</th>
<th>Geometric series</th>
<th>Shannon</th>
<th>N1، N2 Hill</th>
<th>Berger-Parke</th>
<th>Pro- Biodiversity</th>
<th>Ecological Methodology</th>
<th>Smith & Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>مکاپنتاش</td>
<td>۱/۰/۰۹</td>
<td>۶۸۲/۱۳</td>
<td>۷۹۴/۳۹</td>
<td>۸۸۴/۳۹</td>
<td>۹۴۴/۳۹</td>
<td>۱/۰/۰۹</td>
<td>۶۸۲/۱۳</td>
<td>۷۹۴/۳۹</td>
<td>۸۸۴/۳۹</td>
<td>۹۴۴/۳۹</td>
<td></td>
</tr>
<tr>
<td>برگر-پارکر</td>
<td>۱/۰/۰۹</td>
<td>۶۸۲/۱۳</td>
<td>۷۹۴/۳۹</td>
<td>۸۸۴/۳۹</td>
<td>۹۴۴/۳۹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بررسی نمودار کا-غالپیت غرب و شرق استان

شکل ۱ منحنی کا-غالپیت را در شرق و غرب استان نشان می‌دهد. با توجه به اینکه نمودار مربوط به غرب استان پایین‌تر از نمودار مربوط به شرق قرار گرفته است، نتایج بیانگر این است که تنوع گونه‌های گیاهان آبزی (مکرو‌فیتی‌ها) در غرب بیش از شرق استان است.
نمودار ک.غالیت

شکل ۱. منحنی ک.غالیت روش‌گاه‌های مارکوفیتی‌های شرق و غرب مازندران براساس داده‌های درصد بوشش

تحلیل منحنی‌های رتبه–فرای‌انی غرب و شرق مازندران

نمودار رتبه–فرای‌انی. فرای‌انی (شکل ۲) نشان می‌دهد توزیع گیاهان غرب نسبت به شرق بالاتر است، چرا که منحنی غرب در بالای منحنی شرق قرار گرفته است.

شکل ۲. پلر رتبه–فرای‌انی شرق و غرب مازندران بر اساس داده‌های درصد بوشش

مقایسه شاخص‌های توزیع در سه گروه گیاهان آبزی حقيقی، گیاهان مردابی و گیاهان رطوبت‌دوست

شاخص‌های توزیع برای سه گروه گیاهان آبزی حقيقی، گیاهان مردابی و گیاهان رطوبت‌دوست محاسبه شد. نتایج نشان داد توزیع گیاهان رطوبت‌دوست نسبت به دو گروه دیگر بالاتر است، سپس گروه گیاهان آبزی حقيقی توزیع بالاتر را داشت و بعد از آن گیاهان مردابی قرار می‌گیرند. در جدول ۲ شاخص‌های مختلف توزیع برای هر

۱. Rank-Abundance
گروه محاسبه شده است. مقادیر شاخص N1 نشان می‌دهد تعداد گونه‌های مشترک با فراوانی یکسان در گروه سوم بیشتر است. شاخص برگر-پارکر که مربوط به غالبیت است نشان می‌دهد در گروه گیاهان مردابی غالبیت بالا است. شاخص N2 نشان می‌دهد تعداد گونه‌های فراوان در گروه سوم و اول زیاد است. بالا بودن میزان شاخص N1 و N2 در گروه سوم بالا گونه‌ها و یکنواختی را در این گروه نشان می‌دهد. نتایج حاصل از آزمون ی بر مبنای داده‌های موجود تفاوت معنی‌داری در سطح 5 درصد در مورد شاخص شانس سه گروه گیاهان آبی را نشان داد.

جدول ۲. مقادیر شاخص‌های تابع در گیاهان آبی حقیقی، گیاهان مردابی و گیاهان رطوبیدوست

<table>
<thead>
<tr>
<th>شاخص</th>
<th>نوع مکروفلای</th>
<th>بارگر-پارکر</th>
<th>میزان‌های N1</th>
<th>میزان‌های N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>غالبیت</td>
<td>آبی حقیقی</td>
<td>۱/۰۱۵</td>
<td>۸/۱۵۴</td>
<td>۱۴/۲۹۲</td>
</tr>
<tr>
<td></td>
<td>مردابی</td>
<td>۱/۰۳۴</td>
<td>۸/۱۶۰</td>
<td>۱۴/۳۲۶</td>
</tr>
<tr>
<td></td>
<td>رطوبیدوست</td>
<td>۱/۰۱۱</td>
<td>۸/۱۵۴</td>
<td>۱۴/۲۹۲</td>
</tr>
</tbody>
</table>

مقایسه و تحلیل منحنی کا- غالبیت گیاهان آبی حقیقی، گیاهان مردابی و گیاهان رطوبیدوست

منحنی گیاهان رطوبیدوست دو منحنی دیگر را قطع می‌کند بنابراین این مقایسه با دو گروه دیگر نیست ولی دو گروه دیگر با هم تداخلی ندارند و در این شرایط هرچه منحنی پایین‌تر باشد تنوع بیشتر است (شکل ۳). منحنی کا- غالبیت

![گیاهان رطوبیدوست ×

گیاهان مردابی ▲

گیاهان آبی حقیقی ▲

شکل ۳. منحنی کا- غالبیت تفسیرکننده مکروفلای‌های مردابی براساس داده‌های درصد پوشش

مقایسه و تحلیل منحنی رتبه- فراوانی گیاهان آبی حقیقی، گیاهان مردابی و گیاهان رطوبیدوست

شکل ۴. رتبه- فراوانی نشان می‌دهد گیاهان رطوبیدوست یکنواختی کمتری دارند و غالبیت با یک گونه است و گیاهان مردابی بیشترین یکنواختی را دارند بنابراین گروه‌ها و گونه‌ها فراوانی‌های یکنواختی ندارند.
مقایسه شاخص‌های یکپارچگی ماکروافیت‌های غرب و شرق مازندران

جدول ۳ نشان می‌دهد شاخص‌های یکپارچگی برای گیاهان آبزی در شرق بالاتر از گونه‌های موجود در غرب مازندران است.

جدول ۳: مقایسه شاخص‌های یکپارچگی ماکروافیت‌های غرب و شرق استان مازندران

<table>
<thead>
<tr>
<th>نوع ماکروافیت</th>
<th>گیاهان مرداری</th>
<th>گیاهان رطوبیتدوست</th>
<th>گیاهان آبزی حقیقی</th>
<th>گیاهان یکپارچگی</th>
<th>گیاهان مرداری یکپارچگی</th>
<th>گیاهان رطوبیتدوست یکپارچگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کامارگو</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
</tr>
<tr>
<td>گل‌پوش</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
</tr>
<tr>
<td>پودر</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
</tr>
</tbody>
</table>

مقایسه شاخص‌های یکپارچگی در سه گروه گیاهان آبزی حقیقی، گیاهان مرداری و گیاهان رطوبیتدوست

محاسبه مقادیر شاخص‌های یکپارچگی سه گروه تفکیک شده ماکروافیت‌های آبزی نشان می‌دهد گیاهان مرداری دارای یکپارچگی بیشتری نسبت به دو گروه دیگر هستند، بعد از آن گروه ماکروافیت‌های آبزی حقیقی قرار می‌گیرد و سپس گیاهان رطوبیتدوست قرار دارند، غالباً در این گروههای یکپارچگی بکر یا چند گونه به صورت جداگانه قرار می‌گیرند و بیشترین درصد پوشش را در این گروه به خود اختصاص داده‌اند. جدول ۴ شاخص‌های یکپارچگی را برای سه گروه نشان می‌ده.

جدول ۴: مقادیر شاخص‌های یکپارچگی گیاهان آبزی حقیقی، گیاهان مرداری و گیاهان رطوبیتدوست

<table>
<thead>
<tr>
<th>نوع ماکروافیت</th>
<th>گیاهان آبزی حقیقی</th>
<th>گیاهان مرداری</th>
<th>گیاهان رطوبیتدوست</th>
</tr>
</thead>
<tbody>
<tr>
<td>کامارگو</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
</tr>
<tr>
<td>گل‌پوش</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
</tr>
<tr>
<td>پودر</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
<td>۰/۷۶۳</td>
</tr>
</tbody>
</table>

محاسبات شاخص‌های غنای گونه‌ای

شاخص مارگالف در مورد شرق و غرب به ترتیب ۲۳/۰۵ و ۲۵/۰۱ و برای سه گروه گیاهی، بر اساس روش دن هنترتوک و ولد (۱۹۸۳)، برای گیاهان رطوبیتدوست ۲۰/۰۴ و گیاهان مرداری و آبزی حقیقی به ترتیب ۲۳/۰۱ و ۲۱/۰۴ بهبود اند.

۱۰۴
مقایسه و انطباق مدل توزیع فراوانی ماکروفیتها در شرق و غرب مازندران با مدل عصای شکسته و سربه‌های لگاریتمی

مدل توزیع فراوانی گونه‌ها در شرق بهتر از مدل عصای شکسته و دو مدل سایر لگاریتمی است. این کار از طرفی با در نظر گرفتن اینکه مدل توزیع فراوانی گونه‌ها در غرب با هیچ‌کدام از این دو مدل هماهنگ نبود و مقدار χ^2 جدول نشان داد که فرض صفر یعنی انطباق مدل توزیع فراوانی ماکروفیت‌ها با مدل‌های عصای شکسته و سربه لگاریتمی در سطح معنی‌داری 5 درصد رد می‌شود. احتمالاً توزیع فراوانی ماکروفیت‌ها در غرب یا کیک از دو مدل لگ نرمال و یا زئوتروبیک سازگار است.

بحث

نتایج بررسی عنای گونه‌های ماکروفیت‌های آبی مازندران نشان می‌دهد که عناها گونه‌های و درصد پوشش آنها به‌سیار بالاست. بررسی‌های لکلور و فریمی (2006) نیز نشان داد مرداب‌هایی که در زمینه‌ای پست قرار دارند، با تغییرات دمایی حداکثر 30 درجه، به‌طور ملایم فعالیت‌های سربه‌ها را کاهش می‌دهند. منابع، دارای حداکثر عناها گونه‌های و بویس پالایی از ماکروفیت‌های آبی هستند. به علاوه، در حفظ اکثر گیاهان آبی گونه‌های مهامجی هستند که یکی از دلایل بی‌پرود عناها گونه‌های ماکروفیت‌های نیز در مازندران رشد گونه‌های مهامجی و معرفی شده به این استان است، به‌صورتی که هیچ گونه‌ای از ماکروفیت‌های آبی شناسایی شده در این تحقیق بومی ایران نیستند [16].

هدف اصلی از این تحقیق بررسی ایجاد رطوبت بر تتابع گونه‌های ماکروفیت‌های آبی غرب با شرق است. این نتایج در شرق مازندران است. دلیل بالاتری بودن تتابع گونه استان نسبت به شرق استان به دورنگی نزولات و بیش از تابعی است. بر اساس روش دومارتن نواحی غربی مازندران بیشتر مرطوب و نواحی مرطوب و نواحی شرقی دیترانه یکدیگر. به همین دلیل بارندگی‌های نواحی غربی استان و فرصت اراضی باری برای باتلاقی شدن بخصوص زمین‌های رها شده و درصد نفوذ کریپت اراضی (مانند مرداب‌های مسده نزدیک به نمک آبود) ضریب مناسبی به‌رای رشد گیاهان آبی فراهم آمده است. همچنین، نتایج به‌دست آمده از انتخاب‌ها و بررسی و مقایسه نتایج مرداب‌ها و مزارع نیز نشان می‌دهد مرداب‌ها (هم در غرب و هم در شرق) تابع بیشتری از مزارع بیشتر دارند و با توجه به زیاد بودن عناها گونه‌های مرداب‌های شرق نسبت به مزارع شرق می‌توان گفت مرداب‌ها در تتابع گونه‌های شرق استان تأثیر بیشتری دارند و لیک در غرب هم مزارع و هم مرداب‌ها در تتابع گونه‌های غرب تأثیر دارند.

1055
شاخه‌های تتبع در مورد سه گروه مکروفیتی‌ها تایید می‌کند که گروه گیاهان رطوبیودست بیشترین ت نوع را دارد. جنین این گروه برای رشد نیاز به آب رافوان ندارند و در ضمن شرایط آبی را نیز به خوبی تحمل می‌کنند و نیز اغلب گونه‌ها آن تروفیت‌پذیر و تحم شرایط حساس‌سالی را دارند و به صورت آفت در مزارع برنج رشد می‌کنند، اما وجود یک‌واحی پایین به علت داشتن غنی گونه‌ها این گروه باید از ترکیب گونه‌های بالایی را نشن می‌دهد. رافووان‌ترین گونه در کل منطقه سینودون داشتی‌لَون نیز مربوط به این گروه است. با وجود تنویع بالای این گروه و این‌که از بین رفت گونه‌های با رافووایی کم، تاثیر به ساختار جامعه تدار بخی گونه‌های در معرض خطر در این گروه نیاز به حفاظت دارد. در گروه گیاهان آزی حیفیاق برخی گونه‌ها مانند زوسترا تولبتی هورمان ‚دارای کبدترین درصد پوشش هستند فقط در یک محل (دلی یکه دندی رام) دیده شدند. درصد پوشش بالایی گیاهان مانند آزولا فیلیکالوپیس و ‚چاراوولگارس ′ غنا گونه‌ها را در این گروه افزایش می‌دهد. در گروه گیاهان مرجان که بیشترین گونه‌ای را دارند جنین تعداد گونه‌ها گیاهان که در گونه‌های آماده‌بافت است. این نتایج، نتایج حاصل از بررسی فلورستیکی مکروفیتی‌های آبی از ماندن را هم تولکی (2007) انجام داد. تایید می‌کند. نتایج بررسی لکول و فریمین (2006) نیز نشان داد گیاهان رطوبیودست (خانواده جگان و سپس گندمان) بیشترین گونه‌ها را به خود اختصاص دادند، سپس گیاهان غنی‌ترین، بعد گیاهان شناور و از همه کبیر مکروفیتی‌های با وقت که بیشترین گونه‌ها شناور بودند. [5] بررسی‌های تحقیق حاصل نشان داد نیز گیاهان رطوبیودست بیشترین گونه‌ای دارند و میریوبیلم اسپاتینوم ‚ و چاراوولگارس ′ از گروه گیاهان غنی‌ترین و نیز جزئی گونه‌ها با بیشترین درصد پوشش است و گونه‌های مانند (فسیپس و آزولا فیلیکالوپیس) از گروه گیاهان شناور بعد از گیاهان غنی‌ترین، گونه‌ها شناور بودند. [6] بررسی‌ها نشان داد که بیشتر در گروه گیاهان رطوبیودست گونه‌ها، بالاترین میزان حضور در گیاهان شناور دارد. مدل توزیع گونه‌ها نیز در شرق با مدل حضور شکسته مطابقت دارد. پایین بودن غنی‌ترین و بالا بودن غنای گیاهان مکروفیتی‌های آزی در کل منطقه، دلیل تطبیق نمونه‌بردار مدل حضور شکسته بوده و هیچ وجه اشکالی بین گونه‌ها در استفاده از منابع وجود دارد. در هر صورت اگر مدل توزیع حضور شکسته مطابقت خوبی با آن، مدل حضور گونه‌های اکلوپلازیک نمی‌تواند به صورت یک‌واحی با گونه‌ها مشترک است [12]، ویل در غرب توزیع فراوانی گونه‌ای با هیچ یک از دو مدل حضور شکسته و سری‌های نگارشی مطابقت ندارد. احتمالاً مدل توزیع فراوانی گونه‌ای در غرب با یکی از دو مدل بهتر می‌باشد و از یک دقت منطقه است.

1056
(Sparganium erectum L) در شرق، گونه (Cynodon dactylon (L.) Pers.) در بخش‌های آبیزی واقعی مربوطه به هر یک 93% پوشش، بود. بعد از آن (Azolla filiculoides svos Lam.) و (Myriophyllum spicatum L.) نیز با حدود 50% پوشش، بیشترین درصد افراد و کمترین درصد یک هفتگی در گونه‌های آبیزی با کمترین توزیع. این توزیع (Pulicaria dysenterica (L.) Brenn. major L.) است که تا در یک مکان (مردان طبیعی زن زن) دیده شد.

در بین گونه‌های مردابی (Sparganium erectum L.) و (Cynodon dactylon (L.) Pers.) گونه‌های مردابی درصد پوشش را به خود اختصاص داده، بعد از آن (بيشترین درصد پوشش را داراست. بقیه گونه‌های این گروه پوشش متوسط تقریباً یکسانی داشتند که همین امر دلیل بودن یکپارچه در این گروه است هرچند پایان بودن تعادل گونه‌ها تنواع را کاهش داده است.

لیست گیاهان آبزی مارکوفیت استان مازندران و پراکنش جغرافیایی آن‌ها

<table>
<thead>
<tr>
<th>رنگ</th>
<th>نام علمی</th>
<th>پراکنش جغرافیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>Alisma lanceolatum With.</td>
<td>PL.</td>
</tr>
<tr>
<td>۲</td>
<td>Alisma plantago-aquatica L.</td>
<td>PL.</td>
</tr>
<tr>
<td>۳</td>
<td>Apium nodiflorum (L.) Lag.</td>
<td>PL.</td>
</tr>
<tr>
<td>۵</td>
<td>Hydrocotyle vulgaris L.</td>
<td>Euro-Sib.-N. Medit.</td>
</tr>
<tr>
<td>۶</td>
<td>Hydrocotyle ranunculoides L. f.</td>
<td>PL.</td>
</tr>
<tr>
<td>۹</td>
<td>Eclipta prostrata (L.) L.</td>
<td>Euro-Sib.-Medit.-Ir.-Tur.</td>
</tr>
<tr>
<td>۱۰</td>
<td>Bidens tripartita L.</td>
<td>Euro-Sib. (Medit.-Ir.-Tur.).</td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
<td>Distribution</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Betulaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus subcordata C. A. Mey.</td>
<td>Euro-Sib.</td>
<td></td>
</tr>
<tr>
<td>Boraginaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brassicaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardamin hirsuta L.</td>
<td>Euro-Sib.-Medit. (Ir.-Tur.)</td>
<td></td>
</tr>
<tr>
<td>Nasturtium microphyllum Boenn. ex Reichenb.</td>
<td>Euro-Sib.(W. Ir.-Tur.)</td>
<td></td>
</tr>
<tr>
<td>Callitrichaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitriche palustris L.</td>
<td>E. Holarctic</td>
<td></td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spergularia marina (L.) Griseb.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Ceratophyllaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratophyllum demersum L.</td>
<td>PL.</td>
<td></td>
</tr>
<tr>
<td>Characeae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chara vulgaris L.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicornia europaea L.</td>
<td>Euro-Sib.-Medit.-Ir.-Tur</td>
<td></td>
</tr>
<tr>
<td>Cyperaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex diluta M.B.</td>
<td>Ir.-Tur.</td>
<td></td>
</tr>
<tr>
<td>Carex pendula Huds.</td>
<td>Euro-Sib.-Medit.</td>
<td></td>
</tr>
<tr>
<td>Carex pseudocyperus L.</td>
<td>Euro-Sib.-Medit.-Ir.-Tur., N. Am.</td>
<td></td>
</tr>
<tr>
<td>Carex remota L.</td>
<td>Euro-Sib.-Medit.</td>
<td></td>
</tr>
<tr>
<td>Carex songorica Kar. & Kir.</td>
<td>Ir.-Tur.</td>
<td></td>
</tr>
<tr>
<td>Cyperus esculentus L.</td>
<td>Pantr.</td>
<td></td>
</tr>
<tr>
<td>Cyperus fuscus L.</td>
<td>Euro-Sib.-Medit.-Ir.-Tur.</td>
<td></td>
</tr>
<tr>
<td>Cyperus longus L.</td>
<td>Medit.-Ir.-Tur.(Euro-Sib.)</td>
<td></td>
</tr>
<tr>
<td>Cyperus rotundus L.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Eleocharis palustris (L.) Roem & Schult.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Eleocharis uniglamis (Link.) Schult.</td>
<td>Euro-Sib.-Ir.-Tur.</td>
<td></td>
</tr>
<tr>
<td>Schoenoplectus lacustris (L.) Palla.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Schoenoplectus littoralis Schrad.</td>
<td>Paleotr.</td>
<td></td>
</tr>
<tr>
<td>Schoenoplectus mucronatus (L.) Palla.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Equisetaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equisetum palustre L.</td>
<td>PL.</td>
<td></td>
</tr>
<tr>
<td>Equisetum ramosissimum Desf.</td>
<td>PL.</td>
<td></td>
</tr>
<tr>
<td>Haloragaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myriophyllum spicatum L.</td>
<td>Borealo-Trop.</td>
<td></td>
</tr>
<tr>
<td>Myriophyllum verticillatum L.</td>
<td>Borealo-Trop.</td>
<td></td>
</tr>
<tr>
<td>Hydrocharitaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocharis morsus-ranae L.</td>
<td>PL.</td>
<td></td>
</tr>
<tr>
<td>Hypericaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypericum perforatum L.</td>
<td>PL.</td>
<td></td>
</tr>
<tr>
<td>Iridaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris pseudoacorus L.</td>
<td>Euro-Sib.-Medit.-W. Ir.-Tur.</td>
<td></td>
</tr>
<tr>
<td>Juncaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus acutus L.</td>
<td>PL.</td>
<td></td>
</tr>
<tr>
<td>Juncus articulatus L.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Juncus bufonius L.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Juncus effusus L.</td>
<td>Cosm.</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Species</td>
<td>Distribution</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>54</td>
<td>Juncus hybridus Brot.</td>
<td>PL.</td>
</tr>
<tr>
<td>53</td>
<td>Juncus inflexus L.</td>
<td>Cosm.</td>
</tr>
<tr>
<td>58</td>
<td>Juncus maritimus Lam.</td>
<td>Euro-Sib.-Medit.</td>
</tr>
</tbody>
</table>

Lamiaceae

61	Lycopus europaeus L.	Euro-Sib.
62	Mentha aquatica L.	Euro-Sib. & Cult.
63	Prunella vulgaris L.	Cosm.

Lemnaceae

64	Lemna gibba L.	Borealo-Trop.
65	Lemna minor L.	Borealo-Trop.
66	Spirodela polyrrhiza (L.) Schleiden	Borealo-Trop.

Lythraceae

| 67 | Lythrum salicaria L. | PL. |

Nymphaeaceae

| 68 | Nymphaea alba L. | Euro-Sib.-Medit.-Ir.-Tur. |

Onagraceae

| 70 | Epilobium hirsutum L. | PL. |
| 71 | Ludwigia palustris (L.) Elliott. | PL. |

Papilionaceae

| 72 | Trifolium angustifolium L. | Euro-Sib.-Medit.-Ir.-Tur. |
| 73 | Trifolium repens L. | Euro-Sib.-Medit.-Ir.-Tur. |

Plantaginaceae

| 74 | Plantago lanceolata L. | Cosm. |

Poaceae

76	Agrostis tenuis Sibth.	Euro-Sib.-Medit.
77	Arundo donax L.	PL.
78	Calamagrostis epigejos (L.) Roth.	PL.
79	Catabrosa aquatica (L.) beauv.	Ir.-Tur.
80	Coix lacrima-jobi L.	Native of Tropo As.
82	Hordeum murinum L.	Euro-Sib.-Medit.-Ir.-Tur.
83	Paspalum dilatatum Poir.	Native of S. Am.
85	Phragmites australis (Cav.) Trin. ex Steud.	PL.
86	Polygonon fugax Nees ex Steud.	Cosm.
87	Polygonon monspeliensis (L.) Desf.	Cosm.

Polygonaceae

88	Polygonon hydropiper L.	PL.
89	Polygonon lapathifolium L.	Euro-Sib.-Medit.-Ir.-Tur.
90	Polygonon persicaria L.	Euro-Sib.-Medit.-Ir.-Tur.
91	Rumex crispus L.	Euro-Sib.-Medit.
92	Rumex pulcher L.	Euro-Sib.-Medit.-Sah-Arab.

Potamogetonaceae

93	Potamogeton crispus L.	PL.
96	Potamogeton pectinatus L.	Cosm.
97	Potamogeton perfoliatus L.	Euro-Sib.-Ir.-Tur., N. Am.

Primulaceae

| 99 | Samolus valerandi L. | Cosm. |

Ranunculaceae

100	Batrachium rionii (Lagger.) Nym.	Medit.-Ir.-Tur.
101	Batrachium trichophyllum (Chaix.) Bosch.	Cosm.
103	Ranunculus dolosus Fisch. & C. A. Mey.	End.
104	Ranunculus macricatus L.	PL.
106	Ranunculus repens L.	Euro-Sib.-Medit.-Sah-Arab.

Ricciaceae

| 109 | Riccia fluitans L. | Cosm. |

Rosaceae

| 110 | Potentilla reptans L. | Euro-Sib.-Medit. (Ir.-Tur.) |

Rubiaceae

| 113 | Salix aegyptiaca L. | Euro-Sib.-Medit. |

Salviniaceae

| 116 | Salvinia natans (L.) Allioni. | PL. |
| 117 | Azolla filiculoides Lam. | PL. |

Scrophulariaceae

| 118 | Veronica anagallis-aquatica L. subsp. oxycarpa. | Cosm. |

Solanaceae

| 119 | Solanum dulcamera L. | Euro-Sib.-Medit.-Ir.-Tur |

Sparganiaceae

| 120 | Sparganium erectum L. | Euro-Sib.-Medit.-Ir.-Tur. |

Typhaceae

| 121 | Typha latifolia L. | Borealo-Trop. |
| 122 | Typha laxmanni lepech. | Euro-Sib. |

Verbenaceae

Zannichelliaceae

| 125 | Zannichellia palustris L. | Cosm. |

Zosteraceae