تولید رامونولپید توسط باکتری سودومونوس انروجینوزا از ملات

چگندر قند تیمار شده

رضاسلامی: گروه زیست شناسی، دانشگاه ازاد اسلامی واحد ملارد
مهمان مناظره اسپید، مهرداد آقین: پژوهشکده بیوتکنولوژی سازمان پژوهش‌های علمی و صنعتی ایران
mxmazaheriassadi@yahoo.com

چکیده
بیوسورفتکناتها و محاصلات طیف وسیعی از میکروارگانیسم‌ها هستند که در حال حاضر دیار و یگان فعالیت سطحی داد. گلیکولیز، سفنولیزهای و انیمیتی، لیپیدهای و لیپیدوئیژن‌ها، بیوسورفتکناتها نمی‌پردازند. رامونولپید نوعی بیوسورفتکنات از گروه گلیکولیزهای توسط باکتری سودومونوس انروجینوزا تولید می‌شود. این تحقیق از باکتری سودومونوس انروجینوزا استخالت انجام داده‌اند که در کلکسیون میکروبی سازمان پژوهش‌های علمی و صنعتی ایران به تجربه گردید. این باکتری در محیط کشت نمک‌های معدنی 3M و راه ماسکی است که با استفاده از ملات، ساکوراژ است که باکتری سودومونوس انروجینوزا تولید می‌شود. این تحقیق به دلیل آنکه دست و روزی‌های زندگی بر روی آن انجام شده است، قادر به استفاده از قند ساکوراژ است به شرط آنکه الودگی‌های نمک‌یابی موجود در ملات حفظ شود. لذا از روش تیمار شیمیایی ملات، خالص‌سازی شده و در دسترس میکروارگانیسم قرار گرفت. رامونولپید تولید شده با آزمایش‌های نمک‌یابی و روش فلز سولفی‌ریک اسید و توانایی امولفسیفاسیون نفت خام (با استفاده از میزان گلیکز، اکسیژن راه اندازی) توسط رامونولپید ANOVA تجزیه و تحلیل آماری شدند. نتایج نشان داد که بهترین شرایط برای تولید رامونولپید شاخص نسبت 100/200 و درصد تفهیم=1/2 در زمان 60 ساعت است. میزان رامونولپید شده (161/20 گرم در لیتر) درصد توانایی امولفسیفاسیون نفت خام 63% بود. در حالی که در ملات تیمار شده، تولید رامونولپید با میزان تلفیق 7% از پیش کشته به محیط کشت تولید دارای نسبت 12/6/4 C/N در دمای c 30 گرم در لیتر و درصد توانایی امولفسیفاسیون نفت خام 62% بود. در دمای 70 c 200 درصد توانایی امولفسیفاسیون نفت خام 65% بود (معادل 2/0 گرم رامونولپید در لیتر) و درصد توانایی امولفسیفاسیون نفت خام 65% بود (معادل 2/0 گرم رامونولپید در لیتر)

1. *Pseudomonas aeruginosa*
2. *P. aeruginosa MM1011*

واژه‌های کلیدی: بیوسورفتکنات، رامونولپید، سودومونوس انروجینوزا، ملات، چگندر قند

دریافت 9/4/19
پذیرش 8/9/19

511
مقدمه

بیوسورفاکتانت‌ها، مولکول‌های آمافیلیک هستند که شامل بخش‌های هیدروفیلیک و هیدروفیلیک هستند. ویژگی سرفاکتانت‌ها، از تعالی‌پذیری بخش‌های هیدروفیلیک و هیدروفیلیک آن تعیین می‌شود به همین دلیل، بیوسورفاکتانت‌ها می‌توانند در مزر بین فازهای مایع با دیدگاه مختلف پنوماتیک و بیوندهای هیدروفیزی مانند نفت/آب قرار گیرند[1]. بیوسورفاکتانت‌ها به دلیل توانایی نسختن توده‌های شیمیایی و گسترش قابل توجهی در بین عناصر مختلف مایعات مایع استفاده کرد، این دلیل برای تولید بیوسورفاکتانت‌ها و همچنین برای تولید نفت‌آب بازیافتی نفت[2] (MEOR) حاصل آمیده، استفاده در پالسازی منابع نفتی در کنار تولید بیوسورفاکتانت‌ها شیمیایی و همچنین به‌صورت خالص باشند.

بیوسورفاکتانت‌ها به دلیل کاربرد و سرعت فيلم‌های مختلفی از قبیل پتروشیمی، داروسازی، پزشکی، آرایشی، غذایی، کشاورزی، نساجی، چرم‌سازی، کاغذسازی و ... از اهمیت بسیاری برخوردارند. به‌طور کلی از روی استفاده بیوسورفاکتانت‌ها در صنایع نفت و پتروشیمی بازیافت نفت است. این ویژگی در یک بیوسورفاکتانت با فرمول[3] می‌تواند نفت‌آب بازیافتی برای استخراج بهبود بر می‌آورد از مکانیسم‌های فیزیکی و مکانیزم‌های شیمیایی با نفت‌آب بازیافتی از سبک‌های مختلف[4] بیوسورفاکتانت‌ها به دلیل بهبود فیلترنگ و خاصیت اکتیفیکاتور می‌توان از نفت‌آب بازیافتی استفاده کرد.

لوله‌های انتقال نفت بکار می‌رود[2],[3],[11],[12]. افزایش بازیافت نفت به عنوان یکی از مهم‌ترین اهداف تولید بیوسورفاکتانت‌ها همواره مطرح بوده است. عمل محرکسازی توسط محلول‌های سورفاکتانت به‌منظور به دام‌انداختن نفت بعد از طیف‌های از صنایع نفت به مدت طولانی مورد استفاده قرار می‌گرفت برای بازیافت نفت، سورفاکتانت‌ها باید در صفحه سطحی و درون سطحی بین نفت و آب را در میان‌نشتی بنمایند، به‌طور چشم‌گیری کاهش داده و باعث تسهیل جریان نفت شود. بررسی‌های آزمایشگاهی رشد میکروباتیک در میان‌نشتی نفت‌آب برای کاهش نفت شود. در حال حاضر از سرفاکتانت‌ها با پنوماتیکی برای کاهش نفت‌آب بازیافتی استفاده می‌شود. می‌توان با این نیاز استفاده میکروسیستم‌های تولید بیوسورفاکتانت کنند و برای بازیافت نفت فعال شوند. در روش دوم، می‌توان هر میکروراتیک‌نامه‌ها

1. Microbial Enhanced Oil Recovery
توجه داشته باشید توسط باکتری سودوموناس اتروژینوزا از ملاس

ارضامضای و همکاران

اختصاصی را در برای تولید بیوسورفاتانت تحقیق و آنها را وارد
مخلزان نفی کرده باید باعث افزایش نفت از
مخلزان شوند و سرانجام در روش سوم می‌توان بیوسورفاتانت به‌عنوان
افزودنی میکروگانژیسم‌ها را جدای
کرده و در پزشکانی، مورد استفاده قرار داد. استفاده از سوپرمارکت‌های زاده (پاسخگو) و ارزان قیمت، مانند ملاس،
آب پنیر و ... برای رشد میکروگانژیسم‌ها نسبتاً مقرن بهصرفه است. ملاس، در حیطه محصول فرعي
کارخانجات قد اکنون که در شرایط کار معمول، دیگر نمی‌توانند دو آریستالیزه کرد. میزان محصول ملاس
هر کارخانه گرافیتی‌1/3 محصول شکر آن کارخانه است و با آن به نحوی از این ملاس که درصد زیادی از مواد
اولیه را دارد استفاده کرد. ملاس کاربردهای فراوانی دارد که به دو صورت مورد استفاده قرار می‌گیرد.

ملاس برای بدن منشا تولید آن و نوع ماده اولیه (چندار قند یا نیشکر) دارای مشخصات مختلفی است. در این
تحقیق از ملاس چندار قند با مشخصات زیر استفاده شد: آب 20%, ساکراروز 44%, خاکستر 1%, قد اورت +
راقی نوز 1% و مواد آلی غیر قندی 20%. ملاس چندار قند دارای مقادیر برابری مواد آلوده کننده محیط زیست و دارای
زیادی است که مانع
تخمیر می‌شود و ضمناً باید توجه داشت که فاضلاب صنایع مصرف کننده ملاس را نمی‌توان به مجازی آب
روندخانه ها هدایت کرد.

میکروگانژیسم

میکروگانژیسم مورد استفاده در این تحقیق باکتری سودوموناس اتروژینوزا 1011 است که از
کلکسیون میکروگانژیسم‌های عفونی و صنعتی ایران، پژوهشگاه بیوتکنولوژی سازمان پژوهش‌های علمی و
صنعتی ایران تهیه شد.

مواد مورد استفاده

- محیط نمک‌های معدنی (جدول 1) واجد گلوکوژا می‌باشد. قیل از افزودن ملاس، باید آماده‌سازی آن به

شرح زیر انجام گرفت:

1. گرم ملاس را در 100 میلی‌لیتر HCl مفرغ حل کردن پس از صاف کردن، 1 میلی‌لیتر

ضفاینگرد در تهیه شد. سپس به مدت 35 ساعت در درجه حرارت 35 درجه

سانتی‌گراد قرار داده شد. بعد از 34 ساعت، به مدت 10-15 دقیقه با دور

5000 سانتی‌فاز شده محول

رویی به مدت 12 دقیقه اکولاژن گردید به محیط کشت اضافه شد [3].

- محیط‌های

نفت خام، یا 

\[ N. A. \]

\& \[ N. B. \]

- نفت خام، پالایشه‌گاه آبادان

روش‌ها

رسم منحنی رشد باکتری سودوموناس اتروژنیوزا و منحنی استاندارد قند رامنوز
این آزمایش به منظور زمان تلفیق مناسب باکتری از محبیت کشت اولیه به محبیت کشت اصلی انجام شد. به این منظور، با لوب، کلری باکتری از محبیت به ارتفاع ۱۰۰ میلی‌لیتر محبیت W وارد شد. با فواصل زمانی یک ساعت، تحت شرایط استریل، ۲ میلی‌لیتر از محبیت برداشت شده جنب آن در ۱۱۰ نانومتر اندمازگیری شد و این کار تا زمانی ادامه یافت که باکتری وارد فاز استیت‌ش [۷].

برای محاسبه میزان تولید رامنولیپید با توجه به میزان جنب نوری آن در طول موج ۴۸۰ نانومتر، منحنی استاندارد قند رامنوز رسم شد. برای انجام این آزمایش از غلظت‌های ۰/۰، ۰/۱/۰/۰گرم در لیتر رامنوز خالص استفاده شده و میزان جنب آن سنجیده شد. در این آزمایش از NaHCO₃/۰/۱ مولار برای حل کردن قند رامنوز استفاده گردید [۷].

بررسی زمان‌های مختلف گرم‌دودی در محبیت

برای متابولیسم میکروبی سودوموناس اتروژنیوزا از مخلوط

با استفاده از نیژه از این مخلوط ۱/۰ مولار NaHCO₃ و برای تهیه محلول شاهد نیز از ۳/۰ مولار pH=۷/۰ و میزان

۴۴ تا ۱۲۰ ساعت در محبیت کشت ۳M واجد میلاد در نمای c.۳۰، دور هیژن=۱۰۰ rpm=۵۰۰ و میزان
توجه موادسیفکاسیون نفت خام

در این آزمایش از لوله‌های با قطر یکسان استفاده شد. ابتدا 5 میلیلیتر از منظوره که pH آن را 7 تنظیم شده بود داخل لوله ریخته شد و بعد 5 میلیلیتر نفت خام به آن پس‌گردید. هر کدام از لوله‌ها با افزایش 3000 rpm تا سرعت یک دقیقه به شدت همگن شد و سپس به مدت 24 ساعت در دمای 25 ± 2 درجه سانتی‌گراد ماند. طول لایه نفت امولسیفکاسیونشده اندوز می‌گیرد و ضرب حاصل امولسیفکاسیون با استفاده از فرمول زیر بدست آمد:

\[
\text{طول لایه نفت امولسیفکاسیون شده} = \text{ضرب حاصل امولسیفکاسیون} \times 100
\]

سنجش کمی قد رامنوز

برای سنجش کمی قد رامنوز ابتدا باید رامنوز را از بخش لیپیدی جدا کرد. برای این منظور، 2 میلیلیتر از منظوره φ pH را به مدت 15 دقیقه در دمای 25 ± 1 درجه سانتی‌گراد به مدت یک گذاره رسیده شد و بعد از آن به مدت 30 دقیقه در دمای 25 ± 2 درجه سانتی‌گراد برای استخراج جدا شد. به همراه آن در دمای 400 درجه سانتی‌گراد تحت شرایط خلاصه شد. به پس از انتقال به صورت عموم نیاز به همهم‌گردانی NaHCO₃ و مواد حل شده باید سنجش میزان ضد رامنوز آماده شد. به مدت 2 میلیلیتر از محلول قند آماده شده، 1 میلیلیتر فلز 5% اضافه گردید. سپس به سرعت نزدیک سطح محلول، 5 میلیلیتر اسید سولفوریک گلی (98% - 95%) ریخته شد. سپس، شیشه را به مرحله داشتن به پیشی آوردن اسید سولفوریک نیاز به سوختن داخل محلول شد. پس به مدت 10 دقیقه به‌حالیکه سکشگی داشت شد. سپس به‌طور 200 ± 3 سرد شده سپس جذب نوری آن با استفاده از دستگاه اسکتروفوتومتر در طول موج 480 nm اندازه‌گیری شد [16].

بررسی میزان تولید رامنولیپید در شرایط مختلف

برای آزمایش انتخاب شده، 5 فاکتور دیگر، pH، مقدار دما، دور شیکر (میزان هواده)، میزان تلقیج سوسپنستون، نسبت C/N بر اساس روش تالگوچی و با استفاده از آراپی 8 L و به شرح جدول ۴ در جدول ۳ ذکر شده است.
نتایج
برای رسم منحنی رشد باکتری سودوموناس انروجنیوزا، طبق روش کار مشخص شد که زمان مناسب برای تلقیح سوسپنسیون اولیه باکتری (پیش کشت) به محیط‌های کشت اصلی، انتهای فاز نگارشی است که طبق شکل 1 در زمان 9 ساعت پس از کشت باکتری در محیط کشت N.B. می‌باشد.
در روش قلم سولفوریک اسید به دلیل اینکه میزان رامنوز به طور مستقیم منجر به محیط این گیاه می‌شود و از روهای رامنوز باطور نزدیکی می‌بیند گزارش می‌گردند یکی بر این به داشتن منحنی استاندارد رامنوز (شکل 2) نیاز داریم. در این برسی از نگاه‌های یک/0.250 گرم در لیتر استفاده شده و به روش قلم سولفوریک اسید میزان جنب آن در طول موج 480 nm به دست آمد.

ن.ب.
شکل 1. منحنی رشد باکتری سودوموناس انروجنیوزا در محیط کشت

شکل 2. منحنی استاندارد قند رامنوز
بررسی زمان‌های مختلف گرم‌گذاری در محیط 3M واجد ملاس

اثر زمان‌های مختلف گرم‌گذاری باکتری سودوموناس اتروژنیزا در محیط کشت 3M بین زمان‌های 24 تا 120 ساعت مورد آزمایش و بررسی قرار گرفت. میزان قند رانونوز تولید شده و توانایی امولسیفیکاسیون نفت خام در زمان‌های مذکور سنجیده شد و نشان داده شد که بیشترین میزان آنها پس از 96 ساعت و بعثت برای با 2/20 گرم دریچی و 55/5% است (شکل‌های 3 و 4).

![شکل 3. میزان رانونوز تولید شده در زمان‌های مختلف گرم‌گذاری](image1)

![شکل 4. درصد توانایی امولسیفیکاسیون نفت خام در زمان‌های مختلف گرم‌گذاری](image2)

هنگامی که از گلولک دیترمیز پناه هستند، سه باره روش قبل مولکولار، سولفولیک اسید و توانایی امولسیفیکاسیون نفت خام در زمان 96 ساعت مورد آزمایش قرار گرفت که بیشترین میزان رانونوز تولید شده در شرایط:

- pH = 3/2
- C/N = 1/6
- تهیه میزان ۲۰ به ۸۰ کمپرس

گرم در لنز است که میزان امولسیفیکاسیون نفت خام در این شرایط برای با ۵۳% مشاهده گردیده در حالی که به هنگام استفاده از ملاس به عنوان منبع کرین و انزیمی میزان امولسیفیکاسیون ۵۵/۵% بود و تولید نیز ۰/۰۵٪ گرم در لنز افزایش یافت. نتایج بدست آمده بر اساس روش تاگوچی برای بررسی تأثیر فاکتورهای مختلف در تولید، به شرح جدول ۳ است.
جدول ۳. نتایج حاصل از آزمایش‌های انجام شده بر اساس روش تک‌گیچی برای بررسی تأثیر فاکتورها مختلف

<table>
<thead>
<tr>
<th>دما</th>
<th>pH</th>
<th>C/N</th>
<th>درصد تلیف</th>
<th>خطاوارد نیترژن</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>دما</td>
<td>DOF</td>
<td>Sums of Squares</td>
<td>Variance</td>
<td>F-Ratio</td>
<td>Pure Sum</td>
</tr>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>دما</td>
<td>DOF</td>
<td>Sums of Squares</td>
<td>Variance</td>
<td>F-Ratio</td>
<td>Pure Sum</td>
</tr>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
</tbody>
</table>

نتیجه حاصل از جدول ۳ (آنالیز واریانس) بیانگر آن است که با توجه به درصد تغییر بعده‌ای آب، فاکتور دما، دما، قریب‌های هیدروپاتیک، pH، درصد تلیف و نسبت C/N با ترتیب به آزمایش تولید تأثیر دارد. با تنظیم، این نتایج به میزان pH و C/N، خطأ (نقطه سایر عوامل) نیز درصد اندازی کسب کرده است.

بحث

بیوسورفاکتان‌ها الهام‌بخش به‌طور کلی سودومونناس اتروژنیوزا در طول رشد در روند متابولیستی مختلف خصوصا مواد هیدروفوبیک می‌تواند هیدروفوبیک را تولید کند. این بیوسورفاکتان‌ها هم در محیط رشد نشانه‌ای از C/N و pH می‌کند با داشتن سه نیترژن. به‌طور کلی این بیوسورفاکتان‌ها را به سودومونناس رنگ‌رسی تغییر داده‌اند. با استفاده از سیستم‌پردازی شبیه‌سازی و یوگریج‌های شیمیایی این ماکرومولکول‌ها، سودومونناس روند متابولیستی هیدروفوبیک یا لیپاسی رشد می‌کند با داشتن سه نیترژن در باعث شدن رشد رنگ‌رسی می‌کند که این تحقیق انجام گردید مشاهده شد که سودومونناس اتروژنیوزا سویه ۱۱۱۰۱۰ را تولید داشت که این بیوسورفاکتان‌ها

جند سویه از سودومونناس اتروژنیوزا سویه ۱۱۱۰۱۰ را تولید داشت که این بیوسورفاکتان‌ها

۱. Rosenberg ۲. Late exponential phase ۳. Stationary phase
در این تحقیق نیز با توجه به ازمایش‌های انجام شده ابتدا نتیجه حاصل شد که باکتری سودوموناس انرژنیوزا پس از رسیدن به فاز رود در محیط کشت 3M شروع به تولید رامولیپید می‌کند. تولید بهتر بیوسوفاکтанسها در شرایطی مانند محیط‌های نیتروژن و آهن انجام می‌گیرد. پس نتیجهٔ مگریسم نسبت کربن به نیتروژن (C/N) محیط، فاکتور مهمی است که تولید رامولیپید را تحت تأثیر قرار می‌دهد [15].

در ازمایش‌های انجام شده در این تحقیق به نفاط انجام شده با اضافه کردن رامولیپید حاصل از فعالیت باکتری سودوموناس انرژنیوزا در محیط 3M و احتمال مشاهده شده که این ماده رهیافت‌هایی می‌کند که در نتایج حاصل از ازمایش‌های انجام شده می‌توان به این نکته پی برد که مناسب‌ترین میزان تلقیح سوسپانسیون به محیط کشت ۱۵/۰% است. با ازمایش‌های انجام شده در زمان‌های مختلف گرخانه‌گذاری در شرایطی بهمکناری بهره‌برداری میزان تولید در محیط 3M و احتمال گیرا در زمان ۹۶ ساعت انجام می‌گیرد که برای باکتری سودوموناس انرژنیوزا موجه می‌باشد [۲۰]. در این مورد می‌توان گفت با اینکه در ازمایش‌های انجام شده در زمان ۹۶ ساعت انجام شده، از رامولیپید به‌عنوان منبع کربن و قرارداری بازرسی‌های میکروبی به‌کارگرفته شده است [۱۶].

تولید رامولیپید توسط باکتری سودوموناس انرژنیوزا از ملایست ۱۶ اتفاق می‌افتد و حداقل C/N معادل ۱۴ کمتر از ۱۱ تولید می‌شود و ۰/۰۰ میزان است که نتیجه در محیط‌های محیراب‌های اولیه باکتری سودوموناس انرژنیوزا به میلی‌گیاهی کشت به منبع کربن قدری که در این تحقیق از گلوکز و میزان استفاده شده است با توجه به نتایج ازمایش‌های انجام شده می‌توان به این نکته پی برد که مناسب‌ترین میزان تلقیح سوسپانسیون به محیط کشت ۱۵/۰% است. با ازمایش‌های انجام شده در زمان‌های مختلف گرخانه‌گذاری در شرایطی بهمکناری بهره‌برداری میزان تولید در محیط 3M و احتمال گیرا در زمان ۹۶ ساعت انجام می‌گیرد که برای باکتری سودوموناس انرژنیوزا موجه می‌باشد [۲۰]. در این مورد می‌توان گفت با اینکه در ازمایش‌های انجام شده در زمان ۹۶ ساعت انجام شده، از رامولیپید به‌عنوان منبع کربن و قرارداری بازرسی‌های میکروبی به‌کارگرفته شده است [۱۶].

کتبیر از ۱۱ تولید می‌شود و ۰/۰۰ میزان است که نتیجه در محیط‌های محیراب‌های اولیه باکتری سودوموناس انرژنیوزا به میلی‌گیاهی کشت به منبع کربن قدری که در این تحقیق از گلوکز و میزان استفاده شده است با توجه به نتایج ازمایش‌های انجام شده می‌توان به این نکте‌پی برود که مناسب‌ترین میزان تلقیح سوسپانسیون به محیط کشت ۱۵/۰% است. با ازمایش‌های انجام شده در زمان‌های مختلف گرخانه‌گذاری در شرایطی بهمکناری بهره‌برداری میزان تولید در محیط 3M و احتمال گیرا در زمان ۹۶ ساعت انجام می‌گیرد که برای باکتری سودوموناس انرژنیوزا موجه می‌باشد [۲۰].
در آزمایش‌های انجام شده در این تحقیق از ماس و گلزک به عنوان منبع کرینی استفاده شد. نتایج حاصل از ماس که متداول در ایران است، نشان داد که باکتری سودوموناس انروجنیوزا در حالت تولید میکروگالنیمی در سطوح پلاستیکی در حاشیه منبع کرینی حیات دارد.

استفاده از سکوکوز روی دادن وی به دلیل دستگاه‌های پلاستیکی که روی سوپه مورد استفاده انجام شده می‌تواند

از سکوکوز موجود در ماس که حدوداً 49 درصد کل ماس را تشکیل می‌دهد استفاده کند.

میزان مصرف گلزک مورد استفاده به عنوان منبع کرینی در آزمایش‌های مختلف، 1/8/2 درصد است و در

استفاده از سکوکوز نیز از میزان 2 درصد آن استفاده شده که معادل 0/4 درصد ماس در محیط 3M می‌باشد.

با بررسی تاثیر میزان هواهده در میزان تولید رامپولیپید مشخص شد که اکثر بیوسوفیکالنت‌ها در شرایط

هوایی تولید می‌شوند بنابراین در هواهده در میزان تولید، نقش بسزایی دارد. با مقایسه نتایج بدست آمده از

آزمایش‌های مشخص شد که هواهده باعث افزایش تولید میکروگالنیمی می‌شود و کشت میکروگالنیمی در دور

rpm 2000 تولید بهتری را به دنبال دارد.

با بررسی تاثیر pH بر میزان تولید رامپولیپید مشخص شد این فاکتور تأثیر زیادی در تولید رامپولیپید دارد.

اگر pH رشد در حد بافتی باشد (مثلاً در حدود 5-7) کاهش شدید رامپولیپید مشاهده خواهد شد و با افزایش pH حداکثر پایان می‌دهد (مثلاً در حدود 7-10) تولید دوباره کاهش خواهد یافت. نتیجه‌گیری می‌گردد

مناسب برای تولید رامپولیپید، pH حداکثر است و این به دلیل است که هر باکتری در محدوده خاصی از

می‌تواند شدید کرده و فعالیت کند و در کنترل بر بی‌پرداز آن با رشد ناپایدار و در فعالیت این برای تولید

محصول کاسته می‌شود.

در آزمایش‌های انجام شده در این تحقیق، مناسب ترین pH برای 0/7 و در نتیجه 7/10 گرم در لیتر

گزارش شد.

در مورد تاثیر دما نیز با باید خطر نشان داد که چون باکتری سودوموناس انروجنیوزا یک باکتری مزوفیل

است پس مناسب‌ترین درجه حرارت باید یک درجه حرارت باید 0/7-0/3 درست شود و در دمای بین 0/42 و 0/5 نیز

رشد کن. خانم رستمی نیز در پایان نامه خود تاثیر می‌دهد که با ماس تیمار نشان دهنده کرده است.

در این تحقیق بیشترین میزان تولید رامپولیپید در دمای 33 درجه شد است. می‌توان نتیجه گرفت که

دما (0/33 دما) خوبی برای تولید رامپولیپید توسط سودوموناس انروجنیوزا در محیط 3M و 1/2 می‌باشد.

است.

شرایط محیطی و غذایی، میزان تولید بیوسوفیکالنت‌ها رامپولیپید توسط سودوموناس انروجنیوزا را تحت تأثیر

قرار می‌دهند. بررسی‌های این دانشمندان در مورد فرمول‌سازی محیطی مغذی معنی‌داری داشت که به ترتیب میزان

تولید تکیه‌های فعال شناخته و جمع‌آوری (از جمله رامپولیپیدها) باشد حداکثر رضایت خلق نمک‌های میزیمی، کلسیم، پتاسیم،

سندیم و عناصر جزیی پراکنده می‌شود (11).
پررسی به روش دانسته که زمانی که علت گلوبک به عنوان سویسترات اولیه به ۷۲ گرم در لیتر رسانیده شود در

دماه از ۲۳-۳۴ درجه سانتی‌گراد میکروارگانیسم‌های تولید کندن بیوسورفکانتها از جمله سودوموناس اتروجنیوزا براساس تولید

بیوسورفکانت توانایی امولسیفیکاسیون نفت خام را دارند که با این خاصیت، باعث افزایش مصرف و گلوله گلوله

شنید هیدروکربن‌ها می‌شود که این، مکانیسمی برای مصرف آسانتر هیدروکربن‌ها توسط میکرو ارگانیسم‌های

مورد نظر است [۲]. هرچه میزان تولید رامنولپید بیشتر باشد درصد امولسیفیکاسیون نفت خام نیز افزایش

می‌یابد.

بیوسورفکانتها با تنشی می‌شل، باعث محلول‌سازی نفت در آب می‌شوند و تشکیل میکرو امولسیون‌ها را

می‌دهند. در آزمایش‌های انجام شده در این تحقیق بیشترین درصد امولسیفیکاسیون نفت خام ۵۵/۵ بوده است.

با توجه به جدول آنالیز واریانس، میزان خطای فاکتورهای استفاده نشده درصد اندازه‌گیری این مطالب، میزان اهمیت فاکتورهای انتخاب شده را تایید می‌کند [۲].

برای سنگش میزان رمانز و درصد توانایی امولسیفیکاسیون نفت خام، از مابع روی حاصل از سانتریفیوز

محیط‌های کشت استفاده شد که مابع رویی به دلیل اینکه رامنولپید خارج سلولی بوده و پس از سانتریفیوز در

مابع رویی باقی می‌ماند حاصل رامنولپید است.

برای آمداسازی مابع روی حاصل از سانتریفیوز برای سنگش قد رمانز از سه روش استفاده که

در روش اول از کلروفرم- متалی در روش دوم از دی‌تی‌ئی آت سرد شده و در روش سوم از اتیل استانت به عنوان

خلال استفاده می‌شود که چون کلروفرم- متالی نسبت به دو روش دیگر، دی‌تی‌ئی بخار می‌شود پس در روش دیگر

برای آمداسازی بهتر است. در این تحقیق از روش دوم با نسبت آت ات سرد شده است ات سرد شده است.

نتیجه‌گیری نهایی

در این تحقیق، هدف آن بود که از ماده‌ای ارزان قیمت، ولی مفهوم از لحاظ غذایی برای تولید رامنولپید توسط

بакتری سودوموناس اتروجنیوزا استفاده کند که از ماس به عنوان منبع کربنی در محیط کشت استفاده گردید.

این بакتری نرم‌پوست ماس (سکاروز) را به مصرف برساند. ولی سروه مورد استفاده به دلیل دست

ورزی‌های زیستی ۷۲ ساعتی انجام شده که روزانه ۱۴

به شرط آن که مشابه ناخالصی‌ها بر روی ماس انجام شود و یا ماس خام با استفاده از دسترس

میکروارگانیسم قرار گرفت. در این پژوهش شرایط مختلف بررسی شده انتظار می‌رود میزان رامنولپید تولید با

روش‌های فنی- سولفیلیک است. کروماتوگرافی لایه‌نارک و تأثیر رامنولپید بر امولسیفیکاسیون نفت خام

بررسی و تایید گردید. این تحقیق برای اولین بار ارزش ماس چجردی قند تیمار شده را به عنوان منبع کربن برای

۵۴۱


12. S. Horowitz, J. N. Gillbert, W. M. Griffin, "Isolation & Characterization of a Surfactant Produced by Bacillus licheniformis", Society for Industrial Microbiology, 86 (1990) 243-


