مقایسه دو روش برای حل یک مسئله معکوس سهموی با پارامتر کنترلی

سپیدا باغی و * علیرضاشی: دانشگاه الزهره (س) دانشکده علوم پایه

چکیده
در این مقاله با ارائه دو روش برای حل یک مسئله معکوس سهموی با پارامتر کنترلی می‌پردازیم. در روش اول ابتدا به کمک تبدیلات معکوس پنیری، مسئله سهموی مورد نظر را استاندارد کرده و سپس به وسیله روش تفاضلات منتاها ضمینه به حل مسئله استاندارد حاصل اقدام می‌کنیم. در روش دوم با استفاده از شرط کرانه‌ای فوق اضافی انتگرالی، پارامتر کنترلی را از مسئله جفت کرده و در نهایت مسئلة تبدیل یافته را حل می‌کنیم. در پایان با ارائه چند مثال به مقایسه این دو روش می‌پردازیم.

مقدمه
مسئله سهموی نامگمگ: \[
\begin{align*}
 u_x(x, t) &= u_{xx}(x, t) + p(t)u(x, t) + f(x, t); & 0 < x < 1, & 0 < t \leq T, \\
 u(x, 0) &= \varphi(x); & 0 < x < 1, & 0 < t \leq T, \\
 u_x(0, t) &= g_1(t); & 0 < t \leq T, \\
 Bu(1, t) &= g_2(t); & 0 < t \leq T,
\end{align*}
\]

با شرط کرانه‌ای فوق اضافی:
\[
\int_0^s u(x, t) \, dx = E(t); \quad 0 < s(t) \leq 1, \quad 0 \leq t \leq T,
\]

که در آن توابع \(f, g_1, g_2, \varphi, \psi\) مقداری ثابت و \(E, p, q, r\) و \(u\) معلوم و توابع \(u \) و \(\psi \) ثابت و حضور خاصی به حل مسئله نداشته و همچنین

عملگر مشتق پیوسته به عنی \(B = \frac{\partial^n}{\partial x^n}; n = 0, 1 \) است، را در نظر می‌گیریم. پیداکردن فیزیکی بسیاری با استفاده از مسئله به معرف توزیع دما باشند، مسئلة (1) تا (5) را می‌توان به عنوان یک مسئلة کنترلی با پارامتر کنترلی \(p(t) \) در نظر گرفت (1). مسئلة فوق یک مسئلة معکوس است. برای شرط کرانه‌ای (4)، دو حالت وجود دارد. در حالت اول شرط کرانه‌ای به صورت \(g_2(t) \) و \(u_x(1, t) = g_2(t) \) است. در ادامه به حل یک دو حالت برای مسئلة یافته می‌پردازیم.

قانونی وجود و یکتا بلاجور بایای مسئلة (1) تا (5) به راحتی از مرجع (2) یافته می‌شود.

واژه‌های کلیدی: مسئلة معکوس سهموی، پارامتر کنترلی، شرط فوق اضافی انتگرالی، روش تفاضلات منتاها ضمینه، مسئلة تبدیل

تاریخ نگارش: 1391/12/11

پذیرفته: 89/5/26

بهبود مسئلة

جند ۱۰، شماره ۱

Downloaded from isi.khu.ac.ir at 21:38 IRST on Wednesday December 9th 2020
تذکر

دسته‌بندی، علی‌مردان، شهرضا

مسأله مذکور و مسائل مشابه را، که در آنها به یافتن تابع کنترلی \(p(t) \) می‌پردازیم، محققان بسیاری بررسی کرده‌اند [1], [2]. بخش بعدی این مقاله به کاربردهای فیزیکی این مسأله اختصاص داشته و در بخش‌های 3 و 4 بیان شده است. در این روش ابتدا مسئله غیرمحدود (1) را با کمک دو تبدیل استاندارد کرده و سپس آن را به روش تغییرات متغیر اولی ضرمنی حل می‌کنیم [3]. در روش دوم به حل متغیر مسئله غیرمحدود (1) تا \(p(t) \) می‌پردازیم و در نهایت در بخش 5، با استفاده از مثال‌هایی به مقایسه آن‌ها می‌پردازیم.

کاربردهای فیزیکی

سیستم‌هایی که به‌طور معادلات با مشتقات جزئی به‌صورت یکدیگر با شرط کرانه‌ای انتگرالی مشابه می‌شوند، از جمله این مسائل می‌توان به نظر رساندن، مسائل پزشکی، فیزیک‌های شیمیایی و زیستی اشاره کرد [5]. در این مقاله به اعمالی بررسی گردید که کاربرد از این گونه مسائل می‌پردازیم.

\[
\int_0^b u(t, x) \, dx = E(t); \quad 0 < b \leq 1, \quad 0 \leq t \leq T,
\]

در مسائل مختلف، جرم با انرژی را تعیین می‌کنیم. مثلاً اگر در یک فرآیند هیدرات گرمانی، معروف دما باشد \(u \) و مقدار کمک‌کنندهی که در جرم خوراکی تولید شده به‌وسیله این ماده متغیر با آن گاز، \(r_s(t) \) و همچنین نفوذ در بافت‌های بدن است. کاربردهای ستونی (1) تا (5) برای استفاده در برگ‌ها و همچنین نفوذ در بافت‌های بدن اشاره کرد:

فرآیند فتوسنتز در برگ‌ها شامل دو ابتکار یا اکتیو‌های شیمیایی و فتوشیمیایی است که در نهایت متجرم به تولید هیدرات می‌شود. نفوذ کربن دی‌اکسید \(CO_2 \) در مرکزی بایک می‌خورد با مشتقات جزئی سهمی مدل‌بندی می‌شود [6].

در مسائل مختلفی از کاربردهای فیزیکی و زیستی انتقال جرم به‌وسیله نفوذ در بافت‌ها عملی می‌شود. از جمله این بافت‌های می‌توانیم بافت مغز را نام ببریم. نفوذ جرم در بافت مغز با معادله سهمی در نشان داده می‌شود [7].

روش استانداردسازی برای حل مسئله (1) تا (5)

در این روش ابتدا یک کمک تبدیلی بیان می‌شود:

\[
r(t) = e^{-\int_0^t p(\tau) \, d\tau},
\]

\[
v(x, t) = r(t)u(x, t),
\]

مسأله (1) تا (5) را استاندارد می‌کنیم. برای حل‌العمل و دوم به ترتیب داریم:

264
حال به‌کمک طرح تفاوت‌های متناهی به جمله مسئله استاندارد شده اخیر میرادزیم. بدین منظور بازده‌ای \(T\) و \(h = \frac{1}{M}\) پذیرفته و مسئله زیر را به مسئله با طول مسئله \(M\) و \(N\) زیربای معادله \([0, M]\) را به‌ترتیب بهبهانیم. بنابراین ترتیب داریم:

\[
x_j = jh, \quad t_n = nT.
\]

از اینگونه تابع شکل‌های را بدن صورت تعریف می‌کنیم:

\[
u^n_j = u(x_j, t_n), \quad v^n_j = v(x_j, t_n), \quad f^n_j = f(x_j, t_n),
\]

و همچنین داریم:

\[
p^n = p(t_n), \quad r^n = r(t_n).
\]

در روابط اخیر برای مسئله \((8)\) و برای مسئله \((9)\) و \(0 \leq j \leq M-1\) و \(0 \leq n \leq N\) و \(0 \leq j \leq M \) و \(0 \leq n \leq N\) است.

به‌پایه \([0,1]\) تیغ دستی. روش تفاوت‌های متناهی با نکات بندان در تولید نتایج مورد نیاز با توجه به مشابهت مسئله \((9)\) به‌بایدها با مسئله \((8)\) و \(O(T + h^2)\) زمانی و روش تولید مرکزی برای مسئله مکانیک به‌دست می‌آید که دارای خطا قطعی موضعی است و پایدار مطلق است \([8]\).

روش تفاوت‌های متناهی برای مسئله \((8)\) و \(O(T + h^2)\) با تهیهٔ دو صورت است:

\[
\frac{1}{T} (v^n_{j+1} - v^n_j) = \frac{1}{h^2} (v^n_{j+1} - 2v^n_j + v^n_{j-1}) + r^n j f^{n+1}_j,
\]

\[
v^n_0 = \phi_j,
\]

\[
v^n_{j-1} = v^n - 2hr^n g_1(t_n),
\]

\[
v^n_M = r^n g_2(t_n),
\]

و
روش مستقیم برای حل عددی مسایل (۱) تا (۴)

برای حل مسئله (۱) تا (۴) به روش مستقیم، ابتدا با استفاده از (۱)، (۳) و (۴) داریم:

\[
\begin{aligned}
\frac{1}{r} \left(v_{j}^{n+1} - v_{j}^{n} \right) &= \frac{1}{h^2} \left(v_{j-1}^{n+1} - 2v_{j}^{n+1} + v_{j+1}^{n+1} \right) + r^{n+1} f_{j}^{n+1}, \\
v_{0}^{n} &= \varphi_{j}, \\
v_{1}^{n} &= v_{1}^{n} - 2hr^{n} g_{1}(t_{n}), \\
v_{M+1}^{n} &= v_{M+1}^{n} + 2hr^{n} g_{2}(t_{n}),
\end{aligned}
\]

و برای شرط فوق اضافی انتگرالی مسایل (۸) و (۹) می‌یابیم:

\[
r(t_{n}) = \frac{1}{E(t_{n})} \int_{0}^{s(t_{n})} v(x, t_{n}) \, dx.
\]

به تقریب عبارت انتگرالی اخیر به‌وسیله قاعده نوزنه‌ای نتیجه می‌شود:

\[
\int_{0}^{s(t_{n})} v(x, t_{n}) \, dx = \int_{0}^{k_{h}} v(x, t_{n}) \, dx + \int_{k_{h}}^{s(t_{n})} v(x, t_{n}) \, dx
\]

\[
= h \left[\frac{v(x_{0}, t_{n})}{2} + v(x_{1}, t_{n}) + \cdots + v(x_{k-1}, t_{n}) + \frac{v(x_{k}, t_{n})}{2} \right] + \int_{k_{h}}^{s(t_{n})} v(x, t_{n}) \, dx.
\]

که در آن

\[
\delta(t_{n}) = s(t_{n}) - k(t_{n}) h
\]

خواهیم داشت:

\[
\begin{aligned}
\int_{0}^{s(t_{n})} v(x, t_{n}) \, dx &= h \left[\frac{v(x_{0}, t_{n})}{2} + v(x_{1}, t_{n}) + \cdots + v(x_{k-1}, t_{n}) + \frac{v(x_{k}, t_{n})}{2} \right] \\
&+ \left(\frac{1}{2} + \frac{\delta(t_{n})}{h} - \frac{\delta^{2}(t_{n})}{2h^2} \right) v(x_{k}, t_{n}) + \frac{\delta^{2}(t_{n})}{2h^2} v(x_{k+1}, t_{n})].
\end{aligned}
\]

با قرار دادن رابطه اخیر در رابطه (۱۲) خواهیم داشت:

\[
r(t_{n}) = \frac{h}{E(t_{n})} \left[\frac{v(x_{0}, t_{n})}{2} + v(x_{1}, t_{n}) + \cdots + v(x_{k-1}, t_{n}) + \frac{v(x_{k}, t_{n})}{2} \right]
\]

\[
+ \left(\frac{1}{2} + \frac{\delta(t_{n})}{h} - \frac{\delta^{2}(t_{n})}{2h^2} \right) v(x_{k}, t_{n}) + \frac{\delta^{2}(t_{n})}{2h^2} v(x_{k+1}, t_{n})].
\]

با جایگذاری رابطه (۱۴) در مسئله (۸) و (۹) حل می‌شود. با حل مسئله معکوس استاندارد، مقادیر (۵) را بخست می‌آوریم. حال با داشتن این مقادیر به راحتی از تبدیلات:

\[
p(t) = -\frac{r(t)}{r(t)}
\]

\[
u(x, t) = \frac{v(x, t)}{r(t)}
\]

می‌تواند زوج جواب (u, p) را بخست اورده. به این ترتیب مسئله معکوس حل می‌شود.

روش مستقیم برای حل عددی مسایل (۱) تا (۴)

پس از حل مسئله (۱)، (۳)، (۴) داریم:
\[
E'(t) = s'(t)u(s(t),t) + u_x(s(t),t) - g_1(t) + p(t)E(t) + \int_0^s f(x,t)dx,
\]

و به طور معادل می‌باشد:

\[
p(t) = \frac{E(t) - s'(t)u(s(t),t) - u_x(s(t),t) + g_1(t) - \int_0^s f(x,t)dx}{E(t)}.
\]

(17)

با جایگذاری رابطه (17) در معادله (16) یا (65) به مسئله زیر مجزا می‌گردند:

\[
u_t(x,t) = u_{xx}(x,t) + \left\{ \frac{E(t) - s'(t)u(s(t),t) - u_x(s(t),t) + g_1(t) - \int_0^s f(x,t)dx}{E(t)} \right\} u(x,t)
\]

\[+ f(x,t); \quad 0 < x < 1, \quad 0 < t \leq T, \]

(18)

\[u(x,0) = \varphi(x); \quad 0 \leq x \leq 1, \]

(19)

\[u_x(0,t) = g_1(t); \quad 0 < t \leq T, \]

(20)

\[Bu(1,t) = g_2(t); \quad 0 < t \leq T. \]

(21)

در این بخش با استفاده از روش تفاضلات منتهاي ضمنی به حل عددی مسئله مستقیم (18) تا (21) میردام.

\[h = \frac{1}{M} \]

و \(h = \frac{1}{N} \)

مشابه بخش پیشین، بازه‌های [0,1] و [0,T] را به ترتیب به \(N \) و \(M \) زیربخش‌های با طول گام‌های \(\Delta x \) و \(\Delta t \) تقسیم می‌کنیم. به این ترتیب داریم:

\[x_j = jh, \quad t_n = nt.\]

(22)

لذا توابع شبکه‌ای را به صورت تعریف می‌کنیم:

\[u^n_j = u(x_j,t_n), \quad v^n_j = v(x_j,t_n), \quad f^n_j = f(x_j,t_n),\]

و همچنین داریم:

\[p^n = p(t_n), \quad r^n = r(t_n).\]

(23)

در روابط اخیر برای مسئله (8)، (16) و (20) به در حد گام‌های \(\Delta x \) و \(\Delta t \) به همین ترتیب روش تفاضلات منتهاي ضمنی برای این مسئله در حالتی که شرط (22) باید باشد، به صورت \(u_x(1,t) = g_2(t) \) و همچنین در حالتی که شرط مذکور به شکل \(u(1,t) = g_2(t) \)

ترتیب دیدن صورتل است:

\[\frac{1}{\tau} (u^{n+1}_j - u^n_j) = \frac{1}{\tau^2} (u^{n+1}_{j+1} - 2u^{n+1}_j + u^{n+1}_{j-1}) + a(u(s(t_n),t_n))u^{n+1}_j + f^{n+1}_j, \]

\[u^0_j = \varphi_j, \]

\[u^0_1 = u^0_1 = 2hg_1(t_n), \]

\[u^n_M = g_2(t_n).\]

(24)

در مسئله (22) و (23) داریم:
\[
\begin{align*}
& a\left(u(s(t_n), t_n)\right) = \frac{E(t_n) - s(t_n)u(s(t_n), t_n) - u(s(t_n), t_n) - u_s(s(t_n), t_n) + g_1(t_n) - f_s(t_n) f(s(t_n), t_n) dx}{E(t_n)} \\
& a\left(u(s(t_n), t_n)\right) = u(s(t_n), t_n) \quad \text{و} \quad u(s(t_n), t_n) = u^n_k.
\end{align*}
\]

با توجه به چگونگی قرار گرفتن \(s(t_n)\) بر روی محور مختصات برای \(0 \leq n \leq N\) دو حالت داریم:

\textbf{حالت اول:} اگر \(s(t_n)\) یکی از نقاط گره باشد، یعنی:

\[s(t_n) = x_j; \quad 0 \leq j \leq M,\]

آنگاه

\[u(s(t_n), t_n) = u^n_k.
\]

\textbf{حالت دوم:} اگر \(s(t_n)\) نقطه گره نباید و \(k = \left[\frac{s(t_n)}{h}\right]\) وجود آن گاه عدد صحیحی مثل \(x_0 < s(t_n) < x_M\) دارد بطوری که \(k\) نقطه گره هستند. در این حالت به کمک

\text{دروناپایی لاگرانژ در نقاط \(x_{k+1}\) و \(x_k\) خواهیم داشت:}

\[u(s(t_n), t_n) = \frac{(k+1)h - s(t_n)}{h} u^n_k - \frac{kh - s(t_n)}{h} u^n_{k+1},\]

\[u_x(s(t_n), t_n) = \left(\frac{(k+1)h - s(t_n)}{h} \right) \left(\frac{u^n_{k+1} - u^n_k}{2h}\right) - \left(\frac{k-h-s(t_n)}{h}\right) \left(\frac{u^n_{k+2}-u^n_k}{2h}\right).
\]

از مسئله (22) به دستگاه \(M \times M\) زیر می‌رسیم:

\[A_1 U^{n+1} = U^n + B_1,\]

که در آن \(A_1\) ماتریسی سه قطعی و \(B_1\) ماتریسی سنتونی و بردار جواب \(U^n\) به ترتیب بدین صورت است:

\[
A_1 = \begin{pmatrix}
\frac{-2\tau}{h^2} & 0 & \cdots & 0 \\
\frac{-\tau}{h^2} & \frac{-\tau}{h^2} & \cdots & \vdots \\
0 & \frac{-\tau}{h^2} & \frac{-\tau}{h^2} & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \frac{-\tau}{h^2} \\
0 & \cdots & 0 & \frac{-2\tau}{h^2}
\end{pmatrix}, \quad B_1 = \begin{pmatrix}
\frac{-2\tau}{h^2} g_1^{n+1} + tf_1^{n+1} \\
\vdots \\
\vdots \\
\frac{2\tau}{h^2} g_2^{n+1} + tf_2^{n+1} \\
\vdots \\
\frac{2\tau}{h^2} g_M^{n+1} + tf_M^{n+1}
\end{pmatrix}, \quad U^n
\]

\[=(u^n_0, u^n_1, \ldots, u^n_{M-1})^T.
\]

و مسئله (23) به دستگاه \((M + 1) \times (M + 1)\) زیر منجر می‌شود:

\[A U^{n+1} = U^n + B,\]

در دستگاه اخیر \(A\) ماتریسی سه قطعی و \(B\) ماتریسی سنتونی بدین صورت است:

\[
A = \begin{pmatrix}
\frac{-2\tau}{h^2} & 0 & \cdots & 0 \\
\frac{-\tau}{h^2} & \frac{-\tau}{h^2} & \cdots & \vdots \\
0 & \frac{-\tau}{h^2} & \frac{-\tau}{h^2} & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \frac{-2\tau}{h^2} \\
0 & \cdots & 0 & \frac{-2\tau}{h^2}
\end{pmatrix}, \quad B = \begin{pmatrix}
\frac{-2\tau}{h^2} g_1^{n+1} + tf_0^{n+1} \\
\vdots \\
\vdots \\
\frac{2\tau}{h^2} g_2^{n+1} + tf_1^{n+1} \\
\vdots \\
\frac{2\tau}{h^2} g_M^{n+1} + tf_M^{n+1}
\end{pmatrix}.
\]

\[268\]
بردار جواب U^n بهینه صورت تعريف مي‌شود:

$U^n = (u^n_0, u^n_1, \ldots, u^n_M)^T$.

شایان ذكر است که در متغیرهای A_1 و A داریم:

$\alpha = 1 + \frac{2\tau}{h^2} - \tau a(u(s(t^n), t^n))$.

با حل دستگاههای (۲۴) و (۲۳) به روش حداقلی گاوس با محورگیری سنتی و توییم همراه مقایب u_i^{n+1} با به راح $p(t)$ به دست آمده آزمای u متغیر از رابطه (۲۷) و M از آن طرف، مسئله معکوس مورد نظر حل می‌شود. لازم به ذکر است طرح‌های تفاضلی (۲۴) و (۲۵) پایدار و سازگار هستند و مرتبه هیبردی آنها $O(\tau + h^2)$ هستند. [۷]

نتایج عددی

مثال ۱. مسئله معکوس زیر را به نظر می‌گیریم:

$u_t(x, t) = u_{xx}(x, t) + p(t)u(x, t) + (\pi^2 + 2t)e^t \cos \pi x + 2e^t xt$;

$0 < x < 1, 0 < t \leq 1$,

$u(x, 0) = x + \cos \pi x$;

$u_x(0, t) = e^t$;

$u(1, t) = 0$;

$0 < t \leq 1$,

$\int_0^{1+t} u(x, t)dx = e^t \left(\frac{1}{\pi} \sin \left(\frac{n(1+t)}{2} \right) + \frac{(1+t)^2}{8} \right)$;

$0 \leq t \leq 1$.

جواب واقعی این مسئله عبارت است از:

$u(x, t) = e^t (x + \cos \pi x)$,

و

$p(t) = 1 - 2t$.

با حل این مسئله مطالعه روش هایی که شرح دادیم و با انتخاب $\tau = 0.001$ و $h = 0.01$ داریم:

جدول ۱. مقایسه دقیق و تقریبی

<table>
<thead>
<tr>
<th>t</th>
<th>مقادیر دقیق در روش آلی</th>
<th>مقادیر دقیق در روش آلی</th>
<th>مقادیر تقریبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.79525486819271</td>
<td>0.7987107462088</td>
<td>0.8</td>
</tr>
<tr>
<td>0.2</td>
<td>0.59426328254142</td>
<td>0.5987107462088</td>
<td>0.6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.39371166295291</td>
<td>0.39857045137511</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.19344964859992</td>
<td>0.19843058344622</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00651316348892</td>
<td>0.017537688877</td>
<td>0.0</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.20614115729867</td>
<td>-0.2019831631773</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.40543513439588</td>
<td>-0.4022583261365</td>
<td>-0.4</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.60440827007286</td>
<td>-0.602581288717</td>
<td>-0.6</td>
</tr>
</tbody>
</table>
جدول ۲. مقادیر دقیق و تقریبی (۰.۵)

<table>
<thead>
<tr>
<th>x</th>
<th>در روش اول (u(x, 0.5))</th>
<th>مقادیر دقیق (۰.۵)</th>
<th>مقادیر تقریبی (۰.۵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.73298618202859</td>
<td>1.72845865635990</td>
<td>1.73289923512380</td>
</tr>
<tr>
<td>0.2</td>
<td>1.66366345353824</td>
<td>1.65943613294258</td>
<td>1.66358778112389</td>
</tr>
<tr>
<td>0.3</td>
<td>1.46376915475728</td>
<td>1.46001691033510</td>
<td>1.46374987087848</td>
</tr>
<tr>
<td>0.4</td>
<td>1.16900974601668</td>
<td>1.1658438648478</td>
<td>1.16897139991385</td>
</tr>
<tr>
<td>0.5</td>
<td>0.82437787304813</td>
<td>0.82191404144753</td>
<td>0.82436063535006</td>
</tr>
<tr>
<td>0.6</td>
<td>0.47974823185266</td>
<td>0.47797640965759</td>
<td>0.47974987087848</td>
</tr>
<tr>
<td>0.7</td>
<td>0.18499554635519</td>
<td>0.1836278121632</td>
<td>0.18501084144753</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.0148874533176</td>
<td>-0.0154891066750</td>
<td>-0.0148665614237</td>
</tr>
</tbody>
</table>

مثال ۲. معادله سهمی:

\[
 u_t = u_{xx} + p(t)u + (1 - \pi^2)e^{-t^2} \sin \pi x + 2t - 1; \quad 0 < x < 1, \quad 0 < t \leq 1,
\]

با شرایط اولیه و کران‌های

\[
 u(x, 0) = 1 - \sin(\pi x); \quad 0 \leq x \leq 1,
\]

\[
 u_x(0, t) = -\pi e^{-t^2}; \quad 0 < t \leq 1,
\]

\[
 u_x(1, t) = \pi e^{-t^2}; \quad 0 < t \leq 1,
\]

\[
 \int_0^{1+t} u(x, t) \, dx = \frac{1 + t}{2} + \frac{e^{-t^2}}{\pi} \left[\cos \left(\frac{\pi(1+t)}{2} \right) - 1 \right]; \quad 0 \leq t \leq 1,
\]

را در نظر می‌گیریم. جواب واقعی این مسئله عبارت است از:

\[
 u(x, t) = 1 - e^{-t^2} \sin(\pi x),
\]

و

\[
 p(t) = 1 - 2t.
\]

با انتخاب ۰/۰۵ و \(h = 0/001 \) برای برخی نقاط انتخابی دامی:

جدول ۲. مقادیر دقیق و تقریبی (\(p(t) \))

<table>
<thead>
<tr>
<th>(t)</th>
<th>مقادیر دقیق ((p(t)))</th>
<th>مقادیر تقریبی ((p(t)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.785156525952651</td>
<td>0.79979367677964</td>
</tr>
<tr>
<td>0.2</td>
<td>0.587713213761857</td>
<td>0.59631163618863</td>
</tr>
<tr>
<td>0.3</td>
<td>0.389687053612913</td>
<td>0.39534231109724</td>
</tr>
<tr>
<td>0.4</td>
<td>0.191054582901252</td>
<td>0.1949135537158</td>
</tr>
<tr>
<td>0.5</td>
<td>0.008120809810522</td>
<td>-0.00504968266941</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.02074672861942</td>
<td>-0.2047745649556</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.40773739643491</td>
<td>-0.4043434922786</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.60802627480856</td>
<td>-0.6038349518775</td>
</tr>
</tbody>
</table>
نتیجه‌گیری
چنان‌که در مثال‌های اخیر مشاهده کردیم در حالتی که شرط کرانه‌ای مسئله نوع دوم (نیومن) است، از روش دوم تقریب بهتری برای (0, T) و از روش اول تقریب بهتری برای (0, 0.5) حاصل می‌شود. همچنین در حالتی که شرط کرانه‌ای مسئله نوع سوم (امیده) است، روش اول از خطای کبیری برخوردار است. در حالت کلی می‌توان گفت، روش دوم از جهت حجم کم عملیاتی نسبت به روش اول اوجیت دارد.

منابع