بررسی میزان رشد و برخی شاخص‌های بیوشیمیایی خون ماهیان جوان قزل آلانی رنگ‌کمان 1 در شوری‌های مختلف آب

محمود نفیسی بهدابادی: دانشکده کشاورزی و منابع طبیعی دانشگاه خلیج فارس
مهدی سلطانی: دانشکده دامپزشکی دانشگاه تهران

به فلسطینی مرست: مرکز مطالعات و پژوهشهای دانشگاه خلیج فارس

چکیده
تأثیر شوری آب بر رشد، درصد بقا و عامل‌های بیوشیمیایی خون ماهیان جوان قزل آلانی رنگ‌کمان 1 با ورز

واژه‌های کلیدی: ماهی قزل آلانی رنگ‌کمان، شوری آب، شاخص‌های رشد، درصد بقا، عامل‌های بیوشیمیایی خون

1. Oncorhynchus mykiss 2. Osmoregulation

۱۴۰۰/۵/۲۱
نویسنده مسئول

۱۸۵
تغییر رفتارهای مانند میزان نوشیدن آب، سطح هورمون‌های مختلف و عملکرد سطح تنظیم اسمزی، حفظ كند [15], [16]. جذبن هورمون هیپوفیزی و غیره فیزی فعالیت‌های چنین اندام‌هایی را در حفظ موانع آب و مواد معدنی در شوری‌های مختلف محیط کنترل می‌کند [26].

ماهی قزلآلا رنگ‌کمان مهم‌ترین گونه آراد ماهیان پورپوری در آب شیرین است. میزان تولید این گونه در کشور ایران با توجه به ۶۲۰۰۰ تن در سال ۱۳۸۳ و در حال حاضر کشور ایران با توجه به ۷۰۰۰ تن، بزرگ‌ترین کشور ذنیا در تولید ماهی قزل‌آلا رنگ‌کمان در آب شیرین به شمار می‌رود [1]. این ماهی مقاومت نسبتاً خوبی به شوری آب دارد و پورپوری این گونه از آب شیرین تا شوری نزدیک به آب دریا نیز در شرایط و اوزان مختلف گزارش شده است [5].

در تحقیق همیشه و همکاران در سال ۱۳۸۰ انجام دادند، پورپوری این گونه در آب‌های لب شور (۱۵ گرم در لیتر) و در استخراج خاکی به انجام رسید. این محققان به چه ماهیان قزل‌آلا با وزن اولیه ۷۲/۸۵±۲/۵ گرم را در طول یک دوره پورپوری ۱۵۰ روزه به وزن بارزی (حدود ۲۵۰ گرم) رسانند [۴]. محققان دیگری به نام‌های الکسندرو و مونالا در سال ۱۹۷۷ پورپوری قزل‌آن در آب‌های شور و محیط‌های محسور دریایی را در سواحل بندر پالییک در سال‌های ۱۹۷۶ و ۱۹۷۵ به انجام رسانند [۷]. وزن اولیه ماهیان هر ۷۰ از شاهد این تحقیق ۷۵ گرم و وزن پرشامت ۷۱ گرم بود. در تحقیق دیگری که هر ۷۰ در سال ۱۹۸۳ انجام دادند، پورپوری ماهی قزل‌آلا رنگ‌کمان در کشور فرآیند در آب‌های دریایی گزارش شد [۱۸]. کشت و پورپوری ماهی قزل‌آلا رنگ‌کمان در کشور فرآیند لیزر توسط هومسمن در سال ۱۹۸۳ قابل انجام شده است [۲۱]. محققان دیگری به نام سوترویا در سال ۱۹۸۳ گزارش داد که ماهیان قزل‌آن رنگ‌کمان یک ساله با وزن ۱۷۵ گرم به قفس‌های دریایی در کشور فرانسه معرفی شدند و در طی یک دوره ۴ ماهه به وزن ۴۰۰۰–۶۰۰۰ گرم رسیدند [۲۶].

پورپوری قزل‌آن در آب‌های شور و لب شور در کشور ما که با توجه به متوسط بارندگی ۲۴۵ میلی‌متر در سال جزء کشورهای نیمه خشک و نسبتاً محسوب می‌شود اهمیت زیادی دارد. ولی با باید خاطرنشان کرد که اگر این پورپوری این گونه در شوری‌های مختلف انجام شده است ولی بررسی میزان رشد و تغییرات سیستم فیزیولوژیک این ماهی در جهت سازگاری با آب شور اهمیت زیادی دارد. این پرورش در جهت نیل به این هدف می‌باشد و به منظور بررسی تغییرات شاخص‌های رشد و عامل‌های پیش‌بینی‌های این ماهی در شوری‌های مختلف انجام شده است.

مواد و روش کار

۱. ماهی

<table>
<thead>
<tr>
<th>ماهی قزل‌آن</th>
<th>مورد نیاز</th>
<th>وزن متوسط</th>
<th>پس</th>
<th>۲۰۰/۶۱/۶۴۴/۵</th>
<th>۵۰۰/۶۱/۶۴۴/۵</th>
<th>۵۰۰/۶۱/۶۴۴/۵</th>
<th>۵۰۰/۶۱/۶۴۴/۵</th>
<th>۵۰۰/۶۱/۶۴۴/۵</th>
</tr>
</thead>
</table>

۲۲۲
حمل و عادت ضروری به تعداد ۵۰ قطعه به هر یک از تانک‌ها معرفی شدند. محل اجرای این تحقیق سالن آکواریم‌دانشکده کشاورزی و منابع طبیعی دانشگاه خلیج فارس بود. محل نگهداری ماهی‌ها ۱۵ تانک پلی اتیلنی به قطر ۶۰ سانتی‌متر، ارتفاع ۸۰ سانتی‌متر و حجم آب‌گیری ۲۴۲ لیتر بود. تانک‌ها در ۳ رنگ هاله مستقر و به منظور جلوگیری از تبادلات حرارتی، محیط استقرار تانک‌ها بر اساس یافته‌های نفیسی و سلطاتی در سال ۲۰۰۸ با پلاستیک پوشانده و جالت گل‌خانه‌ای ایجاد شد[۳۱]. ماهی‌ها مربوط به هر یک از تیمارهای شوری و تکرارهای مربوط به هر تیمار با توزیع کاملاً تصادفی در تانک‌ها قرار گرفتند.

۲. تأثیر آب مورد نیاز

آب مورد نیاز از طریق یک حلقه چاه آب شیرین موجود در محل تأمین و سطح شوری انتخاب شده برای هر یک از تیمارهای صفر (آب شیرین)، ۱۰۰ و ۳۰۰ گرم در لیتر بود. تنظیم شوری با استفاده از نمک دریایی مهارلو در تانک‌های این ایستگاه به حجم ۱۰۰۰ لیتر انجام و پس از تنظیم شوری به تانک‌های پرورشی پمپ‌زد. آب در گردش مورد نیاز هر یک از تانک‌ها برحسب یافته‌های کلونتز[۲] در سال ۱۹۹۱ [۲۵] محاسبه گردید.

جفت کاهش آب در گردش از یک سیستم مرکزی هوازی از نوع هواده خنک‌کننده با قدرت ۲/۳ کیلووات، دی‌هوا خروجی ۳/۲ متر مکعب در دقیقه و فشار خروجی ۱۱۰ میلی‌بار استفاده شد[۳۱]. این هواده میزان اکسیژن تانک‌ها را در طول دوره آزمایش در حد اشباع نگه داشت.

۳. عامل‌های کیفی آب

عوامل فیزیکی و شیمیایی آب شامل درجه حرارت، اکسیژن محلول، pH و شوری همه روزه به وسیله دستگاه‌های دیجیتال قابل حمل مارک WTW با نقشه ۱۰۰ اندازه‌گیری شد. اکسیژن محلول به وسیله دستگاه اکسی‌متر(مدل Oxi ۳۳۰/SET) اندازه‌گیری و دامنه آن بین ۰ تا ۲ میلی‌گرم در لیتر بود. شوری به وسیله دستگاه شوری سنج (مدل Cond ۳۴۰i / SET) اندازه‌گیری شد. تغییرات درجه حرارت آب نیز بین ۱۲ تا ۱۸ درجه سانتی‌گراد ثبت گردید.

۴. اندازه‌گیری شاخص‌های رشد

به منظور تأیید کننده رشد به‌جهت ماهیان در هر یک از تیمارهای شوری در هر بار خون‌گیری، زیست‌سنگی ماهی‌ها نیز انجام شد. به‌منظور بچه ماهی‌ها با استفاده از عصاره‌ی بودر گل میخک با عظیم ۱۵۰ میلی‌گرم در لیتر و بر اساس یافته‌های مرهم‌بر در سال ۱۳۸۱ [۳] بی‌هوش شدند و اندام‌گیری طول و وزن انفرادی آنها برای تعيین شاخص‌های رشد انجام شد. طول انفرادی ماهی‌ها با استفاده از تخته‌زیست‌سنگی و

۲۷۷
وزن انفرادی آنها با استفاده از تراظی دیجیتال (مارک AND ساخت کشور زاین مدل 0006) با دقت C0005/0101، گرم انجام شد.

میزان رشد روشه (RZ)، ضریب رشد ویژه (DGR)، راندمان تبدیل عغذا (FCE)، و درصد بقا با استفاده از فرمول‌های زیر محاسبه شد:

• تعداد روزهای پروتئین/وزن اولیه (وزن نهایی) = رشد روشه
• تعداد روزهای پروتئین/وزن اولیه (وزن نهایی) = ضریب رشد ویژه
• عغذا خورده شده/افراش وزن = راندمان تبدیل عغذا
• تعداد ماهیان بدشت شده – تعداد ماهیان دخیر مسازی شده / 100 = درصد بقا

5. اندازه‌گیری عامل‌های بیوشیمیایی خون

قبل از شروع دوره‌های تبییزی و پس از قرار گرفتن ماهیها در تانک‌های پروشی مورد نظر، خون‌گیری از آنها در چهار نوبت (10، 25 و 50 روز پس از معرفی به شوری‌های مختلف) به منظور تعیین میزان املاح‌الریزی، کلرینیتی، گلکوز، کورتیزول، نری یدوترینون (2) و تریوکسین (3 پلاسمای خون انجام شد. تعداد 10 قطعه از ماهیان هر یک از تانک‌ها (تکرارها) به صورت تصادفی انتخاب و به‌وسیله سرچ برگه‌های میلی‌لیتری از رک ساقدام آنها خون‌گیری شد [1و2]. نمونه‌های خون پس از سانتی‌فیوز کردن به مدت 10 دقیقه به سرعت 3000 دور در دقیقه و جدی شدن سرم آنها در دمای 27 درجه سانتی‌گراد [34] تا زمان سنجش عامل‌های خونی نگهداری شدند. املاح‌الریزی با استفاده از دستگاه آسومتر، گلکوز و کلر به شوری‌های رنگ‌سنجی با استفاده از تریال‌پوزور (Technicon RA-1000 Analyzer) و با کتاب MAN کورتیزول، نری یدوترینون (2) و تریوکسین (3) به روش های ایمپویا (RIA) سنجدیه شد.

6. غذایی

غذایی به ماهی‌ها با استفاده از غذای یونت تجارتی ساخت کارخانه چینه انجام شد. میزان غذایی مصرفی با استفاده از جداول ارائه شده توسط کارخانه‌ها و حدود 3% وزن توده زندگی بود که به مصرف ماهی‌ها می‌رسید. برای جلوگیری از سقوط به‌کارهای غذایی به کف تانک‌ها، غذای‌های تا زمانی که ماهی‌ها حرکت جلویی‌های را نشان می‌دادند ادامه یافت. به منظور مشخص شدن غذای خورده شده احتمالی قبل و بعد از هر غذایی کف تانک‌ها سیفون و پلت‌های غذایی خورده شده از شمارش و وزن آنها محاسبه می‌شدند.

رزپی نوری در نظر گرفته شده در طول دوره پروش 12 ساعت روش‌شنا و 12 ساعت تاریکی (2D) 1/2 یا و غذایی تجربی چاپ گرفته شده در طول دوره پروش را نشان میدهد.

1. Biomass

d28
جدول 1. تجزیه تقریبی جیره غذایی مورد استفاده برای ماهیان جوان قزل‌الآورنگیکمان پرویز در شریفسهای مختلف آب

<table>
<thead>
<tr>
<th>نوع خوراک</th>
<th>پروتئین خام</th>
<th>چربی خام</th>
<th>خاکستر</th>
<th>فیبر</th>
<th>وزن خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>گفت</td>
<td>39%</td>
<td>14%</td>
<td>1%</td>
<td>4%</td>
<td>100%</td>
</tr>
</tbody>
</table>

همچنین به منظور استمرار سلامتی ماهی‌ها در طول دوره پرورش فضولات ماهی‌ها همه روزه به‌وسیله سیفون کردن تانک‌ها از محیط پرورشی خارج و حجم کل آب تانک‌ها تعیین می‌شود.

روش آماری

اختلاف موجود بین تیمارها در قالب یک طرح کاملاً تصادفی در پنج تیمار شوری و سه تکرار تعبیه و نتایج به‌دست آمده با استفاده از نرم‌افزار SAS روش آنالیز مانگ‌ها و فاصله‌شان در مقایسه میانگین‌ها به‌وسیله آزمون چند دامنه دانک [14] در سطح 0.05 درصد (P<0.05) و نرم‌افزار Mstat-C [10] انجام شد.

نتایج

جدول 2 نتایج شاخص‌های رشد یک در پیان دو دورة پرورشی اندام‌گیری و ثبت شده است نشان می‌دهد. بر اساس داده‌های جدول 2 با افزایش میزان شوری آب و وزن نهایی، میزان رشد روزانه، ضریب رشد ویژه، راندمان تبدیل غذا و درصد بقا در ماهیان جوان قزل‌الآورنگیکمان کاهش می‌یابد. اختلاف بین تیمارها در سطح 0.05 درصد (P<0.05) معنی‌دار است. بر اساس نتایج منعکس شده در جدول 2، حداکثر وزن نهایی معادل 6/24 ± 0.04 گرم مربوط به تیمار آب شوری و حداکثر میزان اعتیاد روزانه 9/0 ± 0.08 گرم مربوط به تیمار آب شوری و حداکثر ضریب رشد ویژه 0/08 ± 0/07/1 درصد مربوط به ماهیان پرویزی در آب شوری و حداکثر آن 15 ± 0/07/5 درصد مربوط به ماهیان پرویزی در آب شوری 20 گرم در لیتر است. حداکثر راندمان تبدیل غذا 9/6 ± 0/07/5 درصد مربوط به ماهیان پرویزی در آب شوری 20 گرم در لیتر است. حداکثر اعتیاد روزانه 9/0 ± 0/08 گرم مربوط به آب شوری و حداکثر آن 15 ± 0/07/5 درصد مربوط به آب شوری 20 گرم در لیتر است. همچنین ماهیان پرویزی در شوری‌های 30 و 40 گرم در لیتر پس از طی دوره 10 روزه عادت‌چنبری به آب شوری و رسین شوری به 30 و 40 گرم در لیتر به تریج تلف شدند.

1. One Way ANOVA

Mohammad Naeini, Sadiq, and Mohammadi. مقدار تغذیه فیتویک و تغذیه کیفی شوری در...
جدول 2. نتایج حاصل از اندازه‌گیری شاخص‌های رشد ماهیان جوان قزلالای رنگین کمان پوپورشی در مورشیان مختلف (میانگین ± انحراف معیار)

<table>
<thead>
<tr>
<th>شاخص‌های رشد</th>
<th>میانگین ± انحراف معیار</th>
<th>T4 (ng/ml)</th>
<th>T3 (ng/ml)</th>
<th>کورتیزول (mg/100 ml)</th>
<th>گلوکز (mg/100 ml)</th>
<th>کلریتی (mEq/L)</th>
<th>اسماژیت (mOsmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن اولیه (گرم)</td>
<td>99/34 ± 0/64</td>
<td>0/27 ± 0/56</td>
<td>0/37 ± 0/56</td>
</tr>
<tr>
<td>وزن نهایی (گرم)</td>
<td>4/78 ± 0/59</td>
<td>0/27 ± 0/56</td>
<td>0/37 ± 0/56</td>
</tr>
<tr>
<td>میزان شیرد (روشگر)</td>
<td>4/78 ± 0/59</td>
<td>0/27 ± 0/56</td>
<td>0/37 ± 0/56</td>
</tr>
<tr>
<td>ضریب رشد وزه (٪)</td>
<td>1/87 ± 0/59</td>
<td>0/27 ± 0/56</td>
<td>0/37 ± 0/56</td>
</tr>
<tr>
<td>راهنمای تبدیل غذا (٪)</td>
<td>1/87 ± 0/59</td>
<td>0/27 ± 0/56</td>
<td>0/37 ± 0/56</td>
</tr>
<tr>
<td>میزان پاچه (٪)</td>
<td>1/87 ± 0/59</td>
<td>0/27 ± 0/56</td>
<td>0/37 ± 0/56</td>
</tr>
</tbody>
</table>

بر اساس داده‌های جدول 4، با افزایش میزان شیرد آب ماده دانه‌بیولی (بنیان تئوری) کلریتی کورتیزول، گلوکز و تیروکورتیک (T3 تئوری) با جایگزین (P<0.05). از طرفی میزان تغییرات و نوسان عامل‌های بیوشیمیایی خون در طول دوره عادت‌پذیری به ماهی‌ها به آب شور زیاد و پس از طی این دوره کم است.

داده‌های جدول 4 نشان می‌دهد که اسماژیت خون ماهیان جوان قزلالای در روز اول پس از طی دوره عادت‌پذیری به آب شور معادل ۲۳۷/۲۱ ± ۲۹۶/۵۳۳ میکروتوم به تیمار آب شیرین و ۲۳۷/۲۱ ± ۲۹۶/۵۳۳ میکروتوم به تیمار شوری ۲۰ گرم در لیتر است که پس از طی

32
میزان (T) خون ماهیان در روز اول پس از طی دورةٌ عادت‌پذیری به آب شوری 257 ± 67 در تیمار آب شیرین و 0/74 ± 6/76 در تیمار شوری 20 گرم در لیتر است که پس از پایان دورهٔ پرورش به ترتیب 2/53 ± 6/27 و 0/43 ± 6/54 در تیمار نسبت می‌رسد. (ng/mg).

کلرینتی به خون ماهیان در روز اول پس از طی دورهٔ عادت‌پذیری به آب شوری 2/72 ± 6/34 گرم در لیتر و 1/79 ± 6/34 می‌رسد. میزان کلرینتی خون ماهیان در روز اول پس از طی دورهٔ عادت‌پذیری به آب شوری 0/58 ± 6/0/43 می‌رسد. (mEq/L). (ng/mg).

جدول 3. نتایج حاصل از اندازه‌گیری فاکتور بیوشیمیایی خون ماهیان جوان قزل‌الای رنگین کمان پرورشی در شوری‌های مختلف (میانگین±انحراف معیار)

<table>
<thead>
<tr>
<th>فاکتور بیوشیمیایی</th>
<th>خون</th>
<th>(mEq/L)</th>
<th>(mOsmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عوامل مورد مطالعه</td>
<td>آب شیرین</td>
<td>زمان نمونه‌گیری بر حسب روز</td>
<td>زمان نمونه‌گیری بر حسب روز</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>0</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>1</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>2</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>3</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>4</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>5</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>6</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>7</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>8</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>9</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>میزان کلرینتی</td>
<td>10</td>
<td>0/09 ± 6/25</td>
<td>0/09 ± 6/25</td>
</tr>
<tr>
<td>شوری (گرم/لیتر)</td>
<td>تیتر (گرم/لیتر)</td>
<td>T₄ (ng/mg)</td>
<td>T₃ (ng/mg)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>10.7/4.4</td>
<td>10.7/4.4</td>
<td>0.4/0.3</td>
<td>0.4/0.3</td>
</tr>
<tr>
<td>12/3.4</td>
<td>12/3.4</td>
<td>0.5/0.4</td>
<td>0.5/0.4</td>
</tr>
<tr>
<td>12.5/3.2</td>
<td>12.5/3.2</td>
<td>0.6/0.5</td>
<td>0.6/0.5</td>
</tr>
<tr>
<td>13.5/3.5</td>
<td>13.5/3.5</td>
<td>0.7/0.6</td>
<td>0.7/0.6</td>
</tr>
<tr>
<td>14.5/3.7</td>
<td>14.5/3.7</td>
<td>0.8/0.7</td>
<td>0.8/0.7</td>
</tr>
</tbody>
</table>

اندازه‌گیری‌های تیتر و T₄ (ng/mg)

<table>
<thead>
<tr>
<th>شوری (گرم/لیتر)</th>
<th>T₄ (ng/mg)</th>
<th>T₃ (ng/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7/4.4</td>
<td>0.4/0.3</td>
<td>0.4/0.3</td>
</tr>
<tr>
<td>12/3.4</td>
<td>0.5/0.4</td>
<td>0.5/0.4</td>
</tr>
<tr>
<td>12.5/3.2</td>
<td>0.6/0.5</td>
<td>0.6/0.5</td>
</tr>
<tr>
<td>13.5/3.5</td>
<td>0.7/0.6</td>
<td>0.7/0.6</td>
</tr>
<tr>
<td>14.5/3.7</td>
<td>0.8/0.7</td>
<td>0.8/0.7</td>
</tr>
</tbody>
</table>

واژگان: قطعات حرف با (SD) نمودار استاندارد (SE)
بحث

نتایج حاصل از این تحقیق نشان می‌دهد که با افزایش میزان شوری آب به ۱۰ و ۲۰ گرم در لیتر وزن نهایی ماهیان به ترتیب به میزان ۸/۳۹٪ و ۱۲/۱۳٪ نسبت به تیمار آب شیرین کاهش یافته. چنین کاهشی موجب

<table>
<thead>
<tr>
<th>شماره</th>
<th>عروق (SD)</th>
<th>استاندارد (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۸۸</td>
<td>۰/۷۱</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۸۶</td>
<td>۰/۷۸</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۸۴</td>
<td>۰/۷۲</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۸۷</td>
<td>۰/۷۷</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۸۸</td>
<td>۰/۷۸</td>
</tr>
<tr>
<td>۶</td>
<td>۰/۹۲</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>۷</td>
<td>۰/۹۶</td>
<td>۰/۸۹</td>
</tr>
<tr>
<td>۸</td>
<td>۰/۹۹</td>
<td>۰/۹۰</td>
</tr>
<tr>
<td>۹</td>
<td>۱/۰۲</td>
<td>۰/۹۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱/۰۵</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱/۰۸</td>
<td>۰/۹۳</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱/۱۱</td>
<td>۰/۹۴</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱/۱۴</td>
<td>۰/۹۵</td>
</tr>
<tr>
<td>۱۴</td>
<td>۱/۱۷</td>
<td>۰/۹۶</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱/۱۹</td>
<td>۰/۹۷</td>
</tr>
<tr>
<td>۱۶</td>
<td>۱/۲۲</td>
<td>۰/۹۸</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱/۲۴</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱/۲۶</td>
<td>۱/۰۰</td>
</tr>
<tr>
<td>۱۹</td>
<td>۱/۲۸</td>
<td>۱/۰۱</td>
</tr>
</tbody>
</table>

* حروف مشترک در جدول معادل میانگین‌ها می‌باشد. ** نشان می‌دهد وجود اختلاف معنی‌دار بین میانگین‌داده‌ها (تیمارها) در سطح ۰/۵ درصد است. (p<0/05).

** نشان‌دهنده وجود اختلاف معنی‌دار بین میانگین داده‌ها (تیمارها) در سطح ۰/۰ درصد است. (p<0/01)
خون ماهی آب شیرین دارای فشار اسمری معادل با محلول کلرید سدیم با غلظت ۷ گرم بر لیتر است. با نتیجه‌ی دریافتی این آزمون، نسبت به میزان رسیده به میزان ۹/۰۰% و ۸۴/۵۶% و ضربی رشد وزن به میزان ۱/۰۰% و ۹۶/۵۱% نسبت به تیمار آب شیرین گردید. همچنین راندمان تبدیل غذا در شوری ۱۰ و ۲۰ گرم در لیتر به ترتیب به میزان ۱۹/۵۲ و ۲۵/۵۶% نسبت به تیمار آب شیرین کاهش یافت که اختلاف معنی‌داری را نشان می‌دهد.

(۵/۰۰) به نظر می‌رسد که یکی از دلایل کاهش شاخص‌های رشد ماهیان در شوری ۱۰ و ۲۰ گرم در لیتر نسبت به ماهیان آب شیرین و همچنین کاهش راندمان تبدیل غذا در آنها با وجود افزایش میزان مصرف انرژی باید تنظیم اسمزی ماهیان بوده است.

این رقابت‌ها بخش آمده از گذاشتن به مصرف رساندن و از یک سو باعث کاهش راندمان تبدیل غذا و از سوی دیگر باعث کاهش میزان رشد ماهی شود. بدیهی است افزایشی که در این زمینه مصرف می‌شود به شیب غلظتی بین خون ماهی و آب برستگی دارد. [۲۴۰] محققین مانند هانگ [۲۴۰] در سال ۲۰۰۷ چندین اظهار می‌دارند که ماهی‌ها در مقایسه با حیوانات خشک‌کیزی قدرت متابولیت‌ها بیشتری با تغییرات شوری مربوط به نرخ میتوانند خود دارند [۲۲۱]. مطالعه منتشر شده توسط و هانگ در سال ۲۰۰۸ نشان می‌دهد که افزایش مصرف ترومیل ماهی در تنظیم اسمز در بینگ‌افراش مصرف انرژی کاهش است که عملی از طریق کروپریکرات‌ها تأمین می‌شود. میزان مصرف انرژی به میتواند نسبت به میزان تغییر فشار اسمزی مربوط به زمان مصرف اتصالی ماهی [۲۸۳] نشان داده نشده که ماهیان در تغییرات در مصرف انرژی به میزان ۳۸ و ۳۳ گرم در لیتر پروپش دادند. نتایج حاصل از تحقیق آنها نشان داد که با افزایش میزان شوری از صفر (آب شیرین) تا شوری ۲۲ گرم در لیتر در صد با کاهش و میزان تلفات افزایش می‌یابد. میزان لطفات از صفر در تیمار آب شیرین ۳۲ درصد در شوری ۲۲ گرم در لیتر افزایش می‌یابد. همچنین با افزایش شوری میزان رشد کاهش یافته. اندکی ماهیانی که در آب شیرین پروپش دیده بودند. زمان‌های کاهش رشد کردن افزایش شوری به شوری ۲۲ گرم در لیتر تاثیر بیان‌پذیر بر رشد ماهیان قزلالای رنگی‌کمان دارد [۲۷۱]. علاوه بر این طول دوره زیایداری با آب شور نیز از دیگر عوامل مؤثر در میزان بقا و مصرف انرژی (راندمان تولید) محسوب می‌شود.
نیاز دارد تا ماهی بتواند خود را با شرایط جدید سازگارت کند و در این شرایط از فعالیت‌های بیولوژیک و رشد مناسب برخورد گردد. به طوری که در این تحقیق ماهیان قزلالای جوانی در شوری‌های 30 و ۴۰ گرم در لیتر قرار گرفتند پس از یافته دانه سازگاری تلف شدند.

در خصوص تغییرات سطح هورمون‌ها در بلافاسا خون ماهیان تحت آزمایش باید خاطر نشان کرد که کورتیزول نش فیزیولوژیک مهمی در شرایط استرس از جمله تنظیم کلسترول خون دارد. به طوری که در شرایط استرس محیطی از قبل افزایش شوری آب، میزان کورتیزول خون افزایش می‌یابد که متعاقب آن افزایش غلظت گلوكز خون ماهی و افزایش متوسط فشار خون را در می‌آورد با استرس تحمیل شده به دنبال دارد [۱]. بنابراین افزایش میزان کورتیزول و گلوكز خون در این آزمایش در مورد ماهیانی که تحت شرایط آزمایش شوری آب قرار داشتند می‌تواند ناشی از دانه سازگاری (۱ روز) به بستری‌های فوق باشد.

همچنین کورتیزول به عنوان یک هورمون تطبیق دهنده سیستم فیزیولوژیک ماهی با آب شور است، نشان داده شده است که مقاومت ماهی نسبت به آب شور در اثر تیمار با کورتیزول افزایش می‌یابد [۲۰]. تحقیقی که در مورد آزاد ماهیان انجام شده نشان می‌دهد میزان کورتیزول بالاسمای خون در زمان هورسپاری به دریا باید تبدیل از مرحله پا به اسکروپی می‌شود (به ماهیهای هورسپاران در به دریا). افزایش سطح که خود بینگ اندوران سازگاری است. به هر حال مطالعات بیشتری مورد نیاز است تا وسین ماهی قزلالای در دهانه سازگاری آن را در بستری‌های مختلف تعیین گردد. با توجه به دست‌بندی ۱۰ روزه سازگاری در تحقیق حاضر به نظر می‌رسد که ماهیان فرست کاری برای تنظیم اسکروپی پیدا نکرده‌اند و این موضوع یک بروز استرس و در نتیجه صرف انرژی زیاد برای ادامه حیات گردیده که نهایتا کاهش رشد ماهی را به دنبال داشته است؛ به این مثال سلول‌های کلاسیک آیشک که نش می‌شوند در تنظیم اسکروپی در زمان انتقال ماهی به آب اینجا می‌کند، به دویده زمانی طولانی برای کاهش و رشد نیاز دارد و به همین دلیل در زمان انتقال آزاد ماهیان نظر ماهی آزاد اقیانوس اطلس و ماهی قزلالای سرگرم‌کننده به دریا (برای اهداف بیوریشن در قفس‌های شناور) سازگاری ماهی با آب شور در دهانه سازگاری بالای شوری می‌پذیرد [۳۹]. بر اساس بررسی‌های موسس و همکاران در سال ۱۹۸۹ نیز میزان کورتیزول بالاسمای با شروع فرآیند تطبیق با غلظت‌های بالایی شوری محیط افزایش می‌یابد [۲۸]. بنابراین این محققان نیز با نتایج تحقیق حاضر مطابقت دارد. بر اساس بررسی‌های انجام شده توسط بارند [۱۰] و همکاران در سال ۱۹۸۹ استرس یک فرآیند محکم در مورد انرژی‌ها و میزان متابولیسم و انتقال اکسیژن را افزایش می‌دهد [۱۰]. کورتیزول افزایش بینگ اندوران در طول استرس ممکن است در تولید سریع گلوكز باعث می‌شود. افزایش میزان گلوكز خون ماهیانی که در شوری بالایی نگه داشته شده نسبت به شوری‌های در ماهیان آب شور افزایش نیز با یافته‌های این تحقیق مطابقت دارد. تحقیقات انجام شده بیشتر و همکاران در سال ۲۰۰۹ نیز گزارش می‌کنند که ماهیان قزلالای قطب‌ها با ۱. Parr ۲. Smolt ۳. Salmo salar ۴. Cage culture ۵. Mommsen ۶. Barton ۷. Ojima ۸. Salvelinus alpinnes
همهورمون‌های رشد و کورتیزول را در دو سویه مهاجر آب‌شیرین و مهاجر آب شور را بر قدرت سازگاری آنها به شوری آب بررسی کردند. این محققان ۱۶ و ۲۸ روز پس از تیمار کردن ماهی‌ها با هورمون رشد و کورتیزول آنها را به مدت ۲۴ ساعت در معرض استرس شوری (آب دریا به شور ۳۵ گرم در لیتر) قرار دادند و بیان داشتند که افزایش سطح هورمون‌های مذکور باعث افزایش قدرت سازگاری بسیار ماهی‌ها به آب شور شده و این ویکت سازگاری در سویه مهاجر آب‌شیرین این گونه مشهودتر است. این همچنین اظهار می‌دارند که کاهش قدرت سازگاری سویه‌های مهاجر آب‌شیرین این گونه می‌تواند به دلیل کاربرد بودن سطح ترشح این هورمون‌ها در سویه‌های آب‌شیرین باشد [۳۳]. در تحقیق دیگری که گراول و همکاران در سال ۲۰۰۹ انجام دادند تأثیر داروی چرب‌سازانی بر ماهیان مراکز کورتیزول و افزایش میزان سازگاری ماهی قزل‌الا با آب شور بررسی و نشان دادند که تیمار این گونه با این دارو، افزایش سطح کورتیزول خون و افزایش مقاومت آنها در برابر آب شور را به نتیجه‌گیری است.

در تحقیق حاضر ماهیان جوان قزل‌الا به، که در معرض شوری ۱۰ و ۲۰ گرم در لیتر قرار گرفتند میزان کلر و اسیدولاریته خون آنها افزایش یافت (P<0/05). افزایش میزان کلر و اسیدولاریته خون نتیجه قرار گرفت. مهم‌تر این ماهیان آب‌شیرین مانند قزل‌الا، از این نگرانی‌ها دارند که برای نمونه کلر در شرایط آب شور و به منظور تطبیق آنهاً به این شرایط است. آزاد ماهیان مهاجر از دریا به رودخانه مانند ماهی آزاد اقیانوس اطلس در مقایسه با آزاد ماهیان رو و مانند قزل‌الا رنگی کم ماهیان ماهی‌شناسی بالا تغییر می‌پذیرد و افزایش میزان کلر خون دارد. در تحقیقی که مکسکورمیک و همکاران در سال ۲۰۰۸ انجام دادند نشان دادند که تیمار ماهی آزاد اقیانوس اطلس به مدت ۱۴ روز با کورتیزول باعث افزایش فیزیولوژیکی کورتیزول خون شده و به نتیجه‌گیری کردن کلرینیتی افزایش یافته و توانایی آن ماهی در جلوگیری از تغییرات شدید کلرینیتی خون افزایش می‌یابد. به دنبال این گونه افزایش می‌یابد [۱۳]. در صورتی که در تحقیق حاضر به نظر می‌رسد که افزایش سطح کورتیزول خون تنان است از تغییرات شدید کلرینیتی خون جلوگیری کند. از همین رو با افزایش میزان کلر خون بخصوص در شوری‌های زیاد (۳۰ و ۴۰ گرم در لیتر) موجب بروز تلفات و مکر ماهی‌ها شده است. تحقیقات تیلبرن و همکاران در سال ۲۰۰۹ بر روی سویه‌های مهاجر آب‌شیرین و مهاجر آب شور ماهی آزاد اقیانوس اطلس در طول سال و همچنین در مدت عادت‌نگری به آب دریا در مرحله بچه ماهی رهسیر شونده، نشان داد که سطح کورتیزول بالا در فصل بهار، به دلیل درمان رهسیری آنها به دنبال در ماهیان مهاجر افزایش یافته و تغییری نشان نمی‌دهد. این محققان خاطرنشان می‌سازند که کمی میزان کورتیزول در پلاسمای خون ماهیان مهاجر آب‌شیرین خود می‌تواند دلیلی بر نمایش آنها در عادت‌نگری به آب شور دریا باشد [۳۲].

بر اساس یافته‌های ودامیر اف[1] در سال 1994 نحوه تنظیم غلتکی بین‌ها در شرایطی که ماهی در محیط‌های با شوری متفاوت قرار می‌گیرد، برای هر گونه منفعت و اختصاصی است. بعضی از ماهی‌ها که دانه‌های بسیار ماهی‌ها و همکاران

بررسی میزان رشد و برخی شاخص‌های بیوشیمیایی خون ماهیان جوانان... می‌توانند از این سیستم استفاده کنند. این موضوع در حفاظت از گونه‌های مقاوم به تغییرات شوری اهمیت دارد. این اتفاق در تحقیقی که بر روی ماهیان به سالشانک شکسته هستند. از این نتایج، ماهیان مقاوم به شوری استاندارد شده است، نشان داده شده که این ماهی می‌تواند شوری‌های از ۶۰ گرم در لیتر را بدون تغییر عده در کلرولایت‌های خون تحمل کند [۲۹].

در مورد ماهی قزلآلا درکیک فک که یک گونه کاملاً مقاوم نسبت به تغییرات شوری نیست، بعنوان میرسد که وضعيت تطبیق با آب شور متفاوت است.

جنگی که از تاثیج ان هزینه برای، ماهیان جوان قزلآلا این با قرار گرفتن در شرایط آب شور (شورى به ۱۰ و ۲۰ گرم در لیتر) با تغییر عامل‌های خونی مانند اس몰اریت و کلرکرنی مواجه می‌شود و سعی می‌کند تا به مصرف بیشتر انرژی افزوده را افزایش دهد. کاهش شاخص‌های شوری (وزن نهایی، میزان رشد رازه و وزن ریزه) در رشد و سبکی را کاهش می‌دهد. کاهش رشد و سبکی را کاهش راندمان تبدیل غذا و درصد بیشتری نتیجه طبیعی مصرف بیشتر انرژی در چنین شرایطی است. با آفت‌شناسی شوری آب به یک گرم روز در لیتر و سریب شرایط یک گرم روز در لیتر دیگر ماهی هنگامی با مصرف انرژی بیشتری نیز قادر به جلوگیری از ورود بیماری اضافی آب به محیط خون نیسته و بدون ترکیب اسмолاریت و کلر خون به سرعت آفتابی به قدر و در چنین شرایطی تلفات دسته‌جمعی ماهی‌ها افزایش یافته است.

هرمون‌های تیروئیدی در کنترل رشد، متابولیسم و تنظیم اسپرزی ماهیان اهمیت خاصی دارند و اغلب در ارتباط با سایر هورمون‌ها مانند کورتئزول، این اثرات را باعث می‌کند [۱۹]. شاخص‌های شدت‌ترین اثر هورمون‌های تیروئیدی، تحریک میزان متابولیک به‌کار آمد است که این موضوع از نظر آن‌ها در فردان تنظیم اسپرزی قابل استنباط است. مدارک بیشتر برای آثبات دخالت هورمون‌های تیروئیدی در تنظیم اسپرزی بیشتری از شرط‌های که در آن ماهی‌ها به شوری‌های مختلف منتقل و تغییرات مولفولوزیک غده تیروئید و سطوح پلی‌امباین (T۳) و (T۴) اندازه‌گیری شده [۸] به‌دست آمده است. در آزاد ماهیان، تنظیم شده است که به هنگام مهاجرت به آب شور میزان تیروکسین‌های آن‌ها افزایش می‌یابد [۳۷]؛ زیرا سوخت و ساز گلکوز‌ها و افشار میزان گلکوز‌خون نیز تحت تأثیر هورمون‌های تیروئیدی قرار دارد. هورمون‌های تیروئیدی موجب هیدرولیز هرمی‌ها، کلرکرنی و پروتئین‌ها را تحت تأثیر قرار داده، همچنین سوخت و ساز کربوهیدرات‌ها را را افزایش می‌دهند [۲]. این پدیده منجر به افزایش گلکوز‌خون می‌شود [۳۳]. همچنین تحت تأثیر این هورمون‌ها سریع‌تر اکسیده می‌شود و این عمل منجر به افزایش میزان متابولیسم پایه خودآورش شده [۲]. در حد و شدت چنین تغییراتی می‌تواند متاثر از اندورس و دورة‌زمانی سازگاری

۳۲۷
ازد ماهیان باشد. افزایش تبادل گیاهی باعث افت تعداد ماهیان در شرایط مختلف تولید شده در این تحقیق نیز احتمالاً باعث گام اولیه داشته باشد که در نهایت ماهیان با حالت موجود در بیش از گرم در لیتر هوا مورد اطمینان قرار می‌گیرند.

نتیجه‌گیری نهایی

با توجه به نتایج این تحقیق اگر چه امکان پرورش ماهیان جوان ۲۰۰ گرم در شرایط بهتری نیز در اکثر مواقع بزرگی برای انتقال به شرایط بهتر، می‌تواند تولید به صورت معنی‌داری کامل می‌یابد.

تشکر و قدردانی

این تحقیق با پشتیبانی مالی معاونت پژوهشی دانشگاه خلیج فارس و با همکاری گروه شیلات دانشکده کشاورزی و موانع طبیعی این دانشگاه اجرا شده است. از کارشناسان آزمایشگاه گروه شیلات، اقایان مهندس جواد پاپری مدیر و مهندس مصطفی رمضانی بیور تشكر و قدردانی می‌شود.

منابع

۱. سالنامه‌ای اسیری سازمان شیلات ایران، انتشارات سازمان شیلات ایران، دفتر برنامه و بودجه، گروه آمار و مطالعات توسیع شیلاتی (۱۳۷۹-۱۳۸۷) ۵ صفحه.
۲. مهندش شکری، مهندسی، مهندسی، سیستان کارشناسی ارشد، دانشکده موانع طبیعی دانشگاه تهران (۱۳۸۱) ۳۷ صفحه.
۳. میادی مهندسی، مهندسی و بیماری، عملکرد دیواری در سال ماهی قزل‌آلا رنگ‌یزکمان، انتشارات اصلانی (۱۳۸۱) صفحه.
۴. محمود نفیسی، شریف زاده، منصور، دارویی، دارویی، گزارش نهایی تحقیقاتی در استخراج‌های خاصی از بیمار، بیمار و بودجه، گروه آمار و مطالعات توسیع شیلاتی (۱۳۸۷) ۵۵ صفحه.
۵. محمود نفیسی، زین‌العابدین، یحیی، ویژگی‌های چندگانه در انتقالات سازمان تحقیقات، آمونیاک و ترویج (۱۳۸۵) ۴۲ صفحه.
۶. محمود نفیسی، زین‌العابدین، یحیی، ویژگی‌های چندگانه در انتقالات سازمان تحقیقات، آمونیاک و ترویج (۱۳۸۷) ۴۲ صفحه.

۶۳۸

30. MSTAT-C Russe 11 D. freed, "MSTATC Director, Scott P, Eisensmith, Deputy, Director crop and soil Science", Department Michigan State University.

