مقایسه دو روش برای حل یک مسئله معکوس سهموی با پارامتر کنترلی

سهیلا بداغی و "علی مردان شاربرزی:"
دانشگاه الزهرا (س)، دانشکده علوم پایه

چکیده
در این مقاله با ارائه دو روش به حل نوعی یک مسئله معکوس سهموی با پارامتر کنترلی می‌پردازیم. در روش اول ابتدا به کمک تبدیلات معکوس‌پذیر دسته سهموی مورد بررسی قرار داده و سپس به‌وسیله روش تفاضلات متناهی ضریبی به حل مسئله استاندارد حاصل اقدام می‌کنیم. در روش دوم با مکان‌گیری شرط کرانه‌ای فوق اضافی انگرالی، پارامتر کنترلی را از مسئله جدید کرده و در نهایت مسئله تبدیل بالاتر را حل می‌کنیم. در پایان با ارائه جدید مثل به مقایسه این دو روش می‌پردازیم.

مقدمه
미سئله سهموی نامگمگ: 

\[ 
\begin{align*}
    u_t(x,t) &= u_{xx}(x,t) + p(t)u(x,t) + f(x,t); & 0 < x < 1, & 0 < t \leq T, \\
    u(x,0) &= \varphi(x); & 0 < x < 1, & 0 < t \leq T, \\
    u_x(0,t) &= g_1(t); & 0 < t < T, \\
    Bu(1,t) &= g_2(t).
\end{align*} \]

با شرط کرانه‌ای فوق اضافی:

\[ \int_0^{s(t)} u(x,t) \, dx = E(t); \quad 0 \leq s(t) \leq 1, \quad 0 \leq t \leq T, \]

که در آن توابع \( p(t), g_1, g_2, \varphi \) و \( E(t) \) متغیر و \( u \) معلوم و \( s(t) \) همانندی و \( p \) و \( E \) در نوع مثبت و معین و همچنین عملکرد مشتق معنی به منظور می‌گیریم. پدیده‌های فیزیکی بسیاری به‌وسیله مسئله

\[ B = \frac{\partial^n}{\partial x^n}; \quad n = 0,1 \]

پدید می‌آیند. به عنوان مثال، مسئله (1) را می‌توان به عنوان یک مسئلة کنترلی با پارامتر کنترلی (p(t)) در نظر گرفت [1]. مسئلة فوق یک مسئلة معکوس است.

برای شرط کرانه‌ای (4)، دو حالت وجود دارد. در حالت اول شرط کرانه‌ای به‌صورت (4) و در حالت دوم بخش (4) این حالت دو حالت جواب دو حالت مسئلة می‌پردازیم. 

دانشمندان جواب و یکتاکی جواب چهار مسئلة (1) را (5) به راحتی از مرجع [2] بیان می‌شود.

واژه‌های کلیدی: مسئلة معکوس سهموی، پارامتر کنترلی، شرط فوق اضافی انگرالی، روش تفاضلات متناهی ضریبی، مسئلة تبدیل

پژوهش، روش مستقیم

\[ \text{پژوهش:} 90/8/11 \]

\[ \text{وزیسته مسئلة:} 90/5/26 \]
مساّله مذکور و مسائل مشابه را، که در آنها به یافتن تابع کنترلی \( p(t) \) (می‌پیدا‌زیم، محققان سیاری بررسی کرده‌اند) [۱]، [۲]، [۳]. به‌خاطر این مقاله به کاربردهای فیزیکی این مسئله اختصاص داشته و در بخش‌های ۳ و ۴ یک‌تبری نهایتی بررسی شده و نشان داده شده که در این مسئله، نتایج روش‌های مختلف هماهنگ و معنی‌دار می‌باشند. در این روش ابتدا مسئله غیر‌آزاد می‌شود مسئله غیر‌آزاد می‌شود [۴] و با کمک دو تبدیل استاندارد کرده و سپس آن را به روش تفاضلات متناهی ضمیم حل می‌کنیم [۵]. در روش دوم به حل مسئله مسئله غیر‌آزاد می‌شود [۱] تا [۳] می‌پیدا‌زیم و در نهایت در بخش ۵ با ارائه مثال‌هایی به مقداری آنها می‌پیدا‌زیم.

کاربردهای فیزیکی

بسیاری از پدیده‌های فیزیکی بر اساس مدل‌های معادلات با مشتق‌های جزئی می‌باشند که به شرط کانالی انتگرالی مدل‌پذیری می‌باشند. این جمله این مسئله می‌تواند به نظر کنترل مسئله پذیرشکی، فرآیندهای شیمیایی و زیستی اشاره کرد [۶]. در این مقاله به این‌جا بررسی می‌گردد از این گونه مسئله می‌پیدا‌زیم.

\[\int_0^b u(t,x) \, dx = E(t); \quad 0 \leq b \leq 1, \quad 0 \leq t \leq T,\]

در مسائل مختلف، جرم با انرژی را تعیین می‌کنیم. مثالی از به کارگیری مدل‌پذیری این مسئله، معرف دما باشد \( u \) که هدایت گرما به سبب \( \frac{\partial}{\partial t} u(t,x) \) می‌باشد. \[\text{ان گاه سیگنال الکتریکی تولید شده برای مدل‌پذیری این ماده متغیر با \( \frac{\partial}{\partial t} u(t,x) \) یعنی جرم ماده است. جایگزین اگر را منبع دنیای گرما بگیریم، این مسئله را می‌توان به صورت (۱) تا (۵) مدل‌پذیری کرد [۲]. از جمله کاربردهای مسئله (۱) تا (۵) در طبیعت می‌توان به فرآیند فتوستن در برگ‌ها و همچنین نحوه در بافت‌های بدن اشاره کرد:

فرآیند فتوستن در برگ‌ها شامل زنجیره‌ای از واکنش‌های شیمیایی و فتوسنتزی است که در نهایت منجر به تولید قند می‌شود. نفوذ و مصرف \( CO_2 \) در مزون‌های سیستم به عناصر از جمله این بافت‌ها می‌تواند باعث در نهایت در برگ‌ها تغییرات در بافت‌های بدن باشد. این در روش استاندارد‌سازی برای حل مسئله (۱) تا (۵) را استاندارد می‌کنیم. برای حالت‌های اول و دوم به ترتیب داریم:

\[r(t) = e^{-\int_0^t \sigma(r) \, dr}, \quad (6)\]

\[v(x,t) = r(t) u(x,t), \quad (7)\]

مسأله (۱) تا (۵) را استاندارد می‌کنیم. برای حالت اول و دوم به ترتیب داریم:

۲۶۴
مقدار دو روش برای حل مسئله مکوس سهمی با پارامتر کنترلی

\[
\begin{align*}
\nu(x, t) &= \nu_x(x, t) + f(x, t)r(t); \quad 0 < x < 1, \quad 0 < t \leq T, \\
v(x, 0) &= \phi(x); \quad 0 < x < 1, \\
v_x(0, t) &= u_x(0, t)r(t) = g_1(t)r(t); \quad 0 < t \leq T, \\
v(1, t) &= u(1, t)r(t) = g_2(t)r(t); \quad 0 < t \leq T, \\
\int_0^{s(t)} v(x, t) \, dx &= E(t)r(t); \quad 0 < s(t) \leq 1, \quad 0 \leq t \leq T,
\end{align*}
\]

حال به کمک طرح تفاضلات متناهی ضمنی به حل مسئله استاندارد شده اخیر می‌پردازیم. بدین منظور

\[
\tau = \frac{T}{N} \quad \text{و} \quad h = \frac{1}{M}
\]

بازده‌ی [0, T] را به‌ترتیب به N و M زیرپایه با طول گذاری یابیم. به‌طور کلی می‌پذیریم: به

\[
x_j = jh, \quad t_n = nt.
\]

از این‌رو توابع شبکه‌ای را می‌توانیم تعریف کنیم:

\[
u^j_n = u(x_j, t_n), \quad v^j_n = v(x_j, t_n), \quad f^j_n = f(x_j, t_n),
\]

و همچنین داریم:

\[
p^n = p(t_n), \quad r^n = r(t_n).
\]

در روابط اخیر برای مسئله (8)، 1 ≤ j ≤ M، 0 ≤ n ≤ N، 0 ≤ j ≤ M − 1 و برای مسئله (9)، 0 ≤ j ≤ M و برای مسئله (8)، 1 ≤ j ≤ M، 0 ≤ n ≤ N و برای مسئله (9) را برای تولید نقاط خارجی مورد نیاز شروع کرده‌ایم مسئله (8) و (9) را برای تولید نقاط خارجی مورد نیاز برای شروع کردن روی نوع دوم مسئله (9) به بازه [0,1] می‌افزاییم. روش تفاضلات متناهی ضمنی با به‌کار بردن روش اویلر پسر برای قسمت

\[
O(\tau + h^2)
\]

زمانی و روش تفاضل مرکزی برای قسمت مکانی به‌دست می‌آید که دارای خطای قطعی موضعی است و پایدار مطلق است [8].

روش تفاضلات متناهی ضمنی برای مسئله (8) و (9) به‌ترتیب، بدین صورت است:

\[
\begin{align*}
\frac{1}{\tau} (v^n_{j+1} - v^n_j) &= \frac{1}{h^2} (v^{j+1}_{j-1} - 2v^{j+1}_j + v^{j+1}_{j+1}) + r^{n+1}f^{n+1}_j, \\
v^0_j &= \phi_j, \\
v^n_1 &= v^n - 2hr^n g_1(t_n), \\
v^n_M &= r^n g_2(t_n),
\end{align*}
\]

و
\[
\begin{align*}
\frac{1}{\tau} (v_{j}^{n+1} - v_{j}^{n}) &= \frac{1}{h^2} (v_{j-1}^{n+1} - 2v_{j}^{n+1} + v_{j+1}^{n+1}) + r^{n+1} f_{j}^{n+1}, \\
v_{j}^{0} &= \varphi_{j}, \\
v_{j-1}^{n} &= v_{j}^{n} - 2hr^{n} g_{1}(t_{n}), \\
v_{j+1}^{n} &= v_{j}^{n} + 2hr^{n} g_{2}(t_{n}), \\
\end{align*}
\]

و برای شرط فوق اضافی انتگرالی مساله (8) و (9) می‌یابیم:

\[
r(t_{n}) = \frac{1}{E(t_{n})} \int_{0}^{s(t_{n})} v(x, t_{n}) \, dx.
\]

با تقریب عبارت انتگرالی اخیر به‌وسیله قاعده نوزنقات یافته می‌شود:

\[
\int_{0}^{s(t_{n})} v(x, t_{n}) \, dx = \int_{0}^{kh} v(x, t_{n}) \, dx + \int_{kh}^{s(t_{n})} v(x, t_{n}) \, dx
\]

\[
= h\left(\frac{v(x_{0}, t_{n})}{2} + v(x_{1}, t_{n}) + \cdots + v(x_{k-1}, t_{n}) + \frac{v(x_{k}, t_{n})}{2}\right) + \int_{kh}^{s(t_{n})} v(x, t_{n}) \, dx.
\]

به کمک درونیاب پیشرو نیوتن داریم:

\[
\int_{kh}^{s(t_{n})} v(x, t_{n}) \, dx = \left(\delta(t_{n}) - \frac{\delta^{2}(t_{n})}{2h}\right) v(x_{k}, t_{n}) + \frac{\delta^{2}(t_{n})}{2h} v(x_{k+1}, t_{n}),
\]

که در آن \( k(t_{n}) = \left[\frac{s(t_{n})}{M}\right] \) و \( \delta(t_{n}) = s(t_{n}) - k(t_{n})h \) و جمله آخر از دارایی (12) خواهیم داشت:

\[
r(t_{n}) = \frac{h}{E(t_{n})} \left[\frac{v(x_{0}, t_{n})}{2} + v(x_{1}, t_{n}) + \cdots + v(x_{k-1}, t_{n})
\right.

\[
+ \left(\frac{1}{2} + \frac{\delta(t_{n})}{h} - \frac{\delta^{2}(t_{n})}{2h^2}\right) v(x_{k}, t_{n}) + \frac{\delta^{2}(t_{n})}{2h^2} v(x_{k+1}, t_{n}).
\]

با گذاردن رابطه‌ای اخیر در رابطه (14) خواهیم داشت:

\[
\begin{align*}
&\quad p(t) = - \frac{r(t)}{r(t)} , \\
&\quad u(x, t) = \frac{v(x, t)}{r(t)} , \\
&\end{align*}
\]

می‌توان زوج جواب \((u, p)\) را بدست آورد. به این ترتیب مسئله معکوس حل می‌شود.

روش مستقیم برای حل عدید مسئله (1) تا (5) برای حل مسئله (1) تا (5) به روش مستقیم، ابتدا با استفاده از (1)، (3) و (5) داریم:

266


\[
E'(t) = s'(t)u(s(t), t) + u_x(s(t), t) - g_1(t) + p(t)E(t) + \int_0^{s(t)} f(x, t)dx,
\]

و به طور معادل می‌باشد:

\[
p(t) = \frac{E(t) - s'(t)u(s(t), t) - u_x(s(t), t) + g_1(t) - \int_0^{s(t)} f(x, t)dx}{E(t)}.
\]

با جایگذاری رابطه (17) در معادله (1)، مسئله (5) تا (5) به مسئله زیر منجر می‌گردد:

\[
u_t(x, t) = u_{xx}(x, t) + \left\{ \frac{E(t) - s'(t)u(s(t), t) - u_x(s(t), t) + g_1(t) - \int_0^{s(t)} f(x, t)dx}{E(t)} \right\} u(x, t)
+ f(x, t);
\]

\[
u(x, 0) = \phi(x); \quad 0 < x < 1,
\]

\[
u_x(0, t) = g_1(t); \quad 0 < t \leq T,
\]

\[
Bu(1, t) = g_2(t); \quad 0 < t \leq T.
\]

در این بخش با استفاده از روش تقاضا‌های ضمنی به حل عددی مسئله مستقیم (18) تا (21) می‌پردازیم.

\[
h = \frac{1}{M}
\]

\[\text{مشابه بخش پیشی، بازده‌های} \ [0,1] \text{و} \ M \text{راین رابطه به در نظر می‌گیرد.}
\]

\[\text{تقسیم} \ t = \frac{T}{N}
\]

\[\text{را به ترتیب داریم:}
\]

\[
x_j = jh, \quad t_n = nt.
\]

لذا توابع شبکه‌ای را به صورت تعریف می‌کنیم:

\[
u^n_j = u \left( x_j, t_n \right), \quad v^n_j = v \left( x_j, t_n \right), \quad f^n_j = f \left( x_j, t_n \right),
\]

و همانند داریم:

\[
p^n = p(t_n), \quad r^n = r(t_n).
\]

در روابط اولیه برای مسئله (8)، (9) و (10) به طور مستقیم (18) به ترتیب داریم:

\[
u_x(1, t) = g_2(t) \quad \text{و} \quad \text{همچنین در حالی که} \ u(1, t) = g_2(t)
\]


tرتیب دیگر صورت است:

\[
\frac{1}{r} \left( u_{j+1}^{n+1} - u_j^n \right) = \frac{1}{r^2} (u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}) + a(u(s(t_n), t_n))u_j^{n+1} + f_j^{n+1},
\]

\[
u_j^0 = \phi_j,
\]

\[
u_j^n = 2hg_1(t_n),\]

\[
u_j^N = g_2(t_n),
\]

\[
\frac{1}{r} \left( u_{j+1}^{n+1} - u_j^n \right) = \frac{1}{r^2} (u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}) + a(u(s(t_n), t_n))u_j^{n+1} + f_j^{n+1},
\]

\[
u_j^0 = \phi_j,
\]

\[
u_j^n = 2hg_1(t_n),\]

\[
u_j^N = g_2(t_n),
\]

\[
\text{در مسئله (22) و (23) داریم:}
\]

\[\text{در سیرتار (22) و (23) داریم:}
\]

\[767\]
با توجه به چگونگی قرار گرفتن $s(t_n)$ بر روی محور مختصات برای

در معادله اخیر به این امر در مختصات

حالّت اول: اگر $s(t_n)$ یکی از نقاط گره‌ها باشد یعنی:

$$s(t_n) = x_j; \quad 0 \leq j \leq M,$$

آنگاه

$$u(s(t_n), t_n) = u_j^0.$$  

حالّت دوم: اگر $s(t_n)$ نقطه گره‌ی نباهت و وجود

دارد بطوری که

در این حالته به کمک

در ضمن اگر $x_k$ در نقاط $x_{k+1}$ و $x_k$ و همچنین $x_k < s(t_n) < x_{k+1}$ عضوی داشت:

$$u(s(t_n), t_n) = \frac{(k+1)h - s(t_n)}{h} u_k^n - \frac{kh - s(t_n)}{h} u_{k+1}^n,$$

$$u_x(s(t_n), t_n) = \frac{(k+1)h - s(t_n)}{h} \left( \frac{u_{k+1}^n - u_k^n}{2h} \right) - \frac{kh - s(t_n)}{h} \left( \frac{u_{k+2}^n - u_{k+1}^n}{h} \right).$$

از معادله (24) به دستگاه $M \times M$ زیر می‌رسیم:

$$A_1 U^{n+1} = U^n + B_1,$$

که در آن

$\begin{align*}
A_1 &= \begin{pmatrix}
-\frac{\tau}{h^2} & 0 & \ldots & 0 \\
-\frac{\tau}{h^2} & -\frac{\tau}{h^2} & \ddots & \vdots \\
0 & \ddots & \ddots & 0 \\
0 & \ddots & \ddots & -\frac{\tau}{h^2} \\
0 & \ldots & 0 & -\frac{\tau}{h^2}
\end{pmatrix}, & B_1 &= \begin{pmatrix}
-\frac{2\tau}{h} g_1^{n+1} + \tau f_1^{n+1} \\
\vdots \\
\vdots \\
\vdots \\
\frac{2\tau}{h} g_M^{n+1} + \tau f_M^{n+1}
\end{pmatrix}, \quad U^n
\end{align*}$

و مسئله (23) به دستگاه $(M + 1) \times (M + 1)$ زیر منجر می‌شود:

$$A U^{n+1} = U^n + B,$$

در دستگاه اخیر

$\begin{align*}
A &= \begin{pmatrix}
-\frac{\tau}{h^2} & 0 & \ldots & 0 \\
-\frac{\tau}{h^2} & -\frac{\tau}{h^2} & \ddots & \vdots \\
0 & \ddots & \ddots & 0 \\
0 & \ddots & \ddots & -\frac{\tau}{h^2} \\
0 & \ldots & 0 & -\frac{\tau}{h^2}
\end{pmatrix}, & B &= \begin{pmatrix}
-\frac{2\tau}{h} g_1^{n+1} + \tau f_1^{n+1} \\
\vdots \\
\vdots \\
\vdots \\
\frac{2\tau}{h} g_M^{n+1} + \tau f_M^{n+1}
\end{pmatrix}.
\end{align*}$

\[\text{صفحه ۲۶۸}\]
بردار جواب \( \vec{U} \) به صورت زیر تعیین می‌شود:

\[
\vec{U}^n = (u^n_0, u^n_1, \ldots, u^n_M)^T.
\]

شاپایان ذکر است که در ماتریس \( A \) و \( \vec{a} \) داریم:

\[
\vec{a} = 1 + \frac{2\tau}{\hbar^2} - \tau a(s(t_n), t_n).
\]

با حل دستگاههای (۲۴) و (۲۵) به روش حل فیکس گاوس با محورداری و سنتویی می‌توانیم همه مقادیر \( u^n_j \) را به دست آوریم. با در دست داشتن مقادیر \( u \) می‌توانیم از رابطه (۱۷) به دست آوریم. به این ترتیب، مسئله معکوس مورد نظر حل می‌شود. لازم به ذکر است طرح‌های تفاصلی (۲۴) و (۲۵) پایدار و سازگار هستند و متریک همبستگی آنها \( O(\tau + h^2) \) هستند.

نتایج عددی

مثال ۱. مسئله معکوس یک رادار نظر می‌گیریم:

\[
u_t(x, t) = u_{xx}(x, t) + p(t)u(x, t) + (\pi^2 + 2t)e^t \cos \pi x + 2e^t x t;
\]

\[0 < x < 1, \quad 0 < t \leq 1, \quad u(0, t) = x + \cos \pi x; \]

\[u_x(0, t) = e^t; \quad 0 < x < 1, \quad 0 < t \leq 1, \quad u(1, t) = 0; \quad 0 < t \leq 1, \]

\[\int_0^1 u(x, t) dx = e^t \left( \frac{1}{\pi} \sin \left( \frac{\pi(1+t)}{2} \right) + \frac{(1+t)^2}{8} \right); \quad 0 < t < 1.\]

جواب واقعی این مسئله عبارت است از:

\[u(x, t) = e^t (x + \cos \pi x),\]

و

\[p(t) = 1 - 2t.\]

با حل این مسئله، مقدار روش‌هایی که شرح دادیم و با انتخاب \( h = 0.001 \) و \( \tau = 0.01 \) داریم:

| \( t \) | \( p(t) \) | \( \Delta p(t) \) | \( \Delta \) در روش درست
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.79525486819271</td>
<td>0.79871074762088</td>
<td>0.8</td>
</tr>
<tr>
<td>0.2</td>
<td>0.59426328254142</td>
<td>0.59871074762088</td>
<td>0.6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.39371166295291</td>
<td>0.39857045137511</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.19344496485992</td>
<td>0.19843058344622</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.00651316348892</td>
<td>-0.0017537688877</td>
<td>0.0</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.2061415729867</td>
<td>-0.2019831631773</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.4054313439588</td>
<td>-0.4022583261365</td>
<td>-0.4</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.60440827007286</td>
<td>-0.602581288717</td>
<td>-0.6</td>
</tr>
</tbody>
</table>
مقیاسی در روش برای حل یک مسئله معکوس سهمی با پارامتر کنترلی

جدول ۲. مقادیر دقیق و تقریبي (۰.۵)

<table>
<thead>
<tr>
<th>x</th>
<th>u(x, 0.5) در روش اول</th>
<th>u(x, 0.5) در روش دوم</th>
<th>u(x, 0.5) دقیق و تقریپی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.73298618202859</td>
<td>1.72845865635990</td>
<td>1.73289923512380</td>
</tr>
<tr>
<td>0.2</td>
<td>1.66366345353824</td>
<td>1.65943613294258</td>
<td>1.66358778112389</td>
</tr>
<tr>
<td>0.3</td>
<td>1.46376915475728</td>
<td>1.46001691033510</td>
<td>1.46376915475728</td>
</tr>
<tr>
<td>0.4</td>
<td>1.16900974601668</td>
<td>1.1658438648478</td>
<td>1.1689713995991385</td>
</tr>
<tr>
<td>0.5</td>
<td>0.82437787304813</td>
<td>0.82191404144753</td>
<td>0.82436063535006</td>
</tr>
<tr>
<td>0.6</td>
<td>0.47794823185266</td>
<td>0.47797640965759</td>
<td>0.4779487078648</td>
</tr>
<tr>
<td>0.7</td>
<td>0.18499554635159</td>
<td>0.1836278121632</td>
<td>0.18501084143165</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.014887453176</td>
<td>-0.015489106753</td>
<td>-0.01486651064237</td>
</tr>
</tbody>
</table>

مثال ۲. معادله سهمی:

\[ u_t = u_{xx} + p(t)u + (1 - \pi^2)e^{-t^2}\sin \pi x + 2t - 1; \quad 0 < x < 1, \quad 0 < t \leq 1, \]

با شرایط اولیه و کرانه‌ای

\[ u(x, 0) = 1 - \sin(\pi x); \quad 0 \leq x \leq 1, \]

\[ u_x(0, t) = -\pi e^{-t^2}; \quad 0 < t \leq 1, \]

\[ u_x(1, t) = \pi e^{-t^2}; \quad 0 < t \leq 1, \]

\[ \int_0^1 u(x, t) \, dx = \frac{1 + t}{2} + \frac{e^{-t^2}}{\pi} \left[ \cos \left( \frac{\pi(1 + t)}{2} \right) - 1 \right]; \quad 0 \leq t \leq 1, \]

را در نظر می‌گیریم. جواب واقعی این مسئله عبارت است از:

\[ u(x, t) = 1 - e^{-t^2}\sin(\pi x), \]

و

\[ p(t) = 1 - 2t. \]

با انتخاب \( \tau = 0/005 \) و \( h = 0/01 \)

برای برخی نقاط انتخابی داریم:

جدول ۳. مقادیر دقیق و تقریبی (۰)

<table>
<thead>
<tr>
<th>t</th>
<th>p(t) در روش اول</th>
<th>p(t) دقیق و تقریپی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.785156525952651</td>
<td>0.79799367677964</td>
</tr>
<tr>
<td>0.2</td>
<td>0.587713213761857</td>
<td>0.59631163618863</td>
</tr>
<tr>
<td>0.3</td>
<td>0.389687053612913</td>
<td>0.39534231109724</td>
</tr>
<tr>
<td>0.4</td>
<td>0.191054582901252</td>
<td>0.1949135537158</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00812080910522</td>
<td>-0.000504968266941</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.020774672861942</td>
<td>-0.2047745649556</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.40773739643491</td>
<td>-0.4043434922786</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.60802627480856</td>
<td>-0.6038349518775</td>
</tr>
</tbody>
</table>

۲۷۰
جدول 4. مقادیر دقیق و تقریبی (0.5)

<table>
<thead>
<tr>
<th>x</th>
<th>u(x, 0.5) در روش اول</th>
<th>u(x, 0.5) در روش دوم</th>
<th>مقدار واقعی (0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.75928890771779</td>
<td>0.75309529443821</td>
<td>0.75933732279842</td>
</tr>
<tr>
<td>0.2</td>
<td>0.54217868868552</td>
<td>0.53679335339889</td>
<td>0.54223238523680</td>
</tr>
<tr>
<td>0.3</td>
<td>0.36988801862598</td>
<td>0.36506187818097</td>
<td>0.36993693126272</td>
</tr>
<tr>
<td>0.4</td>
<td>0.25927369803537</td>
<td>0.25477589234399</td>
<td>0.25931644036417</td>
</tr>
<tr>
<td>0.5</td>
<td>0.22115839217381</td>
<td>0.21676951911709</td>
<td>0.22119921692860</td>
</tr>
<tr>
<td>0.6</td>
<td>0.25927369803537</td>
<td>0.25477589234399</td>
<td>0.36993693126272</td>
</tr>
<tr>
<td>0.7</td>
<td>0.36988801862598</td>
<td>0.36506187818097</td>
<td>0.36993693126272</td>
</tr>
<tr>
<td>0.8</td>
<td>0.5421785400738</td>
<td>0.53679335339889</td>
<td>0.54223238523680</td>
</tr>
</tbody>
</table>

نتایج گیری

چنان که در مثال‌های اخیر مشاهده کردیم در حالتی که شرط کرانه‌ای مسئله نوع دوم (نیومن) است، از روش دوم تقریب بهتری برای $u(x,t)$ و از روش اول تقریب بهتری برای $p(t)$ حاصل می‌شود. همچنین در حالتی که شرط کرانه‌ای مسئله نوع سوم (آمپانو) است، روش اول از خطای کبیری برخوردار است. در حالت کلی می‌توان گفت، روش دوم از جهت حجم کم عملیاتی نسبت به روش اول ارجحیت دارد.

منابع
