تاثیر شرایط نوری و فاکتور pH
در بهینه‌سازی کشت ریشه‌های گیاه

ژیلا قلی‌زاده، فرانسواز برنارد: دانشگاه شهید بهشتی، دانشکده علوم زیستی

چکیده

هدف از انجام این برسی و تحقیق تعیین شرایط بهینه‌سازی کشت ریشه گیاه گلنگ به‌منظور دستیابی به مقاپر بیشتر ریشه است که امکان دارد توانایی چشپری یا حفاظت از ریشه‌های کوچک و گیری از نیازهای مختلف داشته باشد. از انجاکه گلنگ گیاهی با قوای هستنشده و حفاظت از آنها یکی از نیازهای مختلف شرایط کشت ریشه است که برای استفاده و در جمله شرایطی که زیر این مقاله شرایط نوری و تازگی اصلی و حجم ریشه‌های کوچک به‌منظور مورد تحقیق قرار گرفت. شرایط پایداری که در این مقاله به صورت تیمار نورد و تازگی تاریکی و MS قرار جست که در دو اسکای جهانی جنرال یا رشد کرده در محیط جامعه، MS به محیط مسابقه این انتقال داده شده و پس از ریشه‌گاه پیش و واکنش‌های مختلف تحت تیمار نورد و تازگی و فاکتور pH قرار گرفت. روش از 21 روز، زنن تراخت و ریشه‌گاه مقدار رنگ‌دانه‌ها فتوسنتزی (کارولفیتول)، محتوی این کارولفیتول و کارولفیتول و مقدار رنگ‌دانه‌ها مخصوص گیاه (رنگ‌دانه‌های فتوسنتزی در طول موج 517 نانومتر، رنگ‌دانه‌های زرد در طول موج‌های 343 و 393 نانومتر) در نمونه‌های تحت تیمار محاسبه شد. می‌توان به دست آورده به وجود اندازه‌گیری شده در نمونه‌های هر دو گلگاز شدید بود. علاوه بر این نتایج بدست آمده از شرایط‌های متفاوتی که برای تیمار نورد و تازگی که به جهانی جنرال به تاریکی و R نمونه‌های مختلف گیاهی داشته است و در مورد تیمار دوم یعنی فاکتور pH گیاه گلنگ نسبت به تمامی گسترش‌های مورد استفاده در راستای افزایش رشد ترکیبات سازگار بوده است.

مقدمه

گیاه گلنگ با نام علمی کارتاموس تینکتورس، Cardamomum Tinctorum، نام رایج سافلور، Safflower، وزن تراخت و حکمی، R. Murashige & Skoog، Murashige & Skoog و A. Asteraceae، Asteraceae، Tubuliflorae، Tubuliflorae و E. Carthamus tinctorius L، Carthamus tinctorius L، S. Safflower، Safflower، A. Asteraceae، Asteraceae، Tubuliflorae، Tubuliflorae

دریافت 8/5/1418

تأثیر شرایط نوری و فاکتور pH در بهینه‌سازی کشت ریشه‌های گیاه کلنگی

زاول قلی‌زاده، فرآیند بردار

روایت بافت. این گیاه به‌طور طبیعی در نواحی مدیترانه، شمال شرقی آفریقا، جنوب غربی آسیا تا هند می‌روید [4]. روغن دانه‌های این گیاه به دلیل قاروتیون اسیدهای چربی ضروری غیراسبیک و پایین بودن سطح اسیدهای اشباع به عنوان سایر گیاهان مصارف خوراکی گسترده‌ای دارد. برگ‌ها و ساقه‌های آن می‌توانند به صورت خام یا پخته مورد استفاده قرار گیرند. روغن زرد حاصل از گل‌های نیز به عنوان چاشت زعفران به‌کار می‌روند. این گیاه خواص دارویی قابل توجهی دارد که شامل: کاهش بیماری‌های مربوط به انسداد شریان‌های قلب، کاهش سطح کلسسترول، انتهای باکتریالی، ضدالتهاب، درمان ورم‌های دهان و لثه، محلول، محرک سلسله اعصاب و... است. شایان ذکر است که رنگ‌دانه‌های طبیعی (زرد و قرمز) این گیاه در صنعت استفاده زیادی می‌شود [20, 21]. [41]. جدول تقریباً از 60 کشور جهان کشت می‌شود و سطح زیر کشت آن در دنیا سال 2005 بیش از 50 میلیون هکتار بوده ولی این سیزه‌های کشاورزی بدون مصرف سلول‌‌های خرسان اثر انگیز کننده، زنجان و اصفهان کشت می‌شود [2]. امری که در اینجا به بیان کامل و در مورد از کشت رنگ‌دانه‌های طبیعی که ساخته‌اند از طریق رنگ‌دانه‌های طبیعی بیماری‌ها و به‌رغم استفاده به کار می‌روند. کشت‌های قراردادی و مرسوم‌گیانه نیز تحت تأثیر شرایط منشا شریان‌های قلبی و هوازی، آفت‌ها و در دسترس بودن زمین برای کشاورزی است. بنابراین کلت کشت‌های طبیعی مورد نیاز مختلف منظر قرار گرفته است [31]. کشت‌های سلول، بافت و اندام‌های گیاهی به عنوان روشی برای تولید ترکیبات مورد توجه مصرف، بسته‌های زیستی، پلاستیک، حفاظت کننده، آرایشی، رنگ‌دانه‌های طبیعی و ترکیبات قبیل فعال هستند. گروه‌های اصلی متابولیت‌های تانیه شامل ترین‌ها، خون‌ها و ترکیبات از حسین‌ها [22]. گل‌گرد گل‌گرد پپتگیانه‌های زرد و قرمز می‌کنند پپتگیانه‌های کارامین نام دارند و پیمک زرد شامل: پیش‌ساز کارامین پرکارامین، سافلومین A، سافلومین B، هیدروکسی‌سافلومین A، است که به کار تندیسی نیز مشهورند. همه این ترکیبات ساختار-هـ-گلوکوپپتگولنی کوئینوکلیک‌ها [23]. [41]. را با حال کشت که گیاه‌های ترکیب ترکیبی نیز از گل‌های شریانی صورت گرفته و اغلب از نظر استرس محفظی و مواد مورد نیاز مغزی مورد بررسی بوده است [7]. [24]. پژوهش‌های این نیز درخصوص کشت سلول و کالوئین‌گل‌گردن به منظور تولید گل‌های قاروتیون اسیدهای قاروهای زرد و انجام شده است [18, 19, 20, 21]. [41]. در این مقاله به منظور دستیابی به شرایط بهبود کشت ریشه‌های گل‌گرد و تولید ترکیبات مهم متابولیت‌های نیز به موجود مشاهده‌ای جوان بانی زرد کرده‌در محیط جامد MS با محیط مایع فاکورم (که از دیگر مزیت‌های قابل ذکر این نوع کشت است) انتقال یافته و پس از رشد و یش‌زاپی‌بی‌بیشتر در این محیط مورد تیمار‌های مورد
تأثیر شرایط نوری و فاکتور pH در بیمه‌سازی گیاه گلرنگ

کشت بافت

این مرحله شامل 5 بخش تهیه بذر گیاه، استریل کردن، کشت بذرها، انتقال قطعات جدایی‌شده به محيط جامد و انتقال رشد‌های حاصل از آنها به میکرو آماده است. بنر گیاه گلنگ (رقم بهار اصفهان) از موسسه اصلاح و تهیه نهال و بذر وزارت جهاد کشاورزی تهیه و برای تحقق استفاده می‌شود. برای استریل کردن بذرها از طریق که به دمای 115 درجه سانتی‌گراد به مدت 30 دقیقه اتوکلاو شدند، استفاده شد. این استریل بذرها با کلرید جیوه (HgCl2) درصد به مدت 8 - 10 دقیقه ضدعفونی شدند، سپس با ابر مقطع استریل 3bar شسته و در میوه کشت MS [28] جامد حاوی یک گرم ساکاروز و آگار 8/7 درصد به تعداد 5 عدد با فاصله از بلندای کشت گلنگ deter و بعد از بستن درب شیشه‌ها با سلفون در اندازه کشت تحت شرایط نوری 16 ساعت روزانه و 8 ساعت تاریکی، شدت نوری 1500 لوکس و دمای 25 درجه سانتی‌گراد به مدت 10 روز نگهداری شدند. از سایه‌های جوان ایجاد شده به عنوان منبع جدایی‌شده استفاده شد. در گام بعدی ساقه‌های جوان با منظور تولید رشد میکرو جامد با خصوصیات مشابه و بدون هورمون قرار گرفتند. رشد‌ها در این میکرو‌شقرو به ایجاد افزایشات متعدد و ریشه‌ای به‌طور کردن و پس از واکنش‌های انجم شده تحت تیمار‌های نور تاریکی و فاکتور pH واقع شدند.

تیمارهای اعمال شده

به‌منظور بررسی تأثیر شرایط مختلف بر روی به‌معنی‌سازی کشت ریشه گیاه گلنگ برای دستیابی به مقایسه بیشتر متابولیت‌ها به جمله رنگ‌دانه‌های گیاه که شامل کارامائی (رنگ‌دانه قرمز در طول موج 517 نانومتر) و نتایج استریل کردن در طول موج 321 نانومتر)، ساکاروز زرد (رنگ‌دانه زرد در طول موج 493 نانومتر) هستند و همچنین مقایسه کلری‌های گیاهی و کارامائی‌ها ریشه‌های با سطح آماده تحت تأثیر تیمار نور و تاریکی و pH واقع شدند. تعداد تکرار در خصوص هر دو تیمار 4 بار بوده است.

۵۲۷
1. تیمار نحو و تاریکی: در این تیمار ریشه‌ها با وزن اولیه 5/0 گرم در شیشه‌های که حاوی مقدار مشابه pH 4 مونت کرده و دردیگری به‌طور متوسط با فول پوشیده شده بودند. شدت نوری 2300 لوس واقع شده و گروهی دیگری به طور مکانیکی با فول پوشیده شده بودند.

2. تیمار pH: pH دو گروه از گستره pH 4/5 و pH 5/0، 3 گستره مشابه (5/0) بود استفاده شد. ریشه‌ها با وزن اولیه 5/0 گرم در شیشه‌های که حاوی مقدار مشابه pH 4 مونت کرده و دردیگری به‌طور مکانیکی با فول پوشیده شده بودند. شایان ذکر است که با تغییر مقدار روسب می‌تواند تغییراتی در pH واقع شند.

بررسی‌های پیوستمایی

1. اندازه‌گیری وزن تر و خشک: ریشه‌های موجود در هر شیشه به دقت با ترازو وزن شده‌اند و وزن تر انها محاسبه شد و سپس با ترازوی خشک کن ساراتورسیس مدل 40 وزن خشک آنها نیز محاسبه شد.

2. اندازه‌گیری میزان رنگ‌دانه‌ها (کارتاَمین، سافلورزرد، هیدروکسی‌سافلور) A: استانداردهای کارتاَمین، سافلورزرد و B، هیدروکسی‌سافلور A برای آنالیز اسکیمومتری از شرکت انستیتیتو رنگ‌دانه سافلور تیانجین چین خریداری شد [25].

1-2. روش استخراج: رنگ‌دانه‌ها در حاله متنال استخراج شدند. 1/0 گرم از ریشه مربوط به هر تیمار به PT1200C لوله ایندروف ریخته شده و 2 میلیلیتر متنال به آن اضافه شد و با دستگاه هموتروژنیزاتور مدل C مدتها 5 دقیقه در دورهای 2x و 3x بر روی بخ هموئزن شدند.

2-2. روش سنجش: عصاره‌های حاصل به مدت 24 ساعت در دمای 4 درجه سانتی‌گراد تبخیر شدند و سپس با دور 1000 rpm به مدت 20 دقیقه سانتریفیژ گردیدند. روشنای حاصل به دقت جدا شده و بر اساس نوع رنگ‌دانه جنس آن در طول موج خاص خواوید شده و در نهاية غلظت آنها با توجه به منحنی استاندارد به دست آمد. منحنی استاندارد از طریق تهیه محلول هایی با غلظت های 0.5، 5، 50، 100 و 150 میلی‌گرم بر لیتر از استانداردهای خریداری شده از شرکت انستیتیتو رنگ‌دانه سافلور تیانجین چین در مات آل و محاسبه جنب محلول‌ها در طول موج‌های مربوط به هر رنگ‌دانه، حاصل شد. جنس رنگ‌دانه کارتاَمین در طول موج 303 nm اسلفورزرد B در طول موج 341 nm و رنگ‌دانه هیدروکسی‌سافلور A در طول موج 517 nm.

1. Sartorius 2. Safflower Pigment Institute of Tianjin, China
3. انتخاب رنگدانهای فتوسنتزی کلروفیل a و b (کلروفیل، كل کلروفیل) و کارتنویبیها: انتخاب مقدار رنگدانهای فتوسنتزی و کارتنویبیها با روشنایی چتریتف. انجام شد.

3-1. روش استخراج: برای استخراج رنگدانهای فتوسنتزی از حلال استون 80% استفاده شد. 1/0 گرم از ریشه مرطوب به هر تیمار در لوله اندرف ریخته شده و 2 میلی لیتر استون به آن افزوده و هموار گردید.

3-2. روش سنگش: عصاره‌های بسته آمده به مدت 24 ساعت در دمای 4 درجه سانتی‌گراد تگیداری شده و سپس با دور rpm 3000 به مدت 10 دقیقه سنتریفیوز شدند. از محلول رنگ انتخاب گردید که رنگدانهای فتوسنتزی استفاده شد. رنگدانهای فتوسنتزی استخراج شده با استفاده از سولفات فسفات شیمیدز مدل uv-1601-pc در طول موج‌های 436/2، 444/8 و 670 نانومتر انتخاب گردید. مقدار هریک از رنگدانه‌ها بر حسب قارسی در یک متر مربع محاسبه شد.

\[
\text{Chla} = \frac{1225}{A_{663/2} - 2798} \times \frac{A_{646/8}}{A_{663/2}}
\]

\[
\text{Chlb} = \frac{2121}{A_{646/8} - 501} \times \frac{A_{663/2}}{A_{663/2}}
\]

\[
\text{ChlT} = \text{Chla} + \text{Chlb}
\]

\[
\text{chl} = \frac{1000}{\text{A470} - 182} \times \text{chl} - 85/02
\]

4. آنالیزهای آماری: آزمایش‌های در قالب طرح‌های کاملاً تصادفی (CRD) انجام شد. تعداد تکرارها: 3 تعداد حاصل رد. از آنالیز واریانس (ANOVA) و برای مقایسه دو به دو آن‌ها، از آزمون LSD استفاده شد. آنالیز آماری به کمک نرم‌افزار SPSS و با اطمینان 95% صورت گرفت و نمودارها با استفاده از نرم‌افزار اکسل در رسم شد.

نتایج

دستیابی به کشت ریشه گیاه گلرنگ: بذرهای گیاه گلرنگ که با کاردی جبوا صنفی عقوقی شدند، به مدت 10 روز در محیط گرشفته، حدود 90 درصد بذرها جوانه‌زدند. از ساختاری حاصل از جوان‌هایی بذر برای روش‌هایی استفاده شد. به گونه‌که ساختارها در محیط MS بید و بدون هورمون و در شرایط کنترل شده به مدت 2 هفته واقع شدند (شکل 1 و 2).

1. Lichtenther 2. Shimadzu 3. Excel
شکل 2. ریشه‌ای ساقه‌های حاصل از جوانزئی

شرايط قابل توجه كشي ريشه: كشي ريشه گل‌رگنگ در محیط مائع MS با حجم بسیار کم ۳ ml و شرايط کاملا ثابت و با یا بدون استفاده از دستگاه‌های شیکر و همچنین بدون هیچ‌گونه هورمونی صورت گرفت.

بررسی تیمارهاي موتور بر وزن تر و خشک ريشه‌هاي گل‌رگنگ

۱. اثر شرايط نور و تاريكي بر وزن تر و خشک ريشه‌ها: نتایج بهدست آمده در خصوص انالیز وزن تر و خشک ريشه‌ها تحت تأثیر تیمار نور (۲۰۰ و فتوبرود ۱۶ ساعت رشنایی) و تاریکی بعد از ۲۱ روز در جدول ۱ آمده است.

جدول ۱. نتایج حاصل از تیمار نور و تاریکی بر رشد ریشه‌های گل‌رگنگ پس از ۲۱ روز

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Fw(g) mean ± SE</th>
<th>Dw(g) mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ثروت (به طور کامل با فوتیوجود)</td>
<td>۴</td>
<td>۲.۲۶ ± ۰.۰۲</td>
<td>۰.۰۸ ± ۰.۰۴</td>
</tr>
<tr>
<td>تاریکی (به طور کامل با فوتیوجود)</td>
<td>۴</td>
<td>۲.۱۳ ± ۰.۰۷</td>
<td>۰.۴۷ ± ۰.۰۱</td>
</tr>
</tbody>
</table>

نمودار 1. تأثیر تیمار نور و تاریکی بر وزن تر ریشه‌ها. هر تیمار ۴ بار تکرار شده و اختلاف موجود بین تیمارها با توجه به جدول آنالیز واریانس ارائه شده معنی‌دار نیست (p > ۰.۰۵).

نمودار 2. تأثیر تیمار نور و تاریکی بر وزن خشک ریشه‌ها. هر تیمار ۴ بار تکرار شده و اختلاف موجود بین تیمارها با توجه به جدول آنالیز واریانس ارائه شده معنی‌دار است (p < ۰.۰۵).

۵۳.
تانی تأثیر شرایط نوری و فاکتور pH در بهینه‌سازی کشت ریشه‌های گیاه گل‌نگ

شکل 3. رشد ریشه در تیمار نور و تاریکی پس از 21 روز شرایط نوری (Lux) و تاریکی (ظرف کشت به طور کامل با فولک پوشیده) است

چنانچه مشاهده می‌شود بیشترین میزان رشد و نیز وزن ریشه و خشک ریشه‌های گیاه گل‌نگ مربوط به شرایط نوری بوده است. که میانگین وزن تری معادل 1.32 و میانگین وزن خشکی معادل 0.41 گرم را حاصل کرده است. در حالی که شرایط تاریکی میانگین وزن تر و خشکی به ترتیب 0.72 و 0.66 گرم است و به لحاظ آماری اختلاف میانگین موجود در وزن خشک نمونه‌های منجر به شرایط نوری معنی‌دار است.

در نتیجه شرایط نوری منجر به افزایش بیومس محصول شده و شرایط بهتری را ارائه می‌دهد.

اثر فاکتور pH بر وزن تر و خشک ریشه: برای تعیین تأثیر فاکتور pH بر مقدار رشد ریشه از 7 گستره pH که شامل 3 گستره اسیدی (4.0, 4.5, 5.0) و 3 گستره باری (5.5, 6.0, 6.5) و pH خشک از میانگین (5.7) بود استفاده شد. تعداد تکرار در هر گستره 4 بار بوده است. نتایج حاصل از آنالیز وزن ریشه در مقدار مختلف pH در جدول 2 آمده است.

جدول 2. تأثیر تیمار pH بر رشد ریشه‌های گیاه گل‌نگ پس از 21 روز

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Fw(g) mean ± SE</th>
<th>Dw(g) mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>12</td>
<td>1.94 ± 0.12</td>
<td>1.78 ± 0.09</td>
</tr>
<tr>
<td>2/2</td>
<td>12</td>
<td>2.14 ± 0.12</td>
<td>2.07 ± 0.12</td>
</tr>
<tr>
<td>3/2</td>
<td>12</td>
<td>2.24 ± 0.12</td>
<td>2.17 ± 0.12</td>
</tr>
<tr>
<td>4/2</td>
<td>12</td>
<td>2.34 ± 0.12</td>
<td>2.27 ± 0.12</td>
</tr>
<tr>
<td>5/2</td>
<td>12</td>
<td>2.44 ± 0.12</td>
<td>2.37 ± 0.12</td>
</tr>
<tr>
<td>6/2</td>
<td>12</td>
<td>2.54 ± 0.12</td>
<td>2.47 ± 0.12</td>
</tr>
<tr>
<td>7/2</td>
<td>12</td>
<td>2.64 ± 0.12</td>
<td>2.57 ± 0.12</td>
</tr>
<tr>
<td>8/2</td>
<td>12</td>
<td>2.74 ± 0.12</td>
<td>2.67 ± 0.12</td>
</tr>
<tr>
<td>9/2</td>
<td>12</td>
<td>2.84 ± 0.12</td>
<td>2.77 ± 0.12</td>
</tr>
</tbody>
</table>

چنانچه در جدول 2 مشاهده می‌شود گرم اولیه ریشه‌ها در تمامی گستره‌های pH مورد استفاده رشد می‌جوید. مشاهده می‌شوند در تمامی گستره‌های pH میانگین وزن ریشه در pH 2.16 0.06 3.16 0.06 4.16 0.06 5.16 0.06 6.16 0.06 7.16 0.06 8.16 0.06 9.16 0.06 است. چنانچه مشاهده می‌شود رشد در تمامی pH ها صورت گرفته است و در pH=5.7 بهترین مقدار را داشته است اما با توجه به جدول‌های آنالیز واریانس ارائه شده تفاوت معنی‌داری دیده نمی‌شود (p>0.05).
بررسی تیمارها مؤثر بر میزان تولید رنگدانه‌های گیاه گلرنگ:

1. اثر تیمار نور و تاریکی بر تولید رنگدانه‌های گیاه: نتایج به‌دست آمده در خصوص آنالیز رنگدانه‌های گیاه گلرنگ تحت تأثیر تیمار نور (LUX 330 و فتوپریود 16 ساعت روشنایی) و تاریکی (ظرف کشت به طور کامل با فولیپویشید) در جدول ۳ آمده است.

جدول ۳: نتایج حاصل از تیمار نور (LUX 330 و فتوپریود 16 ساعت روشنایی) و تاریکی (به طور کامل با فولیپویشید) بر میزان تولید رنگدانه‌ها در ۳۰ روز شیشه رهگی گلرنگ پس از ۲۱ روز

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>رنگدانه‌زه در طول موج ۵۱۷nm (mean ± SE) (mg.g⁻¹ fw)</th>
<th>رنگدانه‌زه در طول موج ۴۰۳nm (mean ± SE) (mg.g⁻¹ fw)</th>
<th>رنگدانه‌زه در طول موج ۳۲۱nm (mean ± SE) (mg.g⁻¹ fw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نور</td>
<td>4</td>
<td>0.157 ± 0.003</td>
<td>0.334 ± 0.026</td>
<td>0.151 ± 0.042</td>
</tr>
<tr>
<td>تاریکی</td>
<td>4</td>
<td>0.151 ± 0.001</td>
<td>0.589 ± 0.032</td>
<td>0.273 ± 0.028</td>
</tr>
</tbody>
</table>

نتداور ۲. میزان رنگدانه زرد در طول موج‌های ۳۷۱ و ۴۰۳ (A) و ۳۳۰ (B) نانومتر در ۲۱ روز تحت تیمار نور (LUX 330 و فتوپریود 16 ساعت روشنایی) و تاریکی (به طور کامل با فولیپویشید) پس از ۲۱ روز هر تیمار ۴ بار تکرار شده و نتایج به‌دست آمده با توجه به جداول آنالیز واریانس معنی‌دار است (p<0.05).

چنان‌که از نتایج موجود در جدول ۳ و نتوداری مرتبط با آن برپیش اید، میانگین تولید رنگدانه زرد در طول Mوهای ۳۷۱ و ۴۰۳ نانومتر و رنگدانه فرمر در طول موج ۵۱۷ نانومتر در شرایط نوری به‌ترتیب ۰.۷۵ ۴.۶۱ بوده و در شرایط تاریکی ۰.۵۸۷ ۳.۷۷ بوده است که اختلاف میانگین موجود بین دو شرایط مورد بحث در خصوص تولید رنگدانه زرد در طول موج‌های ۴۰۳ و ۳۷۱ نانومتر به لحاظ آماری معنی‌دار است (p<0.05).
نمودار ۳. میزان رنگ‌گذاریهای گل ترکیبی در طول موج ۴۶۰ نانومتر در روش‌های مختلف رنکسه رنگ‌های گل ترکیبی تحت تیمار نور ۵۸۰ و فتوپریود ۱۶ ساعت روان‌سازی در ۶/۵ تیمارهای (فتوپریود با فاکتورهای پس از ۱۲ روز). در تیمار ۳ بار تکرار شده و نتایج به‌اختیار آن از لحاظ آماری معنادار نیست (p>۰۰۰).

اثر فاکتور pH بر تولید رنگ‌گذاریهای گل ترکیبی رنگ‌های گل ترکیبی در فاکتور pH مقدار مختلف از pH رنگ‌گذاریهای گل ترکیبی در ۴/۵ تیمارهای این مقاله از نتایج حاصل در جدول ۴ آمده است.

جدول ۳. نتایج حاصل از تیمار pH بر مبنای تولید رنگ‌گذاریهای گل ترکیبی در شرایط مختلف pH رنگ‌گذاریهای گل ترکیبی در فاکتور pH مقدار مختلف از pH رنگ‌گذاریهای گل ترکیبی در ۴/۵ تیمارهای این مقاله از نتایج حاصل در جدول ۴ آمده است.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>pH</th>
<th>Red pigment concentration at 517 nm (mean ± SE) (mg·g⁻¹ fw)</th>
<th>Red pigment concentration at 403 nm (mean ± SE) (mg·g⁻¹ fw)</th>
<th>Red pigment concentration at 321 nm (mean ± SE) (mg·g⁻¹ fw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/5</td>
<td>3</td>
<td>5</td>
<td>0.124±0.012</td>
<td>1.47±0.32</td>
<td>2.49±0.23</td>
</tr>
<tr>
<td>6/5</td>
<td>3</td>
<td>4</td>
<td>0.124±0.012</td>
<td>1.47±0.32</td>
<td>2.49±0.23</td>
</tr>
<tr>
<td>7/5</td>
<td>3</td>
<td>5</td>
<td>0.154±0.011</td>
<td>1.55±0.44</td>
<td>3.58±0.77</td>
</tr>
<tr>
<td>8/5</td>
<td>3</td>
<td>6</td>
<td>0.143±0.011</td>
<td>1.37±0.08</td>
<td>3.34±0.22</td>
</tr>
</tbody>
</table>
تأثیر شرایط نوری و فاکتور pH در بهینه‌سازی کشت ریشه‌های گیاه گل‌نگ

<table>
<thead>
<tr>
<th>میزان</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5.7</th>
<th>6.5</th>
<th>7.5</th>
<th>8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان الکتریکی</td>
<td>2.05</td>
<td>1.95</td>
<td>1.9</td>
<td>1.85</td>
<td>1.8</td>
<td>1.75</td>
<td>1.7</td>
</tr>
<tr>
<td>دامنه</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

نمودار 4. میزان رنگ‌دانه‌های زرد در طول موج 660 نانومتر در کشت درون شیشه ریشه گیاه گل‌نگ، تعداد تکرار 3 بار. بوشه و اختلاف میانگین موجود با توجه به جدول آنالیز واریانس ارائه شده مشاهدات نیست (p>0.05).

<table>
<thead>
<tr>
<th>میزان</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5.7</th>
<th>6.5</th>
<th>7.5</th>
<th>8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان الکتریکی</td>
<td>1.07</td>
<td>1.05</td>
<td>1.03</td>
<td>1.01</td>
<td>0.99</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>دامنه</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

نمودار 5. میزان رنگ‌دانه‌های زرد در طول موج 660 نانومتر در کشت درون شیشه ریشه گیاه گل‌نگ. تعداد تکرار 3 بار. بوشه و اختلاف میانگین موجود با توجه به جدول آنالیز واریانس ارائه شده مشاهدات نیست (p>0.05).
نمودار 6. میانگین رنگدانه قرمز در طول موج 657 نانومتر درکشته درون شبیه‌ریشه‌گیاه‌گرانگ. تعداد تكرار 3 بار

جدول چه در جدول 4 و نمودارهای مربوط به آن دیده می‌شود تولید رنگدانه‌های گیاه گرانگ در تمامی

گستره‌های pH بررسی شده صورت می‌گیرد. با وجود آنکه در مورد تولید رنگدانه زرد در طول موج

203 نانومتر pH‌های گستره‌ای بسیار و در تولید رنگدانه زرد در طول موج 637 نانومتر pH‌های گستره‌ای باید

موفقیت بوده‌اند اما انالیزهای آماری درکل تفاوت معنی‌داری را نشان نمی‌دهد (p > 0.05).

بررسی تیمار‌های موثر بر تولید رنگی‌های فتوسنتزی گیاه گرانگ

1. اثر تیمار نور و تاریکی بر تولید رنگی‌های فتوسنتزی: نتایج حاصل از تأثیر فاکتور نور (lux)

و فتوپریود ۶ ساعت روشانی) و تاریکی (مطیع کامل با فویل پوشیده) بر مقادیر تولید رنگی‌های فتوسنتزی

Chlb (Chla) Chla (mean ± SE) Chlb (mean ± SE) Total Chl (mean ± SE) (mg.g⁻¹ fw) (mg.g⁻¹ fw) (mg.g⁻¹ fw)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Chla (mean ± SE)</th>
<th>Chlb (mean ± SE)</th>
<th>Total Chl (mean ± SE)</th>
<th>(mg.g⁻¹ fw)</th>
<th>(mg.g⁻¹ fw)</th>
<th>(mg.g⁻¹ fw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نور</td>
<td>4</td>
<td>0.41 ± 0.04</td>
<td>0.00 ± 0.00</td>
<td>0.41 ± 0.04</td>
<td>0.41 ± 0.04</td>
<td>0.00 ± 0.00</td>
<td>0.41 ± 0.04</td>
</tr>
<tr>
<td>تاریکی</td>
<td>4</td>
<td>0.45 ± 0.06</td>
<td>0.00 ± 0.00</td>
<td>0.45 ± 0.06</td>
<td>0.45 ± 0.06</td>
<td>0.00 ± 0.00</td>
<td>0.45 ± 0.06</td>
</tr>
</tbody>
</table>
نمودار 3 مقدار کلروفلیف و کلروفلیف در روش واریانس در بیانیه‌های گیاه گورنگ در تیمار نور و تاریکی. نتیجه‌ی هندسه ۴ بار بوده و نتایج با توجه به جدول آنالیز واریانس در خصوص مقدار کلروفلیف و معنی‌دار (p<0.05) بوده و در خصوص مقدار کلروفلیف و معنی‌دار نیست (p=0.06)

نمودار 4 مقدار کلروفلیف و میزان کارنتئیده در روش واریانس در بیانیه‌های گیاه گورنگ تحت تیمار نور و تاریکی. نتیجه‌ی هندسه ۴ بار بوده و نتایج در مورد مقدار محتوای کلروفلیف معنی‌دار (p<0.05) بوده و در مورد کارنتئیده نیست (p=0.06)

چنان‌که در جدول ۵ نمودارهای مرتب با آن دیده می‌شود، میانگین تولید ترکیبات در شرایط نوری به ترتیب ۶۲۰۲، ۶۷۲۷، ۶۲۳۷، ۶۳۱۹ و ۶۴۰۶ بوده و میانگین مقدار همین ترکیبات در شرایط تاریکی ۶۴۰۲، ۶۳۷۲، ۶۵۴۷ و ۶۴۰۶ بوده است. که اختلاف میانگین موجود بین دو شرایط مورد بحث در خصوص تولید
تاثیر شرایط نوری و فاکتور pH در بینه‌ساعدی کشت ریشه‌های گیاه گلنگ

کلروفیل a، محیوتی کل کلروفیل معنی‌دار بوده (p<0.05) اما مقادیر کارتوپییدی با اینکه بیشتر از نمونه‌های تیمار تاریکی است و، لیفت نداشت ممکن است و نمی‌دهد.

2. اثر فاکتور pH بر تولید رنگ‌های فتوسنتزی: نتایج حاصل از تاثیر فاکتور pH (p<0.05) بر تولید رنگ‌های فتوسنتزی (Chla، Chlb) محیوتی کل کلروفیل و کارتوپییدی) در جدول 6 آمده است.

جدول 6. نتایج حاصل از تیمار فاکتور pH بر تولید رنگ‌های فتوسنتزی در کشت درون سیالر ریشه گیاه گلنگ. تعداد تکرار در خصوص هر گستره 4 بار بوده است.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Chla (mean ± SE) (mg·g⁻¹ fw)</th>
<th>Chlb (mean ± SE) (mg·g⁻¹ fw)</th>
<th>Total Chl (mean ± SE) (mg·g⁻¹ fw)</th>
<th>کارتوپییدیا (mean ± SE) (mg·g⁻¹ fw)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.5</td>
<td>0.1 ± 0.0</td>
<td>0.3 ± 0.0</td>
<td>0.7 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.2 ± 0.0</td>
<td>0.4 ± 0.0</td>
<td>0.9 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>0.1 ± 0.0</td>
<td>0.3 ± 0.0</td>
<td>0.7 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.2 ± 0.0</td>
<td>0.4 ± 0.0</td>
<td>1.0 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>0.1 ± 0.0</td>
<td>0.3 ± 0.0</td>
<td>0.7 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.2 ± 0.0</td>
<td>0.4 ± 0.0</td>
<td>1.1 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.1 ± 0.0</td>
<td>0.3 ± 0.0</td>
<td>0.7 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.2 ± 0.0</td>
<td>0.4 ± 0.0</td>
<td>1.1 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>0.1 ± 0.0</td>
<td>0.3 ± 0.0</td>
<td>0.7 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.2 ± 0.0</td>
<td>0.4 ± 0.0</td>
<td>1.1 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>0.1 ± 0.0</td>
<td>0.3 ± 0.0</td>
<td>0.7 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
</tbody>
</table>

نمودار 1. مقادیر کلروفیل a و کلروفیل b در کشت درون سیالر ریشه گیاه گلنگ تحت تیمار فاکتور pH. تعداد تکرارها 4 بار بوده و اختلاف میانگین موجود با توجه به جدول آنالیز واریانس مربوط معنی‌دار نیست (p=0.05).

537
نمودار ۱. مقادیر محتوای کل کلروفیل در کشت درون شیشه ریشه گیاه گل نگ تخت تیمار فاکتور pH بار ود و اختلاف میانگین موجود با توجه به جدول آنالیز واریانس مربوط معنی‌دار است (0.05).\(p\)

نمودار ۲. مقادیر کارتوئیدها در کشت درون شیشه گیاه گل نگ تخت تیمار فاکتور pH تعداد تکرار ۴ بار ود و اختلاف میانگین موجود با توجه به جدول آنالیز واریانس مربوط معنی‌دار نیست (0.05).\(p\)
بحث و نتیجه‌گیری

به‌هم‌سازی کشت ریشه گیاه گلرانگ

کشت انداز گیاهی شامل کشت‌های استریل جنین، بسک، گل، ریشه و سایر اندازه‌های گیاه در محیطی است که کم‌عموماً حاوی هورمون‌های گیاهی اکسین و سيتوکینین بوده و گاهی اوقات عاری از آن‌هاست [۶]. از ا واخر دهه ۶۰ میلادی، تکنولوژی کشت بافت به‌عنوان ابزاری برای مطالعه و تولید متابولیت‌های گیاهی معمری شد. علاوه بر آن، توسط روش‌های بیوتکنولوژی مانند ریژن‌سازی، کشت سلول‌های ریشه و ریشه‌های مویی یکی از مهم‌ترین شیوه‌های حل مشکلات مریخ برای انتقال محصولات گیاهی به محیطی غازی صنعتی و دارویی است. در این راستا توسط سیستم‌های سریع کشت و تکثیر ریشه فرضی منظر برای تولید محصولات مختلف متابولیت‌های نانویی در آزمایشگاه و بدون نیاز به زمین‌های قابل کشت خواهید بود [۲۸]. در این پژوهش نیز کشت ریشه گیاه گلرانگ و به‌هم‌سازی شرایط انجم فاکتورهای نور و تاریکی و فاکتور pH انجم گرفت. بررسی در خصوص تحقیقات انجم شده در مورد کشت ریشهگیاهان مختلف حاکی از آن است که اغلب این فرایند درون‌ظرف شبیه‌سازی ایران با مقادیر چشمگیری از محیط کشت جامد و مایع و دستگاه‌های شبکر و سیستم‌های جرخی و یا حتی با پاورکتورها صورت می‌گیرد که نیازمند صرف مقداری چوب‌گیری از ماده و انرژی در اشکال مختلف است [۸], [۲۹]. اما در تحقیق صورت گرفته حاضر ما از ظرف شیشه‌ای بسیار ساده (Jar) و مقدار بسیار کم محیط جامد و شرایط کاملاً استاتیک و ثابت که نیازمند دستگاه‌های پررهنی مشکی نیست به کشت ریشه‌های گلرانگ دست یافتنی که این روند تلاشی قابل توجهی در صرفه جویی هزینه، مواد و انرژی است. شایان ذکر است که در تحقیقات انجام شده پیشین ایجاد از هورمون‌های مختلف اکسین و سیتوکینین برای افزایش رشد و رشد استفاده شده بود [۲۹]. اما در پژوهش انجام شده حاضر دستیایی به مقادیر چسبنگ کشت ریشه به‌دن استفاده از هیچ‌گونه هورمونی صورت گرفته و در نتیجه گامی دیگر در جهت کاشت هزینه‌مرتب است.

۱. به‌هیله سایزی کشت ریشه گیاه گلرانگ تحت تیمار نور و تاریکی نور به‌عنوان یک فاکتور محیطی مهم نمی‌باشد. ویژه‌ای در تبیین فرایند نمو گیاهی و پارامترهای مورفولوژیکی داراست. مثلاً نور منجر به افزایش وزن خشک
تاثیر شرایط نوری و فاکتور pH در بیشماری کشت ریشه‌های گیاه گلفنگ

ریشه و ساقه گیاهان گوجه فرنگی، و کلم، می‌گردد. البته باید این نکته را اذعان داشته که رشد ریشه‌های گیاهان مختلف تحت شرایط نور و تاریکی متفاوت است. برای نمونه در خصوص گیاه پرنج رشد ریشه‌ها در تاریکی به مراتب بیشتری از رشد آنها در شرایط نوری است [25]. در این پژوهش نیز بیشترین میزان کشت و نیز وزن تر و خشک ریشه‌های گیاه گلفنگ مربوط به شرایط نوری (شدت نوری ۲۳۰۰ لوکس به همراه فتویورود ۱۶ ساعت) بوده است. و ریشه‌هایی که به طور کامل با فوی پوشیده شده بودند میانگین رشد کیفی را نشان دادند که اختلاف موجود در خصوص وزن خشک ریشه‌های کشت شده بعضی از عوامل می‌تواند به همین نتیجه‌گیری کرد که شرایط نوری منجر به افزایش بیوس و ماده‌سازی در ریشه‌های گیاه گلفنگ شده است.

۱. بیشماری کشت ریشه‌های گیاه گلفنگ تحت فاکتور pH: pH: روشی جدیدی که فاکتور pH و نمود گیاهان را تحت تاثیر قرار می‌دهد. برای تهیه "فرضیه رشد اسیدی" تهیه انباشت سلول‌ها از طریق اصلاح pH پیرامون دیواره سلولی صورت می‌گیرد، در نتیجه انباشت پلاگین سلول‌ها تحت pH پایین افزایش می‌یابد [11]. شواهد فراوانی این فرضیه را در خصوص کلون‌پیچی سلول‌ها با انباشت بی‌گرگ رشد می‌کند [24].

۲. بیشماری کشت ریشه‌های گیاه گلفنگ تحت فاکتور pH: pH: سایه‌ای به این جمله نیست. پایین‌تر pH به‌رونه بودن pH می‌کند [23]، با این وجود نتایج در خصوص ریشه گیاهان چندان قطعی نیست. با این وجود باره وجود دارد. در تحقیقی که کیونگ لینگ [6] و همکارانش در خصوص pH اثر فاکتور pH (با گستره‌های ۴، ۵، ۶ و ۷) بر روی کشت چاپاره‌های نابه‌امنی حاصل از قطعه جدایی‌یافته گیاه اورتوکوین استامینوس، انجام دادند به عنوان pH بیشینه رشد معرفی شده است [22]، اما از آن‌جاک دستیابی به مواد مغذی ضروری در گیاهان مختلف در pH های متفاوت صورت می‌گیرد، بنابراین این مقدار pH به‌رونه در گیاهان متفاوت خواهد بود. در این پژوهش برای بررسی تأثیر فاکتور pH بر رویند رشد ریشه از ۶ گستره pH که شامل گستره‌های pH اسیدی (۳، ۲، ۱)، گستره‌های متوسط (۶/۵، ۵/۵ و ۴/۵) و گستره خشک (۷/۵) استفاده شد. رشد ریشه در pH تاماسی صورت گرفته و در ۵.۷ pH به‌رونه مقدار را داشته است و در pH ۶.۵ تا ۷.۵ pH گسترش یافته است.

توپیون رنگ‌دانه‌های گیاه گلفنگ در کشت ریشه‌های بررسی‌پذیر گیاهان انجام شده در مورد تولید رنگ‌دانه‌های مختص گیاه گلفنگ حاکی از آن است که تولید رنگ‌دانه‌های کارتاپین و سافلون سرد در گل‌های کوچک [۱۶] گلبرگ‌ها [۱۶] و کشت‌های سلولی این گیاه [۱۸] صورت گرفته است. اما هنگامی که تست گرگاری در خصوص تولید این ترکیبات در کشت ریشه‌های این گیاه وجود دارد در پژوهشی که چاپاره و همکاران [۱۸] انجام دادند تبیین آزمایش پرکارتاپین ۴ به کارتاپین از طریق انزیم

۵۴۰
تأثیر شرایط نوری و فاکتور pH در بیمارسازی کشت ریشه‌های گیاه گلرگ

1. رافال، کاراوردی و حیدری ب. سال 2009 اثر فاکتور pH و را نسبت به حساسیت ماده ناهنجاری، دما و pH از نظر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

2. تولید رگیدی ریشه‌های گیاه گلرگ تحت تأثیر فاکتور pH پر از روی تولید رگیدی گیاه گلرگ به مقدار بیشتری. این امر باعث می‌شود که سطح ثابت و بیشتری دارد. در حالی که pH از ۰.۹ تا ۱.۵ کاهش می‌شود، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

3. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

4. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

5. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

6. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

7. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

8. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

9. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

10. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

11. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

12. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

13. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

14. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

15. رافال، کاراوردی و حیدری ب. سال 2009 اثر تأثیر اثرات نهایی تاثیر رگیدی گیاه‌های گلرگ. در رقابتی‌نشینی رگیدی گیاه‌های گلرگ به ترتیب از pH ۰.۹ تا ۱.۵ کاهش می‌شود. در کلیه، در رخ و نشانه‌های فیزیولوژیکی، حساسیت و سنجش از طرف رگیدی گیاهی بیشتر است.

Raphanus sativus L.
و تولید تركیبات رنگدانه‌ای گیاه گل‌نگ در رشته این نیز این مشخصه‌ر داراست.

تولید رنگ‌های گلوستئزی در کشت رشته تحت تأثیر تیمار نور و تاریکی

نور از جمله عوامل بسیار مهم انجم‌افعالیت‌های فوستنزی در گیاهان است. که در حالت تاریک دارد. در پژوهشی که در حضور اثر طول موج نوری بر محتوای رنگدانه‌ای بافت‌های گیاه کاتالا اینترمیدیا صورت گرفته، از 3 طول موج نوری قرمز، آبی و سفید تست‌های شده که محتویات کل کاروتئین و کاروتئیدها در کشت‌هایی که در محورت نور نیز توسط بیشترین مقدار را داشته و از نور آبی به قرمز و قرمز دور به ترتیب روند کاهشی دیده شده است [12]. در این پژوهش نیز تولید رنگ‌های فوستنزی (Chlb, Chla) محتوی کل کاروتئین و کاروتئیدها تحت شرایط نوری صورت گرفته و در قیاس به شرایط تاریکی نقاطی پیش‌گیری داشته است. به عنوان که می‌گوییم تولید ترکیبات در شرایط نوری بیشتر از تاریکی بوده و اختلاف میانگین موجود در حضور تولید کاروتئین و محتوی کل کاروتئین معنی‌دار بوده (P<0.05) اما مقادیر کاروتئیدها با اینکه بیشتر از نمونه‌های تیمار تاریکی است ولی تفاوت معنی‌داری را نشان نداده‌اند. بنابراین می‌توان چنین نتیجه‌گیری که شرایط نوری اگرچه سبز‌گی ریشه‌ها را در برنداشته‌ام عامل‌ی برای تولید بیشتر ترکیبات رنگدانه‌ای فوستنزی بوده است.

pH

تولید رنگ‌های گلوستئزی در کشت رشته تحت تأثیر فاکتور pH

چنان که می‌دانیم فاکتور به‌سیار مهمی است که در بسیاری از مسیرهای متابولیک مانند نقل و انتقال الکترون، قریندن تنفس و جنب آب نقل دارد. و ریشه‌های کشت شده باید توانایی چه زیبایی در زمینه سازگاری با آن و با تنظیم محدودیت‌های مختلف آن را داشته باشند [33]. در پژوهش حاضر نیز تولید رنگ‌های فوستنزی pH در تمامی گستره‌های (pH 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5) بررسی شده است. بررسی‌های آماری حاکی از آن است که تنها در اختلال میانگین محتوی کل کاروتئین (ChlIT) تفاوت معنی‌داری دیده می‌شود (P<0.05) که بیشترین مقدار در pH=7.5 و به میزان pH=7.8 mg/g fw بوده است.

منابع

1. تکلی، افیشین، بررسی اثر رفع ابزار در مراحل مختلف رشد بر عملکرد، اجزای عملکرد و عملکرد روان گل‌نگ.
2. پایان‌نامه کارشناسی ارشد. دانشکده کشاورزی دانشگاه تهران (1381).
3. لاجوردی، ناصر. دانش‌های روانی. انتشارات دانشگاه تهران (1359).

1. Cattleya intremedia * C.auranttacea

542

31. R. Oommen, "Production of blue pigments from the callus culture of Lavandula agustifolia and red pigments from the hairy root culture of Beta vulgaris", A thesis presented in partial fulfillment of the requirements for degree of master of technology in biotechnology, New Zealand (2009).

35. "Safflower Pigment Institute of Tianjin", China company.

38. N. Toshikatsu, S. Shingo, "Studies on the synthesis of safflomin-A, a yellow pigment in safflower petals: oxidation of 3-c-β-d- glucopyranosyl-5- methylphloroacetophenone", Department of Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguta University, 4-3-16 Jonan, Yonezawa-Shia, Yamagata (2005) 851-992, Japan.

42. P. R. White, "Potentially unlimited growth of excised tomato root trip in liquid medium". Plant physiol, 9 (1934) 585-600.

43. W.u Xiaojun, "Establishment and Chemical Analysis of Hairy Roots of Eucommia Ulmoides." M. S., Shanghai University of TCM, Shanghai, P.R. China (2007).