تولید رامبولپید توسط باکتری سودوموناس انروژینوزا\(^1\) از ماس

چند قند تیمار شده

رضای رمضانی: گروه زیست شناسی، دانشگاه ازد اسلامی واحد ملازد

مهمان مظاهری اسید(ی), مهندس آدنین: پژوهشکده بیوتکنولوژی، سازمان پژوهش‌های علمی و

صنعتی ایران

mxmazaheriassadi@yahoo.com

چکیده

بیوسورفاکتی‌ها محصولات طبی و سویسی از میکرو‌کاردینسم‌ها هستند که در حالی‌یابی دارای ویژگی‌های مختلف

سطحی‌اند. گلکوپیپی‌ها، فاسلیپیدها، و اسید‌های چرب، لیپوتریپیدها و لیپورتین‌ها، بیوسورفاکتی‌ها یکی از

بیوسورفاکتی‌ها و یکی از انسوئین‌های اصلی بیوسورفاکتی‌ها محسوب می‌شود. رامبولپید نوعی بیوسورفاکتی‌ها است که از گروه

گلکوپیپی‌ها که توسط باکتری سودوموناس انروژینوزا تولید می‌شود. این تحقیق از باکتری سودوموناس

انروژینوزا استفاده کرده، که از یک سلول میکروبی سازمان پژوهش‌های علمی و صنعتی ایران تهیه گردید. این

باکتری در محیط کشت مشابهی حدست 3M واجد ماس کشت داده شد. قند موجود در ماس، ساکاروز است که

باکتری سودوموناس انروژینوزا نمی‌تواند از آن به‌عنوان منبع کربنی استفاده کند. پسین مریده ی استفاده در این

تحقیق به دلیل آنکه دست ورژی‌های رئیکی بر روی آن احتمال شده است، قادر به استفاده از قند ساکاروز است به

شرط آنکه الوده‌های شیمیایی موجود در ماس حذف شود. دلایل روش تیمار شیمیایی ماس، خالص‌سازی شده

و در دسترس میکرو‌کاردینسم قرار دارد. رامبولپید تولید شده با آزمایش‌های سنجش قند به روش فلز-سولفی‌ریک

اسید توانایی امولسیفیکاسیون نفت خام (با استفاده از سنجش میزان گلکوپیپ) ارزیابی شده. آزمایش‌ها را به

تجزیه و تحلیل آماری شدن. نتایج باین‌گر آن به‌طور که بدون ماس، بهره‌برداری توانایی رامبولپید ANOVA

شامل نسبت کربن به نیترژن \(=80\) \(\pm 18\) % دما با میزان هواهوشی رل \(pH = 7.4\) و \(\text{ درصد تلقیح} = 80\) در

زمان ۶۶ ساعت است. میزان رامبولپید تولید شده ۱۱۶/۰ گرم در لیتر (رامبولپید = ۳/۷۲ گرم در لیتر) و درصد

توانایی امولسیفیکاسیون نفت خام ۵۳% بود. در حالی که در ماس، تیمار شده، تولید رامبولپید با میزان تلقیح ۲%

(\(\text{v/v}\)) از پیش کشیده به محیط کشت تولید دایود نسبت \(=16\) \(\pm 2\) در دمای \(C^\circ\) با شدت هم‌اله

۲۰۰ و در زمان ۶۶ ساعت بعد از آن در \(\text{C/N} = 6\) ریافت \(\text{P. aeruginosa}\) ۲/۰ گرم در لیتر

(معادل ۲۰/۰ گرم رامبولپید در لیتر) و درصد توانایی امولسیفیکاسیون نفت خام ار برابر ۵۵/۵% محاسبه شد.

ویژه‌های کلیدی: بیوسورفاکتی‌ها، رامبولپید، سودوموناس انروژینوزا، ماس، چندر قند

\(1.\) Pseudomonas aeruginosa \(2.\) P. aeruginosa MM1011

\(87\) \(\pm 5\) \(\text{ دریافت} 87/4/19\)

پنجره ۸۷/۵/۲۰
مقدمه

بیوسورفکاتانت‌ها، مولکول‌های آمی فیلیک هستند که شامل بخش‌های هیدروفیلیک و هیدروفیلیک هستند.

ویژگی سویورفکنتان استفاده بین بخش‌های هیدروفیلیک و هیدروفیلیک آن تعیین می‌شود به همین دلیل،

بیوسورفکنتان‌ها می‌توانند در میان بین فازهای مایع با درجات مختلف فعالیت و بیوندهای هیدروفیلیک مانند

نتف/اب قرار گیرند[۱]. بیوسورفکنتان‌ها به دلیل دارا بودن مزیت‌هایی از قبیل: سبیمپایین، فیلیت تجزیه

پیلوژیک، قدرت فراوان تولید کف، سازگاری بهتر با محیط (فعالیت ویژه در درجه حرارت، قیمت، PH، درجه شوری)، فیلبیت استرسی آسان به دلیل تغییر مداری و توانایی سنگین شدن از مغناطیس، در انگاسون

سمت به سویورفکنتان‌های استاتیک شیمیایی اریخته دارند [۲]. همچنین در تولید بیوسورفکنتان‌ها می‌توان از

منابع کربنی ناخالص مانند ماس استفاده کرد، ولی مواد اولیه به‌کار رفته برای تولید سویورفکنتان‌های شیمیایی

حتا نمی‌باشد.

بیوسورفکنتان‌ها به دلیل توان به‌عنوان صنایع مختلف از قبیل پتروشیمی، داروسازی، پزشکی، آرایشی،

غذایی، کشاورزی، نساجی، جریب‌سازی، کانگزی و ... از اهمیت بسیار برخوردارند.

یکی از موارد استفاده بیوسورفکنتان‌ها در صنایع نفت و پتروشیمی بازیافت نفت است. الگویی دریایی با

نتف خام از مشکلات بزرگ جهانی محسوب می‌شود؛ در حالی که با استفاده از سویورفکنتان‌ها با

بیوسورفکنتان‌ها به دلیل دارا بودن خاصیت ایمونوسایبرئی می‌توان این‌ها را از سطح آلودگی جمع‌آوری کرد.

بیوسورفکنتان‌ها به دلیل افزایش بازیافت نفت (MEOR) همچنین اهمیت هستند و در پالسازی منابع نفتی و

لومه‌ی انتقال نفت به‌کار می‌رود [۲],[۳],[۴].

افزایش بازیافت نفت به‌عنوان یکی از مهم‌ترین اهداف تولید بیوسورفکنتان‌ها همواره مطرح بوده است. عمل

متحرک‌سازی، توسط محلول‌های سویورفکنتان به‌منظور نفت در محدوده مانند بازیافت می‌گردد. برای

میزان مورد استفاده قرار می‌گیرد، سویورفکنتان پایین بندی کش و درون سطحی بین نفت و مایع می‌شود.

در حالی که به‌طور چشمهایی کاهش داده و باعث تسریع جریان نفت شود.

بررسی‌های انجام‌شده به‌خصوص میکروبی در مخازن نفتی نشان داده است که به‌طور میکروبی به‌کار

برای افزایش رفقیسازی نفت است. در حال حاضر از سویورفکنتان‌های بیماری‌برای پیکر کرد توانایی

دنبالی نفت نیز استفاده می‌شود. همچنین بازیافت میکروبی نفت توسط بسیاری از شرکت‌های وابسته به نفت

ارمکدان شما به دست پیگیری است [۱],[۱۱],[۱۰],[۴].

برای بازیافت میکروبی باید از سویورفکنتان‌ها از سه روش اصلی استفاده کرد: ۱) وابسته به استفاده می‌شود. در روش او

مه‌پیمان میکروورباوری را که داخل مخازن نفت وجود دارد به‌وسیله مایع غذاهای مورد نیاز شکر تحریک کرد که

تلود بیوسورفکنتان کند و برای بازیافت نفت فعل شوند. در روش دوم، می‌توان خود مایع شکرگار بسیاری

شهروایان و همکاران...
اختلاف اختصاصی را برای تولید بیوسورفاکتنت تحریک و آنها را وارد مخازن نفتی کرد تا باعث افزایش نفت مخازن شود و سرانجام در روشه سوم می‌توان بیوسورفاکتنت بهداشت آمده از فعالیت میکروگراینیسم‌ها را جدی کرد و در تالاب‌های مورد استفاده قرار داد. استفاده از سوپرکاریولزی خاکستر یا نیز منی‌های این میکروگراینیسم میزان محصول مخازن نفتی کارخانجات فتن است که در شرایط کار معمول، دیگر نمی‌تواند در حالت مورد نظر قرار گیرد. میزان محصول مخازن نفتی کارخانجات بستگی به محصولات مختلف این میکروگراینیسم ندارد.

ولی این میکروگراینیسم مورد استفاده می‌باشد. میکروگراینیسم در این میکروگراینیسم تولید می‌کنند که به دو صورت مورد استفاده قرار می‌گیرد.

میکروگراینیسم

میکروگراینیسم M. Nutrient Agar. تولید ماده اولیه (چندنفری قند) می‌باشد و نمی‌تواند در حالت مورد نظر قرار گیرد. میزان محصول مخازن نفتی کارخانجات بستگی به محصولات مختلف این میکروگراینیسم ندارد.

مواد مورد استفاده

1. محیط نمک‌های معدنی (جدول 1) واجد گلگزی‌ها می‌باشد. میزان محیط نمک‌های معدنی مانند اماده‌سازی آن به شرح زیر انجام گرفت:

* گرم ماده در 1 میلی لیتر آب م큐تر حل کردن پس از ۱ ساعت در دمای ۷۰ درجه سانتی‌گراد.
* ۰.۲ میلی‌لیتر HCl اضافه گردیده تا pH محتوای اسیدی (بر حدود ۲) شد. سپس به مدت ۲۴ ساعت در دمای حرارت ۱۵ درجه سانتی‌گراد قرار داده شد. بعد از ۲۴ ساعت به مدت ۱۰۰۰ دقيقه با دور رهوی به مدت ۱۲ دقیقه اتوکلاو گردیده به محیط کشت اضافه شد [۳].

۲. N. A. و N. B. محیط‌های

۳. Crude Oil

N. F.42
روش‌ها

رسم منحنی رشد باکتری سودوموناس انروجنوزا و منحنی استاندارد قند رامنوز

این آزمایش به منظور زمان تلقیح مناسب باکتری از میجیت کشت اولیه به میجیت کشت اصلی انجام شد. به این منظور، با لوب، کلوبی باکتری از میجیت به اندازه ۱۰۰ میلی‌لیتر میجیت به این لوب وارد شد. با فواصل زمانی یک ساعت، تحت شرایط استریل، ۲ میلی‌لیتر از میجیت برداشتی شده جنین در ۱۱۰ نانومتر و اندوزه‌گیری شد و این کار تا زمانی ادامه یافت که باکتری وارد فاز استاتیش قند رامنوز شد [۷].

برای محاسبه میزان تولید رامولیپید با توجه به میزان جنب نوری آن در طول موج ۴۸۰ نانومتر، منحنی استاندارد قند رامنوز رسم شد. برای انجام این آزمایش از غلظت‌های ۰/۰۹، ۰/۱، ۰/۲، ۰/۳، ۰/۴ مولار در لیتر رامنوز خالص استفاده شده و میزان جنب آن سنجیده شد. در این آزمایش از ۱/۰ مولار برای حلد در کردن قند رامنوز استفاده گردید [۶].

بررسی زمان‌های مختلف گرم‌گذاری در میجیت

به منظور تعیین مدت زمان مناسب گرم‌گذاری برای تولید بی‌شیر محلول، باکتری در زمان‌های مختلف از ۲۴ تا ۱۲۰ ساعت در میجیت کشت ۳M واحد ماس در دمای ۳۰ درجه سانتی‌گراد در نیوتروم هیزین ۲۰۰ و میزان pH۳/۸/۷ میزان pH. تولید رامولیپید توسط باکتری سودوموناس انروجنوزا از ملامس...
تلیف سوپیاپسون اولیه باکتری با ۱۲۰۰۰ rpm به انجام آزمایش‌های مختلف به منظور جداسازی باکتری‌ها از محیط کشت داده شد. مدت ۱۰ دقیقه در درجه C۴ سانتی‌گراد شد. سپس مایع روبی جدا شده برای سنجش میزان تولید رامتوپیپید استفاده شد. [۳],[۴],[۵],[۶].

توانایی امولوسیفیکاسیون نفت خام

در این آزمایش از لوله‌های با قطر یکسان استفاده شد. ابتدا ۵ میلی‌لیتر از مایع روبی که pH آن روز تنظیم شده بود داخل لوله ریخته شد و مقدار ۵ میلی‌لیتر نفت حامی به یک پرده‌گردید. در کدام از لوله‌ها با ورکر کردی به مدت یک دقیقه به سمت محسون شد و سپس به مدت ۲۴ ساعت در دما C۱۲ نقطه‌دار شد. طول لایه نفت امولوسیفیکاسیون شده اندوزیگری شد و ضریب امولوسیفیکاسیون با استفاده از فرمول زیر به‌دست آمد.

\[
\text{طول لایه نفت امولوسیفیکاسیون شده} = 100 \times \frac{\text{طول کل محلول سنجش کمی قند رامتوپیپید}}{\text{طول کل محلول}}
\]

برای سنجش کمی قند رامتوپیپید ابتدا بايد رامتوپیپید را از بخش لیپید جدا کرد. برای این منظور، ۲ میلی‌لیتر از مایع روبی با استدی کلریدئیک ۱ نرمال به pH ۱۰ ± ۱ رسانده شد محلول حاصل به مدت یک شبانه روز در دما C۱۲ نقطه‌دار شد. سپس با حجم مسواکی هشت و دو تایی از سر بند شده مخلوط شده فاز آلی از پس از سه ساعت استخراج، جدا شده و جلیان آن در درجه C۴ تحت ضرایب خالی تبخیر شد. بانه در صورت عدم وجود شرایط خلاص، میزان آنزیم هد هاگداشت تا تبخیر شود. رسوپ به‌دست آمده در ۲ میلی‌لیتر NaHCO۳ مولار حل شده و برای سنجش میزان قند رامتوپیپید، آماده شد به ۲ میلی‌لیتر از محلول قندی آماده شده، ۲ میلی‌لیتر مدل ۶٪ اضافه گردید. سپس به سرعت زندیک سطح محلول، ۵ میلی‌لیتر اسید سولفوریک غلیظ (۹۸٪ - ۹۵٪) به دسته شد. برای انجام داشتن چک نوشت که پیچ فانت خود اسید سولفوریک نباید داخل محلول شود. این محلول به مدت ۱۰ دقیقه به‌لایه سکون نگه داشته شد. سپس همگی گردید تا محلول بلانش گردد. لوله‌ها در آب C۳۰ درجه ۲۰۰ سرده سپس جنب نوری آن‌ها با استفاده از دستگاه اسیتروفونومتر در طول موج ۴۸۰ nm اندازه‌گیری شد. [۴],[۵].

بررسی میزان تولید رامتوپیپید در شرایط مختلف

برای انجام آزمایش‌های در شرایط مختلف، ۵ فاکتور دما، pH، دور شکر، تعداد C/N، نسبت بر اساس روش تاگوچی و با استفاده از آراپایه L۸ W به شرح جدول ۲ بررسی شدند که نتایج آن در جدول ۳ ذکر شده است.

۱۵۴
نتایج
برای رسم منحنی رشد باکتری سودوموناس انرژیژنزا، طبق روش کار مشخص شد که زمان مناسب برای تحقیق سوپراسیون اولیه باکتری (پیش کشت) به محیط‌های کشت اصلی، انتهای فاز گاز-تراکمی است که طبق شکل 1 در زمان 9 ساعت پس از کشت باکتری در محیط کشت N. B. اتفاق می‌افتد.
در روش فل سولفوریک اسید به دلیل اینکه میزان رامنوز به طور مستقیم منجر به نیاز به روش رامنوز به طور پیوسته و سنتی می‌گردد یعنی بر این به داشتن منحنی استاندارد رامنوز (شکل 2) نیاز داریم. در این بررسی از دیگه‌های 0.100 گرم در لیتر استفاده شده و به روش فل سولفوریک اسید نیاز داریم. میزان جنبه آن در طول موج 480 nm بحث است.

N.B. 1. منحنی رشد باکتری سودوموناس انرژیژنزا در محیط کشت.
بررسی زمان‌های مختلف گرم‌مگاری در محیط 3M واجد مлас

اثر زمان‌های مختلف گرم‌مگاری باکتری سودوموناس اوژنیوزا در محیط کشت 3M میانه‌ای در مورد ازماتیک و بررسی قرار گرفت. میزان قند رامیوز تولید شده و توانتای امولسیفیکاسیون نفت خام در زمان‌های مذکور سنجیده شد و نتیجه داد که بیشترین میزان آنها پس از 96 ساعت و به ترتیب برابر با 2/20 گرم در لیتر و 55/5% است (شکل 3 و 4).

[گراف]

شکل 3. میزان رامیوز تولید شده در زمان‌های مختلف گرم‌مگاری

[گراف]

شکل 4. درصد توانتای امولسیفیکاسیون نفت خام در زمان‌های مختلف گرم‌مگاری

هنگامی که از گلوز در تولید رامیوز استفاده شد، بررسی روش فن-سولفوریک استد و توانتای امولسیفیکاسیون نفت خام در زمان 96 ساعت مورد آن بود که بیشترین میزان رامیوز تولید شده در شرایط: 200 rpm، pH 4/3، C/N 1/5 درصد تلفیق، 33 درجه سانتی‌گرم در لیتر است که میزان امولسیفیکاسیون نفت خام در این شرایط برابر با 53% مشاهده گردید. در حالی که هنگام استفاده از ماس به عنوان منبع کربن و انرژی، میزان امولسیفیکاسیون 55/5% بود و تولید نیز 0/059 گرم در لیتر افزایش یافت. نتایج بدست آمده بر اساس روش تاگ‌چی برای پرسی تأثیر فاکتورهای مختلف در تولید به شرح جدول 3 است.
پس از بررسی نتایج جدول ۳، جدول آنالیز واریانس (ANOVA) با دین نظر گرفتن پنج فاکتور دما، میزان pH، میزان C/N، درصد تلفیق و نسبت C/N، با نرم افزار Qualitek 4 بصورت زیر با هدف آمده:

<table>
<thead>
<tr>
<th>جدول ۳</th>
<th>آنالیز واریانس</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors</td>
<td>DOF</td>
</tr>
<tr>
<td>دما</td>
<td>۱</td>
</tr>
<tr>
<td>pH</td>
<td>۱</td>
</tr>
<tr>
<td>C/N</td>
<td>۱</td>
</tr>
<tr>
<td>درصد تلفیق</td>
<td>۱</td>
</tr>
</tbody>
</table>

نتیجه حاصل از جدول ۴ (آنالیز واریانس) بیانگر آن است که با توجه به درصد‌های با هدف آمده، فاکتور دما، میزان pH، درصد تلفیق و نسبت C/N، باعث بر افزایش تولید تأثیر دارند و میزان C/N خطأ (نقش سایر عوامل) نیز درصد اندکی کسب کرده است.

بحث

بیوشورفناکت تولیدی باکتری سودوموناس اتروژنجیوزا در طول رشد بر روز میانگین کربنی مختلف خصوصاً مواد هیدروفسیل مانند هیدروکربنها تولید می‌شود. این باکتریها هیدروکربن‌ها را در محیط رشدشان امولسیفیته می‌کنند. با توانستن به سهولت آنها را مصرف کنند. این بیوشورفناکت‌ها نه تنها خارج سلولی هستند بلکه نقش مهمی در جذب مواد غیر محول در آب با همکاری عمل انحلال کانی از امولسیفیکاسیون ایفا می‌کنند که این خاصیت بیای کمک کند هیدروکربن‌های آلی‌افتک و آروماتیک احتمال پیامدهای این مشابه نتایج روزنبرگ و همکارانش (۱۹۷۹) است. اگر گونه‌ها از مطبوعات و نوشتارهای علمی بررسی‌های جدید سرویک از سودوموناس‌ها یافت‌شده‌اند که مواد عامل سطحی، تولید می‌کند. این ترکیبات از نوع گلیکولیپید هستند. ویژگی‌های شیمیایی این ماکرومولکول‌ها زمانی که سودوموناس روی منابع کریزی هیدروفسیل‌ها در سیالویک یا نیژولیپید شکل می‌گیرد باعث شده‌اند به شکلی است. را به رامولیپید ها نسبت دهند [۱۶]. با توجه به آزمایش‌های آزمایشگاهی، ساعت رامولیپید که در این تحقیق انجام گردید مشاهده شد که سودوموناس اتروژنجیوزا همچنین MM101 تولید رامولیپید می‌کند که این بیوشورفناکت خاصیت فعالیت سطحی و امولسیفیکایی از خود برقرار می‌دهد.

رامولیپید، در محیط‌های شامل باب‌گلوکز یا گلیپسول تولید می‌شود. این بیوشورفناکت‌ها در مراحل انتهایی فاز لگاریتمی، پس از رسیدن به فاز رکود، رشد و هیزمان با هم مصرف رسیدن نیژولیپید می‌شود. تولید می‌شود [۱۷].

۱. Rosenberg ۲. Late exponential phase ۳. Stationary phase
در این تحقیق نیز با توجه به آزمایش‌های انجام شده این نتیجه حاصل شد که باکتری سودوموناس اتروجینوزا پس از رسیدن به فاز رکود در محیط کشت M3 شروع به تولید رامولپیپید می‌کند. تولید بیشتر بیوسورفاکانتها در شرایطی مانند محیط‌های نیتروژن و آهنج انجام می‌گردد. پس نتیجه می‌گیریم نسبت کربن به نیتروژن (C/N) محیط، فاکتور مهمی است که تولید رامولپیپید را تحت تأثیر قرار می‌دهد [۱۵].

در آزمایش‌های انجام شده در این تحقیق که با نتایج انجام شده با اضافه کردن رامولپیپید حاصل از فعالیت باکتری سودوموناس اتروجینوزا در محیط M3 و اجد مالس مشاهده شد که این ماده روی نتایج حاصل، فعالیت امولسیفاری در خود نشان می‌دهد. قابل ذکر است منابع کربنی قابل حل در آب مانند ولگر، گلکوز، مائوتول و اتانول همگی برابر تولید رامولپیپید توسط سوپودوموناس به کار می‌روند. در بررسی‌های انجام شده در این تحقیق، مالس به عنوان منبع کربنی استفاده شد [۸] و محتویات نیتروژن نه تنها افزایش تولید بیوسورفاکانت را به دنبال دارد بلکه ترکیب آن را می‌تهیه تأثیر قرار می‌دهد [۲۲].

تولید دماکترین رامولپیپید بعد از محدود کردن نیتروژن در نسبت C/N مداوم ۱۸-۱۲ اتفاق می‌افتد و حداقل C/N ۱۹ در ۱۱ تولید می‌شود و آن زمانی است که نیتروژن در محیط محدود شده است [۱۱].

در بررسی‌های انجام شده در این تحقیق در مورد میزان تلقیح مناسب سوپاسیسیون اولیه باکتری سودوموناس اتروجینوزا با محیط‌های متشکل با منبع کربنی قندی که در این تحقیق از گلکوز و مالس استفاده شده است با توجه به نتایج حاصل از آزمایش‌های انجام شده می‌توان به این نکته پی برد که مناسبترین میزان تلقیح سوپاسیسیون به محیط کشت ۵% است. با از این‌ها انجام شده در زمان مختلف گرم‌خانه‌گذاری در شرایط ۲ درصد تلقیح و pH ۷/۶، C۰۰ = دما به این نتیجه رسیدیم که بیشترین میزان تولید در محیط ۳ مول مابین گلکوز در زمان ۹۶ ساعت انجام می‌گیرد که برای با ۲/۰ گرم در لایه است. با توجه به این نتایج مشاهده شد که می‌توان به اینکه باکتری‌های گرم‌متیک مانند سوپودوموناس اتروجینوزا معمولاً با پدیده (Qorum) تولید رامولپیپید را آغاز می‌کنند. این سیستم به هنگام تعمیر باکتری‌ها به حد کافی برای فعالیت سیگنال حساس، فعال می‌شود و درنهایت به فعالیت شدن آنزیم رامولپیپید ترانسفارز منجر می‌گردد. هنگامی که تعداد باکتری‌ها در اثر اتمام منبع کربن و انتزای از حد کافی برای تولید سیگنال کاهش یابد، میزان فعالیت آنزیم رامولپیپید ترانسفارز نیز کاهش یافته و نتیجه از تولید رامولپیپید کاسته می‌شود. این مشاهدات با مشاهده‌های وسیعی از محققینی که بر روی تولید بیوسورفاکانت با این باکتری تحقیق کرده‌اند مشابه است [۱۰].
در آزمایش‌های انجام شده در این تحقیق از ملاس و گلزک به عنوان منبع کربنی استفاده شد. نتایج حاصل از ملاس که گفته می‌شود در آن سوکروژ است نشان داد که باکتری سودوموناس اتروژنیوزا در حالت طبیعی نیازی استفاده از سوکروژ را ندارد ولی به دلیل استکاره‌های پلاسمیدی که روی سویی مورد استفاده انجام شده می‌تواند از سوکروژ موجود در ملاس به خود ۴ ۹ درصد کل ملاس را تشکیل می‌دهد استفاده کند.

میزان مصرف گلزک مورد استفاده به عنوان منبع کربنی در آزمایش‌ها مختلف ۱۲/۸ درصد است و در استفاده از سوکروژ نیز از میزان ۲ درصد آن استفاده شده که معادل ۴ ۳ درصد ملاس در مهیاط ۳ می‌باشد.

با بررسی تأثیر میزان هواهی در میزان تولید رامانلیپید مشخص شد که شدیدترین مشاهده خواهد نمود و با گریف pH افرازیش هواهی باعث افزایش تولید میشود و کنت میکروارگانیسم در دور rpm ۲۰۰ تولید بهتری را به دنبال دارد.

با بررسی تأثیر pH رامانلیپید مشخص شد این فاکتور تأثیر زیادی در تولید رامانلیپید دارد. pH افرازیش را در حد پایین‌تر باند (مثلاً در حدود ۵-۶) کاهش داده و رامانلیپید مشاهده خواهد نمود و با گریف pH بیش از pH مناسب برای تولید رامانلیپید، به حدود خصوصی است و این به دلیل است که هر باکتری در محیط خاصی از می‌تواند رشد کرده و فعالیت کند و در کل به‌طور کلی از آن یا رشد بیشتر از آن باز می‌ماند با این حال، این برای تولید pH محصول کافی‌تر می‌شود.

در آزمایش‌های انجام شده در این تحقیق، مناسب pH برای با در تولید ۱/۶۰ می‌گردد بهتر و تولید رامانلیپید ۷ تولید رامانلیپید در محیط pH ۶/۱۶۰ می‌باشد.

گزارش شد.

در مورد تأثیر خاکی کرد به این نشان کرد که چون باکتری سودوموناس اتروژنیوزا یک باکتری مزویفل است پس مناسب‌ترین درجه حرارت برای رشد این گیاه ۳۳۰ درجه سانتی‌گراد است و لی می‌تواند در دمای بین ۳۵ تا ۴۲ درجه سانتی‌گراد رشد کند. خانم رستمی نیز در پایان نامه خود نتایج مشابه را با ملاس می‌پدید نشده نکرد است [۲].

در این تحقیق قریب‌ترين میزان تولید رامانلیپید در دمای ۳۳ درجه سانتی‌گراد شاهد است. می‌توان نتیجه گرفت که دمای ۳۳ درجه سانتی‌گراد برای تولید رامانلیپید توسط سودوموناس اتروژنیوزا در محیاط ۳ می‌باشد.

است. شرایط محیطی و غذایی میزان تولید بیوسورفاکتنت رامانلیپید توسط سودوموناس اتروژنیوزا را تحت تأثیر قرار می‌دهند. بررسی‌های این دانشمندان در مورد فرمولاسیون محیط‌های رامانلیپید به دلیل نتایج مثبتی که به‌طور خاص در تولید تکیپ‌های از رامانلیپید داشته‌اند با حداکثر رسادن غلظت نمک‌های منیزیم، کلسیم، پتاسیم، سدیم و عناصر جزئی حاصل می‌شود [۱۱].
بررسی‌ها نشان دادند که زمانی‌که گل‌گزاری به عنوان سویس‌ترای اولیه به ۷۳ گرم در لیتر رسیده شود در
دماهی ۴–۴۰/۲۰–۲/۴، pH به‌ترتیب میزان پیش‌رخکت‌ها تولید می‌شود.

میکروگانیم‌های تولید کندتر بی‌پیش‌رخکت‌ها از جمله سودوموناس اتروجینوسا بر اساس تولید
پیش‌رخکت‌ها توانایی امولاپکسیاسیون را دارند که با این خاصیت، باعث افزایش سطح و گل‌گزاری
شدن هیدروکریز می‌شود که این، مکانیسمی برای مصرف آنزیم‌های هیدروکریز و تولید امولاپکسیاسی
موردنظیر است [۷]. هر چه میزان تولید رامنولپید بیشتر باشد درصد امولاپکسیاسیون نفت خام نیز افزایش
می‌یابد.

پیش‌رخکت‌ها با تشکیل میشل‌ها، باعث محلول‌سازی نفت در آب می‌شوند و تشکیل میکرو امولاپکسیاسی
را می‌دهند. در املاح‌های انتخاب شده در این تحقیق بی‌پیش‌رخکت درصد امولاپکسیاسیون نفت خام ۵۵/۵ به
دست آمد. با توجه به جدول آنالیز واریانس، میزان نشا (فاکتورهای استفاده‌نشده) درصد اندکی بالاتر ایننکه است که این
مطلب، میزان اهمیت فاکتورهای انتخاب شده را تأیید می‌کند [۲].

برای سنگ‌نوازی میزان رامنولپید و درصد توانایی امولاپکسیاسیون نفت خام، از میان رویی حاصل از سنترفیوز
محیط‌های کشت هستند که میان رویی به شکل اینکه رامنولپید خارج سلولی بوده و پس از سنترفیوز در
میان رویی باقی می‌ماند حاصل رامنولپید است.

برای اماده‌سازی میان رویی حاصل از سنترفیوز برای سنگ‌نوازی رامنولپید از هوش استفاده می‌شود که
در روش اول از کلروفورم- مینتر در روش دوم از دو یا دو سر انت سرد شده و در روش سوم از انتل استثنای به عنوان
حمل استفاده می‌شود که چون کلروفورم- مینتر نسبت به دو روش دیگر، دیتر بخار می‌شود پس دو روش دیگر
برای آماده‌سازی بهتر است. در این تحقیق از روش دوم با حل بالای الانت انسید شده است.

نتیجه‌گیری نهایی

در این تحقیق، هدف آن بود که از ماده‌ای ارزان قیمت، ولی غنی از لحاظ غذایی برای تولید رامنولپید توسعه
بکری سودوموناس اتروجینوسا استفاده شود که از ملاس به عنوان منبع گردنی در محیط کشت استفاده گردید.
این باکری نمی‌تواند قد ملاس (سکاروز) را به مصرف برساند، ولی سیوط مورد استفاده به دنبال دست
ورزی یا زننده کننده آنزیم بر روی آن به راحتی می‌تواند سه‌کاروز را به رامنولپید تولید نماید
به شرح چگانه تولید نوبین‌های ریو ملاس انجم شده و دیو ملاس یا اسید کلرید به تیمار و در دسترس
میکروگانیم‌ها قرار گرفت. در این پژوهش شرایط مختلف بررسی شده است و انتالیز میزان رامنولپید تولیدی با
روش‌های فنال- سولفوریک اسید، کرموتوقاچی‌ها مانند نازک و تاثیر امولاپکسیاسیون نفت خام
بررسی و تایید گردید. این تحقیق برای اولین بار ارزش ملاس چندرین تیمار شده را به عنوان منبع کربن برای

۵۴۱
References

248.
