بررسی میزان رشد و برخی شاخص‌های بیوشیمیایی خون ماهیان جوان قزلآلاي رنگین‌کمان در شهری‌های مختلف آب

"محمود نفیسی به‌هادی\nمهدي سلطانی\نامشته دانشگاه تهران\علي فلاحتي مروست: مرکز مطالعات و پژوهش‌های دانشگاه خلیج فارس\چکیده

تأثیر شهری‌های آب در صورت بدایهای بیوشیمیایی خون ماهیان جوان قزلآلاي رنگین‌کمان از روز اولیه 4/29/5 گرم در دمای 15/23/1 برشی و بزرگی به شهری آب میل می‌کند. سپس از آغاز میل می‌کند به مدت 50 روز ادامه یافته، شاخص‌های رشد و دریچه عامل‌ها بیوشیمیایی خون، قبل از تعریف مرطوب به آب و تری، 20/1 ۰۵ روز پس از تعیین به آب‌های مختلف (مصرف 10000 گرم در لیتر) برسی شدند. این آزمایش در قالب طرحی کاملاً تصادفی با 5 تعداد شهری‌های و 5 ترکیب انجام گرفت. نتایج ماهی در گروه ترکیبی شهری در ۷۰ نقطه گرفته شد. نتایج حاصل از این تحقیق نشان داد که با افزایش میزان شهری آب تا ۲۰ گرم در لیتر شاخص‌های رشد، شال و وزن رنگ‌های، ضریب رشد ویژه، رستدات تبدیل گذا و میزان پازت‌میکس‌های کاهش یافته و در شهری‌های بیش از ۲۰ گرم در لیتر تلفات دسته جمع‌می‌شده. شد. داده‌ها اختلاف معنی‌داری را در سطح 95‌% نشان دادند (P<0.05). با افزایش میزان شهری عامل‌های بیوشیمیایی خون شال اسپولاریتی، کلرپتی، کلوک‌نیتر، تری، بدو تیروپن و نیروکسین خون افزایش یافته (P<0.05). داده‌های این تحقیق نشان می‌دهد که اکتاکورسین این گونه در این وظیفه در این میزان رشد در این شهری‌های و در اسپولاریتی مجدداً قرار دارند. با آغاز اسپولاریتی و تعادل بیشتر رنگ‌های با

مقدمه

موجودات آبزی همدوس اسپولاریتی سلول‌ها یا تاثیر حیاتی آنها بر از اغلب اسپولاریتی که یکی از صرف انرژی همراه است کنترل می‌کند. تضحیص اسپولاریتی مکانیسم حفظ هوموستاسی مایعات حیاتی برند است که بتواند کنترل اسپولاریتی با فشار اسپولاریتی پلاسمات. نظر این اسپولاریتی عموماً با استفاده از سنجش عامل‌های مانند کنترلیهکه، نیروتکتی‌ها و متابولیت‌ها در ماهیان برسی می‌شود. [12]، [20] ماهیانی که در معرض تغییر اسپولاریتی محیطی قرار دارند، با آغاز اسپولاریتی و تعادل بیشتر رنگ‌های با

واژه‌های کلیدی: ماهی قزل آلای رنگین‌کمان، شهری آب، شاخص‌های رشد، دریچه، عامل‌های بیوشیمیایی خون

1. Oncorhynchus mykiss ین‌دبیران
2. Osmoregulation

۲۵
تغییر رفتارهای مانند میزان نوشیدن آب، سطح هورمون‌های مختلف و عملکرد سطوح تنظیم اسمزی، حفظ کند
[15]. [۲۱]. جدیدین هورمون هیپوفیزی و غیره و فعالیت‌های جنین اندازه‌گیری را در حفظ موادهای آب و
مواد معدنی در شهرهای مختلف محیط کنترل می‌کند [۲۲].
ماهی قزل‌الاپی‌رژن‌گی‌های ممکن می‌گردد گونه‌آراز ماهیان بروش‌های در اب شیرین است. میزان تولید این گونه در
کشور ایران با توجه به ۷۲۰۰ تا ۷۴۰۰ تن در سال ۱۳۸۳ رشد یافته است [۴] و در حال حاضر
کشور ایران با توجه به ۱۳۶۰۰ تا ۱۴۰۰۰ کیلوگرم کشور دنیا در تولید ماهی قزل‌الاپی‌رژن‌گی‌‌های در اب
شیرین به شمار می‌رود [۱]. این ماهی مقاومت نسبتی خوبی به شوری اب دارد و بروش‌های این گونه در اب شیرین
تا شوری نزدیک به اب دریا نیز در شرایط و اوزان مختلف گزارش شده است [۵].
در تحقیق‌هایی که نمایندگی و همکاران در سال ۱۳۸۰ انرژی دادند، بروش‌های این گونه در اب شیرین لب شور
(۱۵ گرم دریا) و در استثنای‌های ناحیه به اینجا رسیده. این محققان به ماهیان قزل‌الاپی‌رژن‌گی‌های با وزن اویلی
۷۸/۶۵ ۱۵ گرم در طول یک دوره بروش ۱۵۰ روزه به وزن بارزی (حدود ۵۲۰ گرم) رسیدند [۴].
محققان دیگری به نام‌های آلکسندرا و مالورا در سال ۱۳۷۶ بروش قزل‌الاپی‌های شیرین و محیط‌های
محصور دریایی را در محل دیگر بالچيك در سال ۱۳۷۶ و ۱۳۸۵ به انجام رساندند [۷].
وزن اویلی ماهیان رهاسازی شده در این تحقیق ۷۲ گرم و وزن برداشت ۷۴ گرم بود. در تحقیق دیگری که
هرنجی در سال ۱۳۸۳ انرژی داد، بروش ماهی قزل‌الاپی‌رژن‌گی‌های در کشور فرانسه در اب‌های دریایی
گزارش شد [۱۸]. [۱۸].[۱۸].[۱۸].[۱۸].کشت و بروش دریایی ماهی قزل‌الاپی‌رژن‌گی‌های در کشور دانمارک نیز توسط هوفمن [۳] در
سال ۱۹۸۱ با موافق‌نامه انجام شده است [۱۱]. محقق دیگری به نام سوتویا در سال ۱۹۸۳ گزارش داد که ماهیان
قزل‌الاپی‌رژن‌گی‌های کل ساله با وزن ۱۵۰-۲۰۰ گرم به پل جنگلی دریایی در کشور فرانسه معروف شدند و در
طبق یک دوره ۴۸-۶۸ گرم به وزن ۱۰۰۰-۶۰۰۰ گرم رشد دارند [۳۶].
پروش قزل‌الاپی‌های در اب‌های شیرین و لب شور در کشور ما که با توجه به متوسط بارندگی ۲۴۵ میلی‌متر در
سال جزء کشورهای نیمه خشک دنیا محسوب می‌شود اهمیت زیادی دارد ولی به دلیل اختلاف نرمال کرده که اگر چه
پروش این گونه در شهرهای مختلف انجام شده است ولی بررسی مواد در این شهرها رشد و تغییرات سیستم فیزیولوژیک
این ماهی در جهت سازگاری با اب شور اهمیت زیادی دارد. این پژوهش در جهت نیز به این هدف و بی‌منظور
بررسی تغییرات شاخص‌های رشد و عامل‌های پیش‌بینی‌های این ماهی در شهرهای مختلف انجام شده است.

مواد و روش کار

۱. ماهی در قزل‌الاپی مورد نیاز با وزن متوسط ۱۴۶/۵۳۱/۷۴۰ کیلوگرم از استان‌های گیلان و بوشهر و به‌عنوان نسبت

۶. Hoffman ۷. Sottovia

۲۸۲
حمال و عادت‌دهی‌ی به تعداد ۳۰ قطعه به هر یک از تانک‌ها معرفی شدند. محل اجرای این تحقیق سالن آکواریم دانشکده کشاورزی و منابع طبیعی دانشگاه خلیج فارس بود. محل تعبیه‌گری ماها ۱۵ تانک پیلی اتیلن به قطر سانتی‌متر با اندازه‌گیری و حجم آب‌گیری ۲۴۳ لیتر بود. تانک‌ها در ۳ رده در ۵ تانک مستقر و به منظور جلوگیری از تبادلات حرارتی، محیط استقرار تانک‌ها بر اساس یافته‌های نفیسی و سلطانی در سال ۱۳۸۸ با دو استوش پوشانده و حالت گل‌خانه‌ای ایجاد شد[۳۱]. ماها های مربوط به هر یک از تیمار‌های شوری و تکرار های مربوط به هر تیمار با توزیع کاملاً تصادفی در ظروف قرار گرفتند.

۲. تأیین آب مورد نیاز

آب مورد نیاز از طریق یک حلقو چاه آب شیرین موجود در محل تأمین و سطح شوری انتخاب شده برای هر یک از تیمار‌ها صفر (آب شیرین)، ۳۰۰، ۳۰۱، ۳۰۲ و ۳۰۳ گرم در لیتر بود. تنظیم شوری با استفاده از نمک دریاچه مهارلو در تانک‌های پیلی اتیلن به حجم ۱۰۰۰ لیتر انجام و پس از تنظیم شوری به تانک‌های پیلی اتیلن پمپ شد. آب در هر گردش مورد نیاز هر یک از تانک‌ها بر اساس یافته‌های کلنتز[۱] در سال ۱۳۸۸[۲۵] محاسبه گردید. جهت کاهش آب در هر گردش از یک سیستم مركبی هواهستی از نوع هواهستی خلوت در پرفیله کردن، کوپولات، اب نرخی ۳/۱۰ متر مکعب در دقیقه و مشرف صرفه ۱۱۰ مپلی با استفاده شد[۳۱]. این هواهستی میزان اکسیژن تانک‌ها را در طول دوره آزمایش در حد اشباع نگه داشت.

۳. عامل‌های کیفی آب

عوامل فیزیکی و شیمیایی آب شامل درجه حرارت، اکسیژن محلول، pH و شوری هم روزه به وسیله دستگاه‌های دیجیتال القاب حمل مارک WTW با دقت ۰/۰۱ اندادگیری شد. اکسیژن محلول با استفاده از دستگاه ۱/۰۰۳۳ اندادگیری و دامنه آن بین ۰/۰ و ۰/۵ میلی‌گرم در لیتر برابر شد. pH با استفاده از دستگاه‌هایخریجی ۱/۰۵ متر (مدل Oxi 330/SET) اندادگیری و دامنه تغییرات آن بین ۷/۰ و ۸/۵ تغییر گردید. شوری آب با استفاده از دستگاه شوری‌سنگ (مدل Cond 330i / SET) اندادگیری شد. دامنه تغییرات درجه حرارت آب نیز بین ۱۲/۰ و ۱۳/۰ درجه سانتی‌گراد ثبت گردید.

۴. اندادگیری شاخص‌های رشد

به منظور آگاهی از عملکرد رشد به‌چه‌مایه‌ها در هر یک از تیمار‌های شوری در هر بار خون‌گیری، زیست‌سنجی ماهی‌ها نیز انجام شد. بدین منظور به‌چه‌مایه‌ها با استفاده از عصاره‌ی بودر گل می‌خک با علقات ۱۵۰ میلی‌گرم در لیتر و بر اساس یافته‌های مهربان در سال ۱۳۸۱[۲۳] به‌صورت شننده و اندادگیری طول و وزن انفرادی آنها برای تعیین شاخص‌های رشد انجام شد. طول انفرادی ماهی‌ها با استفاده از تخته‌زیست‌سنجی و

۲۷۷

۱. Klontz
وزن افرادی آنها با استفاده از تراظی دیجیتال (مارک AND SAAX کشکور زاین مدل 6000) با دقت 0/01
گرم انجام شد.

میزان رشد روزانه (DGR)، ضریب رشد ویژه (SGR)، راندمان تبدیل غذا (FCE)، از فرمول‌های زیر محاسبه شد:

تعداد روزهای پروپر/وزن اولیه وزن نهایی) = رشد روزانه
تعداد روزهای پروپر/لگاریتم طبیعی وزن اولیه لگاریتم طبیعی وزن نهایی) = ضریب رشد ویژه

(دغی خورده شده افزایش وزن) = راندمان تبدیل غذا
(تعداد ماهیانی برداشت شده تعداد ماهیانی ذخیره‌سازی شده) = درصد بقا

5. اندازه‌گیری عامل‌های بیوشیمیایی خون
قبل از شروع دوره‌ گسترش‌پذیری و پس از قرار گرفتن ماهی‌ها در تانک‌های پروفیش مورد نظر، خون‌گیری
از آن‌ها در چهار نویت (1، 2، 3 و ۰) روز پس از معرفی به شوری‌های مختلف) به‌منظور تعیین میزان
امسولاریته کلرپتین، گلکز، کورتیزول، تری بیوتیرونین (T3) و تیروکسین (T4) یا بلوسای اکم و
تعداد ۱۰ قطعه از ماهیان هر یک از تانک‌ها (تکراری) به‌صورت تصادفی انتخاب و بوسیله سرگن هارینه
میلی‌لیتری از رگ ساقه دمی آن‌ها خون‌گیری شد (۲۰ و ۲۳). نمونه‌های خون پس از سانتی‌فیوز کردن به
مدت ۱۰ دقیقه با سرعت ۲۰۰۰ دور در دقیقه و جدا شدن سرم آن‌ها در دمای ۳۷ درجه سانتی‌گراد [۲۳] تا
زمان سنگین عامل‌های خونی نگهداری شدند. اسمنتی‌پتی با استفاده از دستگاه اسومتر، گلکز و کلر به‌صورت
رنگ‌سنجی با استفاده از تولزور (Technicon RA-1000 Analyzer) و با کیت MAN کورتیزول، تری بیوتیرونین (T3) و تیروکسین (T4) به روش رادیو ایمونواسی (RIA) سنجدیده شد.

6. غذای‌های
غذایی‌های با ماهی‌ها با استفاده از غذای یلتن تجارتی ساخت کارخانه چینه انجام شد. میزان غذای مصرفی با
استفاده از جداول ارائه شده توسط کارخانه سازنده و حدود ۳% وزن توده زنده بود که ۳ مرتی به روز به
مصروف ماهی‌ها مرسید. برای جلوگیری از سقوط لیسیته غذایی به‌کف تانک‌ها، غذای‌های زمانی که
ماهی‌ها حرکت می‌فراموشید و روان‌سازی‌های را نشان می‌دادند داده می‌شد. بسته به منظر مشخص شدن غذای خورده شده احتمال
قبل و بعد از هر غذای‌های کف تانک‌ها سیفون و پلشه‌های غذایی خورده شده شمارش و وزن آن‌ها محاسبه می‌شد.
رژیم صورت در نظر گرفته شده در طول دوره پروپر ۲۴ ساعت شبانی و ۱۲ ساعت تاریک (۲۴)
(۱۲L) بود و غذایی‌های در طول دوره روش‌پذیری روزانه انجام می‌شد.

جدول ۱ نتایج تجزیه تقارنی جیره غذایی مورد استفاده در طول دوره پروپر را نشان می‌دهد.

1. Biomass

۲۸
جدول 1. تجزیه تقریبی جهت غذایی مورد استفاده برای ماهیان جوان قزل‌الابورگنی‌کمان پرورشی در
شوری‌های مختلف اب

<table>
<thead>
<tr>
<th>نوع غذای</th>
<th>پروتئین خام</th>
<th>خاکستر</th>
<th>چربی خام</th>
<th>فسفر</th>
<th>رطوبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFT1</td>
<td>39%</td>
<td>14%</td>
<td>12%</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>GFT2</td>
<td>42%</td>
<td>15%</td>
<td>13%</td>
<td>41%</td>
<td>11%</td>
</tr>
<tr>
<td>GFT3</td>
<td>41%</td>
<td>14%</td>
<td>13%</td>
<td>39%</td>
<td>10%</td>
</tr>
<tr>
<td>GFT4</td>
<td>40%</td>
<td>13%</td>
<td>12%</td>
<td>38%</td>
<td>9%</td>
</tr>
<tr>
<td>GFT5</td>
<td>39%</td>
<td>12%</td>
<td>11%</td>
<td>37%</td>
<td>8%</td>
</tr>
</tbody>
</table>

همچنین به منظور استمرار سلامتی ماهی‌ها در طول دوره پرورش فضولات ماهی‌ها همواره بوسیله
سیفون کردن تانک‌ها از محیط پرورشی خارج و حجم کل آب تانک‌ها تعویض شد.

روش آماری
اختلاف موجود بین تیمارها در قابلیت طراحی تصادفی در پنجم تیمار‌های تجربی و سه تكرار تعيين و نتایج
به‌دست آمده با استفاده از نرم‌افزار SAS روش آنالیز تفاوت متوالیت (ANOVA) [36] تجزیه و ارزیابی نتایج به‌وسیله
از آزمون نهایی دانکن [16] در سطح 95 درصد (P>0.05) و نرم‌افزار Mstat-C [37] انجام شد.

نتایج
جدول 2 نتایج شاخص‌های رشد را که در پایان دوره پرورشی اندام‌مگری و ثبت شده است نشان می‌دهد. بر
اساس داده‌های جدول 2 با افزایش میزان شوری آب وزن نهایی، میزان رشد روزانه، ضربه رشد ویژه،
رامانم تبدیل غذا و درصد بقا در ماهیان جوان قزل‌الابورگنی‌کمان کاهش می‌یابد. اختلاف بین تیمارها در سطح
95 درصد (P=0.05) معن‌دار است. بر اساس نتایج منعکس شده در جدول 2، حداکثر وزن نهایی
معدل 6/72-5/74 گرم مربوط به تیمار آب شیرین و حداقل آن می‌باشد. درصد میزان رشد روزانه، 4/03-4/07 گرم مربوط به تیمار
شوری 20 گرم در لیتر است. حداکثر میزان رشد روزانه 4/03-4/07 گرم مربوط به تیمار آب شیرین و
حداقل آن 1/03-6/21 گرم در لیتر است. حداکثر ضربه رشد ویژه 8/08-1/11 گرم در لیتر است. حداکثر میزان
درصد مربوط به ماهیان پرورشی در آب شیرین و حداقل آن 1/15-6/57 درصد مربوط به ماهیان
پرورشی در آب شوری 20 گرم در لیتر است. حداکثر رامانم تبدیل غذا 6/91-7/83 درصد مربوط به ماهیان
پرورشی در آب شوری و حداقل 4/91-7/83 درصد مربوط به ماهیان
پرورشی در آب شوری 20 گرم در لیتر است. حداکثر ماندگاری و پیا 5/78-4/58 درصد مربوط به آب شیرین و حداقل آن 5/78-4/58 درصد مربوط به شوری 20 گرم در لیتر است. همچنین ماهیان پرورشی در شوری‌های 30 و 40 گرم در لیتر پس از
مدت دوره 10 روزه عادت‌چنگی به آب شور و رسپین شوری به 30 و 40 گرم در لیتر به تدریج تلف شدند.

1. One Way ANOVA
جدول 2. نتایج حاصل از اندازه‌گیری شاخص‌های رشد ماهیان جوان قزلالای رنگین‌کمان پورورشی در شوری‌های مختلف آب (میانگین ± انحراف معیار)

<table>
<thead>
<tr>
<th>شاخص‌های رشد</th>
<th>میانگین</th>
<th>انحراف معیار (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن اولیه (گرم)</td>
<td>4/6±0/8</td>
<td>1/5±0/8</td>
</tr>
<tr>
<td>میزان رشد (گرم)</td>
<td>0/4±0/7</td>
<td>2/8±0/3</td>
</tr>
<tr>
<td>رضایت رشد ویژه (%</td>
<td>1/1±0/9</td>
<td>1/8±0/3</td>
</tr>
<tr>
<td>رضایت رشد ویژه (٪</td>
<td>1/2±0/9</td>
<td>1/6±0/3</td>
</tr>
<tr>
<td>میزان پایه (٪</td>
<td>0/9±0/8</td>
<td>1/8±0/3</td>
</tr>
</tbody>
</table>

*حرف مشترک در جدول میانی میانگین‌ها یا در هر رنگ نشان‌دهنده وجود اختلاف معنی‌دار بین میانگین داده‌ها (تیمارها) در سطح 0/05 درصد است (F=0/05).
** در شوری‌های 20 و 40 گرم در لیتر با پایین داده‌ای عادت‌خپره تیمارهایی دست‌بامان مشاهده شد.

نتایج حاصل از اندازه‌گیری عوامل بوشیمیایی خون ماهیان قزلالای رنگین‌کمان قبل از شروع دورهً عادت‌خپره‌ی به آب شور در جدول 3 نشان داده شده است.

جدول 3. نتایج حاصل از اندازه‌گیری فاکتورهای بوشیمیایی خون ماهیان جوان قزلالای رنگین‌کمان قبل از شروع دورهً عادت‌خپره‌ی به آب شور (میانگین ± انحراف معیار)

<table>
<thead>
<tr>
<th>عوامل بوشیمیایی خون</th>
<th>T₃ (mg/mg)</th>
<th>T₄ (mg/mg)</th>
<th>گلکوز (mg/100 ml)</th>
<th>کلرینیت (mEq/L)</th>
<th>اسماولاریته (mOsmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/100 ml)</td>
<td>44/39±0/6</td>
<td>34/05±0/6</td>
<td>36/06±0/6</td>
<td>24/29±0/6</td>
<td>0/86±0/6</td>
</tr>
<tr>
<td>مقدار</td>
<td>4/12±0/6</td>
<td>3/12±0/6</td>
<td>2/12±0/6</td>
<td>1/12±0/6</td>
<td>0/12±0/6</td>
</tr>
<tr>
<td>واریانس</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
</tr>
</tbody>
</table>

بر اساس داده‌های جدول 4 با افزایش میزان شوری آب عامل‌های بوشیمیایی خون شام اسماولاریته، کلرینیت، کورتئزول، گلکوز، نری بودپروتئین (T₄) و تیروکسین (T₃) افزایش یافت (P<0/05). از طرفی میزان تغییرات و نوسان عامل‌های بوشیمیایی خون در طول دوره‌ٔ عادت‌خپره‌ی بچه ماهی‌ها به آب شور زیاد و پس از طی این دوره کم است.

داده‌های جدول 4 نشان می‌دهد که اسماولاریته خون ماهیان جوان قزلالاً در روز اول پس از طی دوره‌ٔ عادت‌خپره‌ی به آب شور معادل ± 3/73 مربوط به تیمار آب شورین و ± 3/06 مربوط به تیمار شوری 30 گرم در لیتر است که پس از طی
میزان (μg/mg) خون ماهیان در روز اول پس از طی دوره عادت‌چنیزی به آب شور 58 ± 67 در تیمار آب شیرین و 73 ± 67 در تیمار شوری 10 گرم در لیتر و 47 ± 79 در تیمار شوری 20 گرم در لیتر است که پس از پایان دوره پورش به ترتیب 3/4 ± 6/7 و 27 ± 17/16 ± 2/10 در تیمار رسمی است.

لیست غذایی خون ماهیان در روز اول پس از طی دوره عادت‌چنیزی به آب شور 3/4 ± 6/7 (mg/10ml) در لیتر و 6/7 ± 1/15 (mg/10ml) در لیتر است.

جدول 3. نتایج حاصل از اندازه‌گیری فاکتور بیوشیمیایی خون ماهیان جوان قزل‌بالای رنگ‌گیری کمان پورش در شورهای مختلف (میانگین ± انحراف میانگین)
| عوامل درمانی | اندازه گیری
<table>
<thead>
<tr>
<th>T4 (ng/ml)</th>
<th>T3 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان اندازه‌گیری بر حسب روز</td>
<td>زمان اندازه‌گیری بر حسب روز</td>
</tr>
<tr>
<td>تیمار</td>
<td>تیمار</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3/12/34/56</td>
<td>3/12/34/56</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>6/12/34/56</td>
<td>6/12/34/56</td>
</tr>
<tr>
<td>2/34/56/78</td>
<td>2/34/56/78</td>
</tr>
<tr>
<td>1/34/56/78</td>
<td>1/34/56/78</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
<tr>
<td>3/30</td>
<td>3/30</td>
</tr>
<tr>
<td>9/30</td>
<td>9/30</td>
</tr>
</tbody>
</table>
بیماری‌های لیپیدوپاتی‌های چربی کلسترول بالا \((mg/100 \text{ ml}) \) \((mg/100 \text{ ml}) \)
<table>
<thead>
<tr>
<th>کولسترول</th>
<th>بیوشیمپاین</th>
<th>خون</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان ترمینال کلسترول بر حسب روز</td>
<td>زمان ترمینال بیوشیمپاین بر حسب روز</td>
<td></td>
</tr>
<tr>
<td>تیمار</td>
<td>عامل</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>دقیقه</th>
<th>60</th>
<th>10</th>
<th>1</th>
<th>50</th>
<th>25</th>
<th>10</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/23</td>
<td>55/21</td>
<td>50/21</td>
<td>55/21</td>
<td>50/21</td>
<td>55/21</td>
<td>50/21</td>
<td>55/21</td>
</tr>
<tr>
<td>6/24</td>
<td>60/22</td>
<td>55/22</td>
<td>60/22</td>
<td>55/22</td>
<td>60/22</td>
<td>55/22</td>
<td>60/22</td>
</tr>
<tr>
<td>6/25</td>
<td>65/23</td>
<td>60/23</td>
<td>65/23</td>
<td>60/23</td>
<td>65/23</td>
<td>60/23</td>
<td>65/23</td>
</tr>
</tbody>
</table>

** در شوری شاهد و ۲۰ گرم در لیتر پس از پایان دوره عادت‌پذیری تعداد دسته‌جمعی مشاهده شد.

بی‌حث

نتایج حاصل از این تحقیق نشان می‌دهد که با افزایش میزان شوری آب به ۱۰ و ۲۰ گرم در لیتر وزن نهایی ماهیان به ترتیب به میزان ۸/۳۹٪ و ۱۳/۳۹٪ نسبت به تیمار آب شیرین کاهش یافت. چنین کاهشی موجب

۶۳۳
کاهش رشد روژه به میزان 9/10% و 28/37% و ضریب رشد ویژه به میزان 9/46% و 25/27% نسبت به تیمار آب شیرین گردد. همچنین رشد ماندن تبدیل غذا در شوریهای 10 و 20 گرم در لیتر به ترتیب به میزان 9/19% و 25/27% نسبت به تیمار آب شیرین کاهش یافته، که اختلاف معنی‌داری را نشان می‌دهد. (P<0/05)

به نظر میرسید کیکی از دلایل کاهش شاخص‌های رشد ماندنی در شوریهای 10 و 20 گرم در لیتر نسبت به ماهیان آب شیرین و همچنین کاهش رشد ماندن تبدیل غذا در آنها به‌واسطه افزایش میزان مصرف انرژی برای تنظیم اسنسی ماهیان بوده است.

خون ماهی آب شیرین دارای فشار اسنسی معادل با محصول کلی نسبت به غلتک 7 گرم بر لیتر است. با نا بر این از نظر تئوری بسیاری از ماهیان آب شیرین میتوانند در آب‌های تا شوریه نزدیک به 7 گرم در لیتر زندگی نمایند، اگر چه رصد از آنها کبیرتر خواهد شد. وقتی که ماهی در محیط هیروننی کار در نمی‌رود، از طریق مصرف انرژی و پیدایش انقلاب فعالیت سهی دارد. ماهیان اضافی موجود در محیط را به همراه آب و رودی به خون راه یافته‌اند می‌توانند و تغییرات فشار اسنسی را تغییر دهند. انتقال فعال آب‌های میتواند درصد چشمگیری از انرژی به‌دست آمده از آن را به مصرف سرآمد و از کیک سیابه‌ای که تنها نیاز دارد. انتقال فعال آب‌های میتواند درصد چشمگیری
باکس که میزان رشد ماهی شوری‌های پیدا که است اثر انرژی که در این زمینه مصرف می‌شود به سبب غلتک
یونها، بین خون ماهی و آب یافتگی دارد. [20] محض در ماهی‌ها در مقایسه با جوانان شوک‌زی قدت می‌گذارد. از تغییرات شوریه محیط زندگی خود
در تنظیم اسنسی بیلیگ افزایش مصرف انرژی است که عمدتاً از طریق کروپیون‌ها تأمین می‌شود. میزان
مصرف انرژی به محیط زیست ماهی، میزان تغییر فشار اسنسی محیط و گونه ماهی یافتگی دارد. [28] نتایج
رشد به دست آمده در تحقیق حاضر با یافته‌های مکی و جردن در سال 1985 نیز مطابق‌دارد. در تحقیقی که
این محکفان انجام دادند آنها ماهیان قزل‌آلا رنگ‌کمان 100 ماهه و وزن متوسط 0/15 گرم را به مدت
12 هفته در شوریهای 10، 20، 24 و 22 گرم در لیتر پرورش دادند. نتایج حاصل از تحقیق آنها
نشان داد که با افزایش میزان شوری از صفر (اب شیرین) تا شوری 32 گرم در لیتر در صد بقا کاهش و میزان
تلهای افزایش می‌یابد. میزان تلهای از صفر در تیمار آب شیرین تا 13 درصد در شوری 23 گرم در لیتر متغیر
بود. همچنین با افزایش شوری میزان رشد کاهش یافته. انتها، ماهیانی که در آب شیرین پرورش یافته بودند از ماهیانی بود که در آب با شوری 10 20 و 22 گرم در لیتر رشد کرده بودند. آنها خاطرنشان کردن افزایش
شوری بیش از 30 گرم در لیتر تاثیر زیادی بر رشد ماهیان قزل‌آلا رنگ‌کمان دارد. [27] علاوه بر این
طول دوره‌سازگاری با آب شور نیز از دیگر عوامل مؤثر در میزان بقا و مصرف انرژی (راندمان تولید)
محصول می‌شود. به طوری که در این موارد دانشجویان ماهی‌ها نیز به سبب این که زمان زبانان

نیاز دارد تا ماهی بتواند خود را با شرایط جدید سازگار کند و در این شرایت از فعالیت‌های بیولوژیک و رشد مناسب در خورداری گردد. به طوری که در این تحقیق ماهیان قزل‌الابی جوانی در شرایط ۳۰ و ۴۰ گرم در لیتر قرار گرفتند پس از پاک‌کردن وردی سازگاری لفی‌شدن.

در خصوص تغییرات سطح هورمون‌ها در پاسخ ماهیان تحت آزمایش باید خاطر نشان دهد که کورتیزول نشان دهنده فعالیت بیولوژیک می‌باشد که اثرات انسجامی در جمله تنظیم کلسترول خون دارد. به طوری که در شرایت انسجام‌های قزل‌الابی میزان کورتیزول خون افزایش می‌یابد که متعاقب آن افزایش غلظت گلوكز خون ماهی و افزایش متوسط فشار خون را در بر می‌گیرد. با استرس تحمیل شده به دنبال دارد (۱). بنابراین افزایش میزان کورتیزول و گلوكز خون در این آزمایش در مورد ماهیانی که تحت شرایت افزایش شوری بیشتر است قرار داشتند ممکن است از دو نمره هورمونی و وزن ماهیان قزل‌الابی افزایش برقرار شود.

همچنین کورتیزول به عنوان یک هورمون تطبیق دهنده سیستم بیولوژیک ماهی‌ها اب شور است، نشان داده شده است که مقاوتی ماهی نسبت به اب شور در اثر تیمار با کورتیزول افزایش می‌یابد (۲۰). تحقیقاتی که در مورد آزاد ماهیان انجام شده نشان می‌دهد میزان کورتیزول پلاسما خون در زمان رهوسیار به درجه‌ای بیشتر از مرحله پایان به سیستمی (چه ماهی رهوسیار شونده به دریا) افزایش می‌یابد که خود بین‌گیر استرس دوران سازگاری است. به هر حال مطالعات بیشتری مورد نیاز است تا و وزن ماهیان قزل‌الابی و دوران زمان سازگاری آن را در شرایط مختلف تبعیض‌گردد. با توجه به دو دوره ۱۰ روزه‌سازگاری در تحقیق حاضر به نظر می‌رسد که ماهیان فرصت کافی برای تنظیم اسکیم‌های نیازمندی را به دنبال داشتن است. برای مثال سلوس‌های کلراید آبش درک بکره و رشد نیاز دارد و به همین دلیل در زمان انتقال آزاد ماهیان نظری ماهی آزاد افیوانت اطلاعات ماهی قزل‌الابی را نگنگ کن دارد. برای اهداف بررسی در سه‌خوانر سازگاری ماهی‌ها اب شور در مدت زمان طولانی تری انجام می‌گیرد (۲۹). بر اساس بررسی‌های موسمی و همکاران در سال ۱۹۹۹ نیز میزان کورتیزول پلاسما با شروع فراذان به غلظت‌های بالای ماهی می‌حیات افایش می‌یابد (۲۸). بافت‌های ماهی محرقت نیز با نتایج تحقیق حاضر مطابقت دارد. بر اساس بررسی‌های انجام شده توسط بارن و همکاران در سال ۱۹۸۷ استرس یک فرآیند مخرب و میزان نیازمان تولید توده سریع انگست و رشد نیاز دارد. به طوری که در طول استرس ممکن است در تولید سریع گلوكز پس از فاش شدن یافته را افزایش می‌یابد (۱۰). کورتیزول افایش بیشتر در مورد افرازیش منجر به تغییر میزان گلوكز خون ماهیانی که در شرایت بالاتر نگه داشته شده نسبت به ماهیان آب شور است قابل بهبودی ای نتایج تحقیق مطابقت دارد. تحقیقات انجام شده احتمالاً با همکاران در سال ۲۰۰۹ نیز مورد تابع تحقیق حاضر است. آن‌ها تأثیر تیمار کردن ماهیان قزل‌الابی قابلیتٌ با

1. Parr
2. Smolt
3. Salmo salar
4. Cage culture
5. Mommsen
6. Barton
7. Ojima
8. Salvelinus alpines
هورمون‌های رشد و کورتیزول را در دو سویه مهاجر آب‌سری و مهاجر آب شور را بر قدرت سازگاری آنها به شوری آب‌سری کردن. این محققان ۱۶ و ۶۸ روز پس از تیمار کردن ماهی‌ها با هورمون رشد و کورتیزول آنها را به مدت ۲۴ ساعت در محیط استرس شوری (آب دریا به سویه برای ۴۵ گرم در لیتر) قرار دادند و بیان داشتند که افزایش سطح هورمون‌های مشترک باعث افزایش قدرت سازگاری این ماهی‌ها به آب شور شده و این قدرت سازگاری در سویه مهاجر آب شور این گونه مشهودتر است. آنها همچنین اظهار می‌دارند که کاهش قدرت سازگاری سویه‌های مهاجر آب‌سری این گونه می‌تواند به دلیل کمبود بودن سطح ترشح این هورمون‌ها در سویه‌های آب‌سری باشد [۳۳]. در تحقیق دیگری که در سال ۲۰۰۹ انجام دادند. تأثیر داروی تریبتیوندی را بر افزایش میزان کورتیزول و افزایش میزان سازگاری ماهی قزلالا با آب شوری بررسی و نشان دادند که تیمار آن گونه با این داروها، افزایش سطح کورتیزول خون و افزایش مقاومت آنها در برای آب شور را به دنبال دارد [۱۷].

در تحقیق حاضر ماهیان جوان قزلالایی که در معرض شوری ۱۰ و ۲۰ گرم در لیتر قرار گرفتند میزان کلر و اسملوراتیون آنها افزایش یافته (P<۰۰۰۰۰). افزایش میزان کلر و اسملوراتیون خون نشان دهنده افزایش قرار گرفتن ماهیان آب‌سری می‌باشد که در شرایط آب شور و به منظور تطبیق آنها با این شرایط است. آزاد ماهیان مهاجر از دریا به رودخانه مانند ماهی آزاد اقیانوس اطلس در مقایسه با آزاد ماهیان رود روانگیر آنها به رشد افزایشی به تغییرات میزان کلر و افزایش میزان کلر خون می‌کنند. در تحقیق که در سال ۲۰۰۸ انجام دادند نشان داده که در آزمایشات میزان آزاد اقیانوس اطلس به مدت ۱۴-۱۴ روز با کورتیزول باعث افزایش ترشح کلر و اسملوراتیون خون ماهی‌ها به دنبال افزایش سریع‌تر این تغییرات شدید کلرینیتی خون جلگرگی کن. از همین رو با افزایش میزان کلر خون پیروی می‌کند [۳۲] و در گرم دریایی موجب بروز تلفات و مرگ ماهی‌ها می‌شود. این تحقیقات نیلسن و همکاران در سال ۲۰۰۹ بر روی سویه‌های مهاجر آب‌سری و مهاجر آب شور ماهی آزاد اقیانوس اطلس در طول سال و همچنین در مدت عادت‌گیری به آب دریا در مخلوط جه ماهی رهسپار شوند. محققان داد که سطح کورتیزول پلاسما در فصل بهار، بعنی در زمان رهسپاری آنها به دریا در ماهیان مهاجر افزایش یافت. در حالی که در ماهیان غیرمهاجر تغییری نشان نمی‌دهد. این محققان خاطرنشان می‌سازند که کمی میزان کورتیزول در پلاسمای خون ماهیان مهاجر آب‌سری خون می‌تواند دلیلی بر ناتوانی آنها در عادت‌گیری به آب شور دریایی باشد [۳۲].

۲. smolt
بر بررسی میزان رشد و برخی شاخص‌های بیوشیمیایی خون ماهیان جوان \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) براساس یافته‌های ودمیرر \(7\) در سال 1994 نحوه تنظیم غلظت یونها در شرایطی که ماهی در محیط‌های با شوری منتفی قرار می‌گیرد، برای هر گونه منتفیت و اختصاصی است. بعضی از ماهی‌ها که دائمه تحمل شوری آنها گسترده است، مانند خامه ماهی، میوتانند اسماولاریته خون خود را در محدوده وسیعی از شوری‌های محبوب در حد ثابت نگه دارند \(8\). این موضوع در تحیاتی دیگر بر روی گونه‌های مقاوم به تغییرات شوری نیز به اثبات رسیده است. در تحقیقی که بر روی ماهیان یک ساله شانک \(9\) که از انواع ماهیان مقاوم به شوری است انجام شده است، نشان داده شد که این ماهی میوتاند شوری‌های از 5 تا 40 گرم در لیتر را بدون تغییر عده در الکترولیتهای خون تحمل کند \(10\).

در مورد ماهی قزلآلا رنگی‌کمان که یک گونه کاملاً مقاوم نسبت به تغییرات شوری نیست، بعنوان می‌رسد که وضعیت تطبیق با آب شور متفاوت است.

چنان‌که از نتایج این تحقیق بر می‌آید، ماهیان جوان قزلآلا ابتدا با قرار گرفتن در شرایط آب شور (شوری‌های 10 و 20 گرم در لیتر) با تغییر العام‌های خونی مانند اسماولاریته و کلرونزها مواجه شده و سعی می‌کند تا با مصرف بیشتر انزیمی کافی جهت حفظ کند. کاهش شاخص‌های رشد (وژن‌های، میزان رشد روزانه)، ضربه‌های ویژه، کاهش راندمن بدنی غذا و درصد یا نیز نتیجه منطقه مصرف بیشتر انزیم در چنین شرایطی است. با افزایش شوری آب به بخش از 20 گرم در لیتر و رسیدن شوری به 40 گرم در لیتر دیگر ماهی حتی با مصرف افزایش بیشتر نیز قادر به جلوگیری از ورود بیوکاتی‌ها اضافی آب به محیط خون نیستند و بدين تریب اسماولاریته و کلرونز خون به سرعت افزایش یافته و در چنین شرایطی تلفات دسته‌جمعی ماهی‌ها از دست نمی‌گردد.

هرمون‌های تیروئودی در کنترل رشد، منابع و تنظیم اسموزی ماهیان اهمیت خاصی دارد. اغلب در ارتباط با سایر هورمون‌ها مانند کورتئزول این فعالیت‌ها انجام می‌دهد \(11\). شاخه‌نشان‌های معین اثر هورمون‌های تیروئودی، تحریک میزان منابعی که است که این موضوع از نهایی‌های در فرایند تنظیم اسموزی قابل استنباط است. مدارک بیشتر برای اثبات دخالت هورمون‌های تیروئودی در تنظیم اسموزی از بررسی‌های که در آن ماهی‌ها به شوری‌های مختلف منتقل و تغییرات مورفولوژیک غده تیروئود و سطوح پلی‌پاسی (T2) و (T3) اندازه‌گیری شده \(12\) بخش آمده است. در آزاد ماهیان ثابت شده است که به هنگام مهاجرت به آب شور میزان تیروکربینان آنها افزایش می‌یابد \(13\); زیرا سوخت و ساز کروپنده‌ها و افزایش میزان گلوکز خون نیز تحت تأثیر هورمون‌های تیروئودی قرار دارد. هورمون‌های تیروئودی حومج‌های هیدروکسی جهت خون و پروتئین‌ها را تحت تأثیر قرار داده، همچنین سوخت و ساز کروپنده‌ها را نیز افزایش می‌دهند. این پدیده منجر به افزایش گلوکرز خون می‌شود \(14\). همچنین تحت تأثیر این هورمون‌ها سریع‌تر و استثنایی می‌شود و این عمل منجر به افزایش میزان منابعی یا به‌صورت دیگر روند و شدت چنین تغییراتی می‌تواند منجر به ازدحام و دود زمانی سازگاری

Downloaded from jsci.khu.ac.ir at 20:01 IRST on Sunday December 29th 2019
آزاد ماهیان باشد. افزایش چشمگیر هورمون‌های اکسترینیت شامل تری دیوتیروئون (T₃) و تری‌تیروکسین (T₄) در شوری‌های مختلف بررسی شده در این تحقیق نیز احتمالاً بیانگر این واقعیت است که دوره زمانی سازگاری به شوری و با احتمالاً وزن ماهی‌ها برای انتقال به شوری‌های بررسی شده مناسب نیسته است. تفیل دسته‌جمعی ماهی‌ها در شوری‌های بیش از 20 گرم در لیتر نیز مورد این مطلب است.

نتیجه‌گیری نهایی

با توجه به نتایج این تحقیق اگر چه امکان پرورش ماهیان جوان قزل‌لایی رنگی‌کمان با وزن حدود 5 گرم در شوری‌های تا 20 گرم در لیتر ممکن‌پذیر است، اما در مقایسه با شرایط آب شیرین، رشد و راندمان تولید به صورت معنی‌داری کاهش می‌یابد.

تشکر و قدردانی

این تحقیق با پشتیبانی مالی معاونت پژوهشی دانشگاه خلیج فارس و با همکاری گروه شیلات دانشکده کشاورزی و منابع طبیعی این دانشگاه اجرا شده است. از کارشناسان آزمایشگاه گروه شیلات، آقایان مهندس جواد پاپری مقدم و مهندس مصطفی رمضان پور تشكر و قدردانی می‌شود.

منابع

1. سالنامه آماری سازمان شیلات ایران، انتشارات سازمان شیلات ایران، دفتر برنامه و بودجه، گروه آمار و مطالعات توسعه شیلاتی (1379-1387) 75 صفحه.
2. مهدی شکری، مهاریت در ماهیان، سمتیار کارشناسی ارشد دانشکده منابع طبیعی دانشگاه تهران (1371) 72 صفحه.
3. یاده مهرابی، بیوشکسی و روش عمل تکثیر نیکبار در سال ماهی قزل‌لایی رنگی‌کمان، انتشارات اصلانی (1381) 100 صفحه.
4. محمود نفیسی، شریفی‌نژاد، منصوری، دهقان، داوود، ایرانی‌نژاد، مرحله ثبت تحقیقاتی پرورش ماهی قزل‌لایی رنگی‌کمان در استخرهای خاکی بی‌بی‌بهبود در استان بیرجند انتشارات سازمان تحقیقاتی، آموزش و ترویج (O.mykiss) کشاورزی، وزارت جهاد کشاورزی (1380) 35 صفحه.
5. محمود نفیسی بهادوزی، رامینیان، علمی، تکثیر و پرورش ماهی قزل‌لایی رنگی‌کمان (جلد دوم)، انتشارات دانشگاه هرمزگان (1385) 282 صفحه.
6. محمود نفیسی بهادوزی، علمی، فلاحیانی، مرست، تکثیر ماهی قزل‌لایی رنگی‌کمان، انتشارات دانشگاه خلیج فارس (1387) 420 صفحه.

30. MSTAT-C Russe 11 D. freed, "MSTATC Director, Scott P, Eisensmith, Deputy, Director crop and soil Science", Department Michigan State University.

