مقایسه دو روش برای حل یک مسئله معکوس سهموی با پارامتر کنترلی

سهیلا بداغی و "علی مردان شارضاپایی:
دانشگاه الزهرا (س)، دانشکده علوم پایه

چکیده
در این مقاله با ارائه دو روش به حل عددی یک مسئله معکوس سهموی با پارامتر کنترلی می‌پردازیم. در روش اول ابتدا به کمک تبدیلات معکوس پنری، مسئله سهموی مورد نظر را استاندارد کرده و سپس به‌وسیله روش تفاضلات منتهاه‌ای حل می‌شود. در روش دوم با استفاده از پدیده‌های شرط کرانه‌ای فوق اضافی متغیر داشتیم، پارامتر کنترلی را از مسئله حذف کرده و در نهایت مسئله تبدیل یافته را حل می‌کنیم. در پایان با ارائه جهت مثال به مقایسه این دو روش می‌پردازیم.

مقدمه

مسئله سهموی نامگم‌ه: $u(x,t) = u_{xx}(x,t) + p(t)u(x,t) + f(x,t);$ $0 < x < 1$, $0 < t \leq T$, (1)

$u(x,0) = \varphi(x);$ $0 < x < 1$, $0 < t \leq T$, (2)

$u_x(0,t) = g_1(t);$ $0 < t \leq T$, (3)

$Bu(1,t) = g_2(t);$ $0 < t \leq T$, (4)

با شرط کرانه‌ای فوق اضافی:

$\int_0^{s(t)} u(x,t) \, dx = E(t);$ $0 \leq s(t) \leq 1$, $0 \leq t \leq T$, (5)

که در این توابع f, g_1, g_2, φ و $E \geq 0$ معلوم و u و p به‌وسیله حدث در نسخه اصلی با اعمال مشتق به‌عنوان $B = \frac{\partial^n}{\partial x^n}$; $n = 0, 1$ متفاوت‌اند. پدیده‌های همزمان با تبادل سیستمی با مسئله (1) تا (5) می‌توان به‌عنوان مثال میشود. به‌عنوان پارامتر کنترلی $u(t,0) = \delta(t)$ در نظر گرفته شده است. $p(t)$ مسئله معکوس است. برای شرط کرانه‌ای (4)، $u_x(t,1) = g_1(t)$ در حالی که $u_x(t,0) = g_2(t)$ است. در ادامه به حل عددی هر دو مسئله مذکور می‌پردازیم.

قضایای وجود و یکتاپ جواب برای مسئله (1) تا (5) به راحتی از مرجع [2] یافت می‌شود.

واژه‌های کلیدی: مسئله معکوس سهموی، پارامتر کنترلی، شرط فوق اضافی انتگرالی، روش تفاضلات منتهاه‌ای منفی، مسئله تبدیل

پنیرش، روش مستقیم

89/5/26

۱۳۹۰/۰۸/۱۱

تایید شده مسئول

۲۶۳
مسأله مذکور و مسائل مشابه را، که در آنها به یافتن تابع کنترلی\(p(t) \) می‌پردازیم، محققان بسیاری بررسی کرده‌اند[۱، ۲]. [۳].

بررسی‌های ۳ و ۴ بسیاری به بررسی دو روش برای حل این مسئله می‌پردازیم. وانگ و لین روش اول را پیشنهاد کرده‌اند. در این روش ابتدا مسئله غیراستاندارد (۱) را به کمک دو تبدیل استاندارد کرده و سپس آن را به روش تفاضلات متغیری ضمنی حل می‌کنیم [۳]. در روش دوم به حل مستقیم مسئله غیراستاندارد (۱) تا \(p(t) \) می‌پردازیم و در نهایت در بخش ۵ با ارائه مثال هایی به مقابله آنها می‌پردازیم.

کاربردهای فیزیکی

بسیاری از پدیده‌های فیزیکی به‌وسیله معادلات با مشتق‌های جزئی سهمی با شرط کرانه‌ای انگرالی مشابه می‌شوند. از جمله این مسئله می‌توان به نظریت کنترل، مسائل پژوهشی، فرآیندهای شیمیایی و زیستی اشاره کرد [۵]. در این مقاله به اجمالی بررسی چند کاربرد از این گونه مسائل می‌پردازیم.

\[
\int_0^b u(x,t) \, dx = E(t); \quad 0 < b \leq 1, \quad 0 \leq t \leq T,
\]

در مسائل مختلف، جرم با انرژی را تعیین می‌کنیم. مثلاً اگر در یک فرآیند هیدرولیک معروف دما باشد \(u \) ان گاه سیگنال الکتریکی تولید شده به‌وسیله این ماده متناسب با \(u^s(t) \) معنی جرم ماده است. حال اگر \(p(t) \) را منبع نور در نظر بگیریم، این مسئله را می‌توان به صورت (۱) تا (۵) مدل زنده‌کرده [۶]. ازجمله کاربردهای مسئله (۱) تا (۵) در طبیعت می‌توان به فرآیند فتوسنتز در برگ‌ها و همچنین نفوذ در بافت‌های بدن اشاره کرد.

فرآیند فتوسنتز در برگ‌ها شامل زنجیره‌ای از واکنش‌های شیمیایی و فتوشیمیایی است که در نهایت منجر به تولید قند می‌شود. نفوذ و مصرف \(CO_2 \) در مزوگل با یک معادله با مشتق‌های جزئی سهمی مدل‌بندی می‌شود [۶].

در بسیاری از کاربردهای پزشکی و زیستی، انتقال جرم به‌وسیله نفوذ در بافت‌ها عملی می‌شود. از جمله این پایخ طالی می‌توان به مغز را نام برد. نفوذ جرم در بافت مغز با معادله سهمی نشان داده می‌شود [۷].

روش استاندارد مسئله برای حل مسئله (۱) تا (۵)

در این روش ابتدا به کمک تبدیلات:

\[
r(t) = e^{-\int_0^t p(r) \, dr},
\]

\[
 v(x, t) = r(t) u(x, t),
\]

مسأله (۱) تا (۵) را استاندارد می‌کنیم. برای حالت اول و دوم به ترتیب داریم:
حال به‌کمک طرح تفاوت‌های متناهی پردازش داده‌های مربوط به پارامتر کنترلی با زیربازه‌ای به طول گام‌های \(t = \frac{T}{N} \) و \(h = \frac{1}{M} \) و بازه‌ای \([0,T]\) را به‌ترتیب به \(N \) و \(M \) زیربایا بر طول اگر به می‌رسیم بکنیم.

اثر ترتیب دارم:

\[x_j = jh, \quad t_n = nt. \]

از این‌رو توابع شیب‌های \(n \) بهینه صورت تعریف می‌کنیم:

\[u^n_j = u(x_j, t_n), \quad v^n_j = v(x_j, t_n), \quad f^n_j = f(x_j, t_n), \]

و همچنین داریم:

\[p^n = p(t_n), \quad r^n = r(t_n). \]

در روابط اخیر برای برای مسئله (8)، 0 \leq j \leq M و برای مسئله (9) و 0 \leq n \leq N و 0 \leq j \leq M - 1 و 0 \leq n \leq N سیستم اعدادی که از این دریاژ اخراجی مورد نیاز شرط کرانه‌ای مسئله (8) و اعدادی که از این دریاژ اخراجی مورد نیاز برای شرط کرانه‌ای نوع دوم مسئله (9) به‌بازه [0,1] می‌باشد. روش تفاوت‌های متناهی ضمینی با به‌کار بردن روش اولیه پسر برای قسمت \(O(\tau + h^2) \) زمانی و روش تفاوت‌های مرکزی برای قسمت مکانی به‌دست می‌آید که درایای خطای قطع موضعی است و پایدار مطلق است.\[\text{(8)} \]

روش تفاوت‌های متناهی ضمینی برای مسئله (8) و (9) به‌ترتیب، به‌ین صورت است:

\[\frac{1}{\tau} (v^n_{j+1} - v^n_{j-1}) = \frac{1}{h^2} (v^n_{j+1} - 2v^n_{j} + v^n_{j-1}) + r^n_{j} f^n_{j}, \]

\[v^n_0 = \varphi_j, \]

\[v^n_1 = v^n - 2hr^n g_1(t_n), \]

\[v^n_M = r^n g_2(t_n), \]
به کمک درون‌پیچ ریاضیاتی نتیجه می‌شود:

\begin{equation}
\int_0^{s(t_n)} v(x, t_n) \, dx = \frac{h}{2} \left[\frac{v(x_0, t_n)}{2} + v(x_1, t_n) + \cdots + v(x_{k}, t_n) \right] + \int_{kh}^{s(t_n)} v(x, t_n) \, dx.
\end{equation}

با تقریب عبارات انتگرال‌های اخیر به وسیله قاعده نوزن ان جواب می‌شود.

\begin{equation}
\int_{kh}^{s(t_n)} v(x, t_n) \, dx = \left(\delta(t_n) - \frac{\delta^2(t_n)}{2h} \right) v(x_k, t_n) + \frac{\delta^2(t_n)}{2h} v(x_{k+1}, t_n),
\end{equation}

که در آن $k(t_n) = \left\lfloor \frac{s(t_n)}{h} \right\rfloor$ و $\delta(t_n) = s(t_n) - k(t_n)h$.

حال با نویسیدن رابطه اخیر داریم:

\begin{equation}
\int_0^{s(t_n)} v(x, t_n) \, dx = h \left[\frac{v(x_0, t_n)}{2} + v(x_1, t_n) + \cdots + v(x_{k}, t_n) \right] + \left(\frac{1}{2} + \frac{\delta(t_n)}{h} - \frac{\delta^2(t_n)}{2h^2} \right) v(x_k, t_n) + \frac{\delta^2(t_n)}{2h^2} v(x_{k+1}, t_n).
\end{equation}

با قرار دادن رابطه اخیر در رابطه (12) خواهیم داشت:

\begin{equation}
r(t_n) = \frac{E(t_n)}{E(t_n)} \left[\frac{v(x_0, t_n)}{2} + v(x_1, t_n) + \cdots + v(x_{k}, t_n) \right] + \left(\frac{1}{2} + \frac{\delta(t_n)}{h} - \frac{\delta^2(t_n)}{2h^2} \right) v(x_k, t_n) + \frac{\delta^2(t_n)}{2h^2} v(x_{k+1}, t_n).
\end{equation}

با جایگذاری رابطه (14) در مسئله (8) و (9) مسئله استاندارد شده (8) و (9) حجیم می‌شود. با حل مسئله معکوس استاندارد، مقادیر (v, r) را بدست می‌آوریم. حال با داشتن این مقادیر به راحتی از تبدیلات:

\begin{equation}
p(t) = -\frac{r(t)}{r(t)},
\end{equation}

\begin{equation}
u(x, t) = \frac{v(x, t)}{r(t)}
\end{equation}

می‌توان زوج جواب (u, p) را بدست آورد. به این ترتیب مسئله معکوس حل می‌شود.
مقایسه دو روش برای حل یک مسئله معکوس سهمی با پارامتر کنترلی

سپهبن اخلاقی، عزیز مهران، شایسته‌یکی

\[
E(t) = s'(t)u(s(t), t) + u_x(s(t), t) - g_1(t) + p(t)E(t) + \int_0^{s(t)} f(x, t)dx,
\]

و به طور معادل می‌باشیم:

\[
p(t) = \frac{E(t) - s'(t)u(s(t), t) - u_x(s(t), t) + g_1(t) - \int_0^{s(t)} f(x, t)dx}{E(t)}.
\]

با جایگذینی رابطه (17) در معادله (16) مسئله (1) تا (5) به مسئلة زیر منجر می‌گردد:

\[
u_t(x, t) = u_{xx}(x, t) +
\]

\[
\left\{ \begin{array}{ll}
E(t) - s'(t)u(s(t), t) - u_x(s(t), t) + g_1(t) - \int_0^{s(t)} f(x, t)dx = u(x, t)
\end{array} \right.
\]

\[+ f(x, t); \quad 0 < x < 1, \quad 0 < t \leq T,
\]

\[u(x, 0) = \varphi(x); \quad 0 \leq x \leq 1
\]

\[u_x(0, t) = g_1(t); \quad 0 < t \leq T,
\]

\[Bu(1, t) = g_2(t); \quad 0 < t \leq T.
\]

در این بخش با استفاده از روش تفاضلات متناهی ضمنی به حل عددی مسئلة مستقیم (18) تا (21) می‌پردازیم و \(h = \frac{1}{M} \) مشابه بخش پیش، بازدهای \(N \) و \(M \) زیربازه با طول گام‌های \(t \) به ترتیب یا \([0, T]\) را به ترتیب به \(N \) تقسیم می‌کنیم. با این ترتیب داریم:

\[x_j = jh, \quad t_n = nt.
\]

لذا توابع شیکه‌ای را بدین صورت تعیین می‌کنیم:

\[u_j^n = u(x_j, t_n), \quad v_j^n = v(x_j, t_n), \quad f_j^n = f(x_j, t_n),
\]

و همچنین داریم:

\[p^n = p(t_n), \quad r^n = r(t_n).
\]

در روابط اخیر برای مسئلة (8), (9) و (10) برای مسئلة (9) و (11) به ترتیب روش تفاصل متناهی ضمنی به حل عددی مسئلة در حالتی که شرط (22) به شکل (23) یا (24) داریم:

\[
\begin{aligned}
\frac{1}{\tau} (u_j^{n+1} - u_j^n) &= \frac{1}{h^2} (u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}) + a(u(s(t_n), t_n))u_j^{n+1} + f_j^{n+1},

\quad u_j^0 = \varphi_j,

\quad u_j^{n+1} = u_j^n - 2hg_1(t_n),

\quad u_j^M = g_2(t_n),

\end{aligned}
\]

\[
\begin{aligned}
\frac{1}{\tau} (u_j^{n+1} - u_j^n) &= \frac{1}{h^2} (u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}) + a(u(s(t_n), t_n))u_j^{n+1} + f_j^{n+1},

\quad u_j^0 = \varphi_j,

\quad u_j^n = u_j^{n-1} - 2hg_1(t_n),

\quad u_j^{M+1} = u_j^0 + 2hg_2(t_n),

\end{aligned}
\]

در مسئلة (22) و (23) داریم:

\[277\]
\[
\begin{align*}
A(u(s(t_n), t_n)) &= \frac{E(t_n)-s(t_n)u(s(t_n), t_n)+u(s(t_n), t_n)g_1(t_n)+\int_{t_n}^{s(t_n)} f(x, t_n)dx}{E(t_n)} \\
A(u(s(t_n), t_n)) &= u(s(t_n), t_n) + u(s(t_n), t_n)
\end{align*}
\]

با توجه به چگونگی قرار گرفتن \(s(t_n)\) بر روی محور مختصات برای در معادله اخیر به ازای هر \(0 \leq n \leq N\) دو حالت داریم:

حالت اول: اگر \(s(t_n)\) یکی از نقاط گریه باشد یعنی:

\[
s(t_n) = x_j; \quad 0 \leq j \leq M,
\]

آنگاه

\[u(s(t_n), t_n) = u_j^n.\]

حالت دوم: اگر \(s(t_n)\) نقطه گریه نباشد و \(k = \frac{s(t_n)}{h}\) وجود دارد بطوری که

\(x_0 < s(t_n) < x_M\)

و \(x_k < s(t_n) < x_{k+1}\) و همچنین \(x_k < s(t_n) < x_{k+1}\) در این حالت به کمک

\[u(s(t_n), t_n) = \frac{(k+1)h - s(t_n)}{h}u_k^n - \frac{kh - s(t_n)}{h}u_{k+1}^n,
\]

و

\[u_x(s(t_n), t_n) = \frac{(k+1)h - s(t_n)}{h}\left(\frac{u_{k+1}^n - u_k^n}{2h}\right) - \frac{kh - s(t_n)}{h}\left(\frac{u_{k+2}^n - u_k^n}{2h}\right).
\]

از مسئله (22) به دستگاه

\[
A_1 U^{n+1} = U^n + B_n,
\]

که در آن \(A_1\) ماتریسی سه قطری و \(B_1\) \(M\times M\) زیر ماتریسی است:

\[
A_1 = \left(\begin{array}{cccc}
\frac{-2\tau}{h^2} & 0 & \cdots & 0 \\
0 & \frac{-\tau}{h^2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \frac{-\tau}{h^2}
\end{array}\right), \quad B_1 = \left(\begin{array}{c}
\frac{-2\tau}{h} b_1^{n+1} + \tau f_0^{n+1} \\
\vdots \\
\frac{-2\tau}{h} b_{M-1} + \tau f_{M-1}^{n+1}
\end{array}\right), \quad U^n
\]

و مسئله (23) به دستگاه (\(M+1\) \(x (M+1)\) زیر منجر می‌شود:

\[
A U^{n+1} = U^n + B.
\]
بردار جواب \(U^n \) به سه صورت تعریف می‌شود:

\[
U^n = (u^n_0, u^n_1, \ldots, u^n_M)^T.
\]

شایان ذکر است که در ماتریس‌های \(A_1 \) و \(A \) داریم:

\[
\bar{a} = 1 + \frac{2\tau}{h^2} - \tau a(u(s(t_n), t_n)).
\]

با حل استگه‌های (۲۴) و (۲۵) به روش حدفی گاس با محورگیری ستونی می‌توانیم به راحتی مقدار \(u_{j+1} \) با به‌کارگیری روش حدفی گاس با محورگیری ستونی می‌توانیم به راحتی مقدار \(u \) بدست آوریم. با در دست داشتن مقدار \(u) {\tau} \) بدست آوریم با این دلیل در سه مسئله مورد نظر حل می‌شود. لازم به ذکر است طرح‌های نهایی (۲۴) و (۲۵) نتایج و سازگاری هستند و مرتبه همبستگی آن‌ها (۸) هستند [۸].

نتایج عمدی

مثال ۱. مسئله معکوس زیر را به نظر می‌گیریم:

\[
\begin{align*}
&u_t(x, t) = u_{xx}(x, t) + p(t)u(x, t) + (\pi^2 + 2t)e^t \cos \pi x + 2e^t x t; \quad 0 < x < 1, \\
&u(x, 0) = x + \cos \pi x; \\
&u_x(0, t) = e^t; \\
&u(1, t) = 0; \\
&\int_0^1 u(x, t)dx = e^t \left\{ \frac{1}{\pi} \sin \left(\frac{\pi(1+t)}{2} \right) + \frac{(1+t)^2}{8} \right\}; \\
&0 \leq t \leq 1.
\end{align*}
\]

\[
\begin{align*}
\text{جواب واقعی این مسئله عبارت است از:} \\
&u(x, t) = e^t (x + \cos \pi x),
\end{align*}
\]

\[
\begin{align*}
p(t) &= 1 - 2t.
\end{align*}
\]

با حل این مسئله طالب روش‌هایی که شرح دادیم و با انتخاب \(h = 0.001 \) و \(\tau = 0.001 \) داریم:

\[
\begin{array}{c|c|c|c}
\hline
\text{\textbf{جدول ۱. مقایسه دقیق و تقریبی}} & \text{\textbf{مقدار دقیق}} & \text{\textbf{مقدار تقریبی}} & \text{\textbf{مقدار مطلق}} \\
\hline
\text{\textbf{\(t \)}} & \text{\textbf{\(p(t) \)}} & \text{\textbf{\(p(t) \) در روش اول}} & \text{\textbf{\(p(t) \) در روش تقریبی}} \\
\hline
0.1 & 0.79525486819271 & 0.79871074762088 & 0.8 \\
0.2 & 0.59426328254142 & 0.59871074762088 & 0.6 \\
0.3 & 0.39371166295291 & 0.39857045137511 & 0.4 \\
0.4 & 0.19344964859992 & 0.19843058344622 & 0.2 \\
0.5 & -0.00651316348892 & -0.001753768877 & 0.0 \\
0.6 & -0.20614115729867 & -0.2019831631773 & 0.2 \\
0.7 & -0.40543513439588 & -0.4022583261365 & 0.4 \\
0.8 & -0.60440827007286 & -0.6025801288717 & 0.6 \\
\hline
\end{array}
\]

۲۶۹
جدول ۲. مقادیر دقیق و تقریبی (۰.۵)

<table>
<thead>
<tr>
<th>x</th>
<th>$u(x,0.5)$ موثر</th>
<th>$u(x,0.5)$ دقیق</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.73298618202859</td>
<td>1.72845865635990</td>
</tr>
<tr>
<td>0.2</td>
<td>1.66366345353824</td>
<td>1.65943613294258</td>
</tr>
<tr>
<td>0.3</td>
<td>1.46376915475728</td>
<td>1.46001691033510</td>
</tr>
<tr>
<td>0.4</td>
<td>1.1690974601668</td>
<td>1.1658438648478</td>
</tr>
<tr>
<td>0.5</td>
<td>0.82437787304813</td>
<td>0.82191404144753</td>
</tr>
<tr>
<td>0.6</td>
<td>0.47974823185266</td>
<td>0.4779740965759</td>
</tr>
<tr>
<td>0.7</td>
<td>0.18499554635519</td>
<td>0.18386278121632</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.0148874533176</td>
<td>-0.01548910667503</td>
</tr>
</tbody>
</table>

مثال ۲. معادله سه‌مرحله:

$$u_t = u_{xx} + p(t)u + (1 - \pi^2)e^{-t^2}\sin\pi x + 2t - 1; \quad 0 < x < 1, \quad 0 < t \leq 1,$$

با شرایط اولیه و کران‌های:

$$u(x,0) = 1 - \sin(\pi x); \quad 0 \leq x \leq 1,$$
$$u_x(0,t) = -\pi e^{-t^2}; \quad 0 < t \leq 1,$$
$$u_x(1,t) = \pi e^{-t^2}; \quad 0 < t \leq 1,$$

$$\int_0^{1+t} u(x,t) \, dx = \frac{1+t}{2} + \frac{e^{-t^2}}{\pi} \left[\cos \left(\frac{\pi(1+t)}{2} \right) - 1 \right]; \quad 0 \leq t \leq 1,$$

را در نظر بگیریم. جواب واقعی این مسئله عبارت است از:

$$u(x,t) = 1 - e^{-t^2}\sin(\pi x),$$

و

$$p(t) = 1 - 2t.$$

با انتخاب $	au = 0.005$ و $h = 0.01$ برای برخی نقاط انتخابی داریم:

جدول ۳. مقادیر دقیق و تقریبی (پری)

<table>
<thead>
<tr>
<th>t</th>
<th>$p(t)$ موثر</th>
<th>$p(t)$ دقیق</th>
<th>$p(t)$ مقادیر واقعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.785156525952651</td>
<td>0.79799367677964</td>
<td>0.8</td>
</tr>
<tr>
<td>0.2</td>
<td>0.58771323761857</td>
<td>0.59631163618863</td>
<td>0.6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.38968705361293</td>
<td>0.39534231109724</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.191054582901252</td>
<td>0.19494135537158</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.008120809810522</td>
<td>-0.0050498266941</td>
<td>0.0</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.02774672861942</td>
<td>-0.2047745649556</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.40773739643491</td>
<td>-0.4043434922786</td>
<td>-0.4</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.60802627480856</td>
<td>-0.6038349518775</td>
<td>-0.6</td>
</tr>
</tbody>
</table>
جدول 4. مقادیر دقیق و تقریبی (0.5, 0.5)

<table>
<thead>
<tr>
<th>x</th>
<th>u(x, 0.5) در روش اول</th>
<th>u(x, 0.5) در روش دوم</th>
<th>مقدار دقیق (0.5, 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.75928890771779</td>
<td>0.75309529443821</td>
<td>0.75933732279842</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5421786868552</td>
<td>0.53679335339898</td>
<td>0.54223238523680</td>
</tr>
<tr>
<td>0.3</td>
<td>0.36988801862598</td>
<td>0.36506187818097</td>
<td>0.36993693126272</td>
</tr>
<tr>
<td>0.4</td>
<td>0.25927369803537</td>
<td>0.25477589234399</td>
<td>0.25931644036417</td>
</tr>
<tr>
<td>0.5</td>
<td>0.22115839217381</td>
<td>0.21676951911709</td>
<td>0.22119921692860</td>
</tr>
<tr>
<td>0.6</td>
<td>0.25927369803537</td>
<td>0.25477589234399</td>
<td>0.25931644036417</td>
</tr>
<tr>
<td>0.7</td>
<td>0.36988801862598</td>
<td>0.36506187818097</td>
<td>0.36993693126272</td>
</tr>
<tr>
<td>0.8</td>
<td>0.5421785040738</td>
<td>0.53679335339898</td>
<td>0.54223238523680</td>
</tr>
</tbody>
</table>

که اعداد جداول فوق با نرم افزارتا (14D) محاسبه شده‌اند.

نتیجه‌گیری

چنان که در مثال‌های اخیر مشاهده کردیم در حالتی که شرط کرانه‌ای مسئله نوع دوم (نیومن) است، از روش دوم تقریب بهتری برای $p(t)$ و از روش اول تقریب بهتری برای $u(x, 0.5)$ حاصل می‌شود. همچنین در حالتی که شرط کرانه‌ای مسئله نوع سوم (آبخشی) است، روش اول از خطای کبیری برخوردار است. در حالت کلی میتوان گفت، روش دوم از جهت حجم کم عملیات نسبت به روش اول ارجحیت دارد.

منابع
