اثر کادمیوم بر میزان تولید هیدروژن پراکسید و فعالیت برخی آنزیم‌های (Zea mays L) آنتی اکسیدانی در گیاه ذرت

لطیفه پوراکبر، رقیه اشرفی: دانشگاه ارومیه

چکیده

گیاهان رشد یافته در شرایط هیدروپونیک با کاربرد کادمیوم به‌طور میکرو می‌توانند دچار فرسودگی در متابولیسم دخیل در تنش اکسیداشیون به‌دلیل ایجاد اورئکسیژن و افزایش گروه‌های اکسیدشده شده به‌روش انتی‌اکسیدان‌سازی رشد و تولید پراکسید هیدروژن با اعمال کادمیوم موجب کاهش رشد و وزن خشک گیاهان می‌شود. میزان فعالیت آنزیم‌های کاتالاز (CAT)، آکسیژن پراکسیداز (APX) و گلوتاتیون رودکاتاز (GR) در گیاهان تحت تیمار با کادمیوم افزایش یافته بنابراین اعمال کادمیوم 50 μM به‌طور میکرو افزایش فعالیت آنزیم‌های متولیش می‌نماید.

مقدمه

الودگی خاک و آب به وسیله فلزات سنگین خطر محیطی برای سلامت انسان است. کادمیوم (Cd) که در زمینه مواد سرطانزا برای انسان طبق بندی شده است [23]، از طریق فعالیت‌های انسانی، مثل استخراج معدن، ذوب فلزات، ترکیبات سوختی، فضای گرم و حیوانی استفاده گوشته‌ها در محیط زیست می‌شود [15]. با وجود آنکه کادمیوم ماده‌ای غیرضرری است، بسیار به وسیله گیاهان جنگ می‌شود و می‌تواند در محصولات آنها تجربه شود [22]. ریشه اولین محل تامین با این بیماری است، بنابراین، غشای پلاسمابی سلولی می‌باشد. همچنین، نشان دهنده اینکه کادمیوم و سلول‌های ریشه به‌خواص غشای پلاسمابی و به‌همان اندازه جنگ و انتقال مواد غذایی بستگی دارد. شواد زیادی پیشنهاد می‌کند که محتواي چربی و بروتون غشای مبتنی این است که به وسیله این فلز سبب بیماری [22]. یک نشان دهنده این است که کادمیوم موجب سبب می‌شود تغییرات مورفولوژیکی، فیزیولوژیکی، بیوشیمیایی و ساختاری در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش دهنده این است که کادمیوم موجب می‌شود تغییرات مورفولوژیکی و فیزیولوژیکی در گیاهان مثل مهار رشد و جوانه‌زایی [5]، کاهش جنگ انسان در محیط زیست [23]، در ناحیه شرکت نمایش DAD 84/6572
کادیموم برعکس فلزاتی مثل مس و آهن که از طریق جرخه احیایی مثل فنونی و یا واکنش‌های هدر و ایز "در سمت شرکت می‌کند از طریق مکانیسم‌های غیرمستقیم مثل مداخله در سیستم‌های دفاعی، تخربیز زنجیره انتقال الکترون و انتقال پراکسیداسیون جریب موجب نشان اینکه قابلیت احیای سلولی
گروه‌های سولفیدری پروتئین‌ها موجب مهار و اشکال در ساختار آنها و با انتقال در کنترل احیای سلولی-
گردید [24]. هنچنین این فلز عملاً برای تولید گروه‌های تغییر آکسیژن (ROS) است [25]. برای کنترل سطوح
و محافظت سلول‌ها، گیاهان دارای آنتی اکسیدان‌ها با وزن مولکولی کم (آکورتیک اسید، گلوتاتیون اپی
شده، کارونتوئیدها و تکوکروفول) و آنزیم‌های آنتی اکسیدانی (سوپراکسید دیسمیتاز (SOD)، آسکوربیت
پراکسیداز (APX)، گلابیکول پراکسیداز (GPX) و کاتالاز (CAT) است [26]).

جرخه گلوتاتیون-آسکوربیت مکانیسمی است که از اهمیت زیادی برای کنترل وضعیت احیای سلولی، به
ویژه بعد از اعمال فلزات سنگین برخوردار است [27]. آسکوربیک اسید (AsA) آنتی اکسیدانی ناتویه است که
نقطه مهمی در تولید دوباره آلفا تکوکروفول دارد [28]. هنچنین گروه‌های تغییر غیر پروتئینی، به‌ویژه گلوتاتیون
دارای نقش‌های بسیار مهمی در محافظت گیاهان از تنش‌های محیطی، مخصوصاً در مورد سیمی کادیموم هستند
[29].

این تحقیقات به دلیل نیود منابع اطلاعات کافی در زمینه مکانیسم‌های دخیل در پاسخ گیاهان به عنوان یک
محصول مهم کشاورزی به فلز سنگین کادیموم انجام شده است.

مواد و روش‌ها

بنابراین در " بعد از تهیه از مرکز تحقیقات شنگزوری، قبل از کشت به مدت 10 دقیقه با مخلوط
ضد عفونی و بعد از آب مقرط کامل شستشو داده شدند. طور پیوسته به قطر 5 سانتی‌متر قبل از اقدم به
کشت به مدت 2 ساعت در اون به دمای 100 درجه سانتی‌گراد گرفته. در پایان پس از سرد شدن طور
پیوسته، در ربعی از آنها دو ورق کاغذ صافی گاشته شد و سپس با استفاده از یک پنس استرول دو عدد برک
12 ساعت قبل از کشت در داخل آب مقرط قرار گرفته و در دوره آماس را طی کرده بودند. در داخل آنها کشت و
سپس تمام طور پیوسته در داخل انکوباتور در درجه 37 سانتی‌گراد به مدت سه روز قرار داده شدند. سپس
داهستانه سه روزه به داخل طرف‌های کشت محتوی 300 ml محلول هولنگ منتقل شدند. از این مدت طرح کامل (CDR)
با دو تیمار و هر تیمار در 3 تکرار انجام شد. برای تهیه محلول‌های کادیموم، از
کلرید کادیموم (CdCl2) استفاده شد. دانسرستها به مدت 15 روز در اتاق کشت به دورة نوی 16 ساعت
روش روش‌دار با 8 ساعت متابولیک گردید. در دو روز نورفر معادل 2000 لوسک، درجه حرارت 27/23C (رز/شب) با میانگین
رطوبت 85% قرار گرفتند. در طی این دوره محلول هولنگ هر روز یک بار تعمیر شد. سپس از کشت
روز گیاهان به داخل محلول هولنگ مابین 150 و 50 میکرومولار کلرید کادیموم منتقل شدند و به مدت 15 روز

اندازه‌گیری میزان K^+ نشت یافته به محیط کشت
برای انجام این آزمایش دانسته‌های ۳ روزه دزت به مدت ۲۴ ساعت تحت تیمار ۲۰۰ ml KCl ۱۰ mM، به مدت ۴۸ ساعت تحت تیمار قرار گرفتن و سپس دانسته‌ها با آب مقطر شده شده و با فلسطین دیگر کامدیوم تیمار شده‌اند. به علاوه، برای بررسی میزان تیمار گذشته، میزان تیمار گذشته با استفاده از منحنی استاندارد، میزان پتانسیم نشت یافته به محیط کشت بر حسب ppm محاسبه شد.

اندازه‌گیری مرگ سلولی
مرک سلولی به‌عنوان معیار برای تشخیص دادن آسیب واردشده به غشاء سلولی در گیاهان تیمار شده با کامدیوم، به استفاده از ژنِ بی‌سیز بهترین انتخابی در پژوهش‌های مختلف کامدیوم تیمار شده‌اند. به این ترتیب، تیمار یک دقیقه قرار داده ۱۵ دقیقه به آب تست شده شدند و سپس در ۱ یا ۵% SDS و ۱% (v/v) SDS در داخل بین ماری به مدت ۵ دقیقه قرار گرفتن و سپس به مدت ۱۵ دقیقه با نبود به مدت ۴۰۰ nm اندازه‌گیری شده که افزایش میزان رنگ جذبی هاکی از افزایش میزان مرگ سلولی است. نهایتاً میزان مرگ سلولی بر حسب درصد نسبت به شاهد تعبیه گردید.

اندازه‌گیری میزان H_2O_2 در گیاهان تحت تیمار کامدیوم به‌عنوان روش جانرا و شادو هاری [۶] اندازه‌گیری شد. ۵/۵ گرم بافت کنتین و با H_2O_2 میزان به استفاده از روش جانرا و شادو هاری [۶] اندازه‌گیری شده. ۳/۰ ml تیتانیوم کلاید ۱/۰% در ۱۰۰ ml تیتانیوم کلاید ۱/۰% در ۱۰ ml pH ۶/۸ شده‌است. هم‌زمان با همه ۲۵ دقیقه در داخل سنتریزیم با نبود به مدت ۱ دقیقه به مدت ۴۰۰ nm اندازه‌گیری شده که افزایش میزان رنگ جذبی هاکی از افزایش میزان مرگ سلولی است. نهایتاً میزان مرگ سلولی بر حسب درصد نسبت به شاهد تعبیه گردید.

اندازه‌گیری میزان پراکسیدازیون چربی‌ها
برای اندازه‌گیری میزان پراکسیدازیون چربی‌ها از روش هیت و پکر استفاده شد. 1 گرم بافت ترتوسیون و توزیع 2/5 ml محلول نیترات کلر و 5% خویش به گردید. سپس محلول حاصل به مدت 20 دقیقه در داخل سانتی‌فروز با نیروی 7500 گذارش شد. بعد از عمل سانتی‌فروز، حجم مسایل از عصاره و تیوباریویتکس اسید 50% در ترک و استیک اسید 30% به داخل لوله آزمایش‌مند شده و به مدت 30 دقیقه در داخل انکوباتور 50 درجه سانتی‌گراد در نهایت لوله‌ها به مدت 5 دقیقه وارد آب بیش شده و بعد به مدت 5 دقیقه در داخل سانتی‌فروز با نیروی 10000 گذاشته شد. جنب محلول حاصل به عنوان عصاره خام برای اندازه‌گیری فعالیت آنزیم‌ها کاربردی، آسکوربیت و گیاهان پراکسیداز و گلوتاتیون رشدکننده برای نهایی عصاره گیاهی از روش کنگ و همکاران [17] با اندکی تغییرات استفاده شد. 5/6٪ وزن تر بیفت از هر دو اندازه ریشه و اندازه‌های بطری گلدانه از هم نیم‌ها توزین شد و سپس به داخل هاون سرد منتقل شد و 4 M HCl, 1/5 میلی‌مولار, 3 میلی‌مولار, 0.1 میلی‌مولار (پاک 3/7 میلی‌مولار-Cl) محلول به مدت 20 دقیقه در داخل سانتی‌فروز با نیروی 50000 دور در دقیقه قرار گرفت. محلول روبی‌های حاصل به عنوان عصاره خام برای اندازه‌گیری فعالیت آنزیم‌ها استفاده شد.

(APX)

اندازه‌گیری فعالیت آنزیم آسکوربیت پراکسیداز (APX)
فعالیت آنزیم APX به استفاده از مدت ناکانو و آسادا [21] با اندکی تغییرات استفاده گردید. شد و توزیع 2/5 ml محلول با رنگ نیترات کلر و 5% خویش به گردید. سپس محلول حاصل به مدت 20 دقیقه در داخل سانتی‌فروز با نیروی 10000 گذاشته شد. جنب محلول حاصل به عنوان عصاره خام برای اندازه‌گیری فعالیت آنزیم بود (1/8 M-1 cm-1).

(3/2 ml) (3/2 ml)

اندازه‌گیری فعالیت آنزیم گیاهان پراکسیداز (GPX)
فعالیت (GPX) با استفاده از روش آیداهایا و همکاران [22] انجام گرفت. به 2/5 ml محلول نیترات کلر و 5% خویش به گردید. سپس محلول حاصل به مدت 20 دقیقه در طول موج 290 nm اندامگیری شد که همراه با افزایش گیاهان بود (2/8 M-1 cm-1).

اندازه‌گیری فعالیت آنزیم کاتالاز

فعالیت آنزیم کاتالاز با استفاده از روش ابست "[12] اندازه‌گیری شد. به ۱/۵ ml فسفرات ۵۰ از بافر فسفرات ۱۰ ml H2O ۲۰ mM میلی‌مولار و pH ۷ ته مولی‌مولار با عصاره آنزیمی اضافه گردید و فعالیت آنزیم در طی ۲۴۰ nm اندازه‌گیری شد که با کاهش جذب همراه بود (رضا خاموشی).

اندازه‌گیری فعالیت آنزیم گلوتاتیون ردوکتاز

فعالیت آنزیم گلوتاتیون ردوکتاز با استفاده از روش فویر "و هالیو" [12] اندازه‌گیری شد. به ۱/۵ ml بافر فسفرات ۵۰ میلی‌مولار با pH ۷ محیط (۱/۵ mM NADPH و ۱/۵ mM MgCl2 و ۱/۵ mM GSSG) در حضور نیتریک‌پرکلریک اسید (۱/۳ (v/v) در دمای ۱۰۰ ℃ و در طی ۶ ساعت هضم گردید و سپس میزان کادمیوم به وسیله دستگاه جذب اتمی اندازه‌گیری شد [۱۹].

آنتلیز آماری

میانگین و انحراف استاندارد نمونه‌ها با استفاده از آنتلیز واریانس در برنامه‌ها رایانه‌ای (Excel و SPSS) محاسبه گردید. در همه شکل‌ها، سنونا نما نمایندگی میانگین ۳ تکرار و بارهای عمودی نشان دهنده انحراف استاندارد ± SE است. میزان معنی‌دار تغییرات در گروه تجربی در مقایسه با شاهد بر اساس آزمون (ANOVA) در سطح ۰/۰۵، است.

نتایج

بررسی علل‌نمایی طبیعی در گیاهان ذرت شاهد و نیازمند شده با کادمیوم، نشان داد که افزایش غلظت کادمیوم در گیاهان ذرت موجب پرور کروز برگی به صورت رنگ سبز متمایل به زرد در برگ‌ها شد.

نتایج حاصل از اثر کادمیوم بر طول ریشه‌ها، وزن خشک و میزان کادمیوم موجود در اندام هواپی و ریشه‌ها نشان‌گرفت که کاهش معنی‌داری (P ≤ ۰/۰۵) بیدار می‌کند (جدول ۱). البته نتایج حاصل از اثر کادمیوم بر نشست بیانگیز به معنی کاهش نشان می‌دهد که که با افزودن کادمیوم نشست

یون K+ به محیط کشت نیز افزایش معنی‌داری دارد (شکل ۱ الف).

پرسی مرگ سلولی به عواملی می‌تواند نشان دهنده آسیب وارد شده به غشا سلولی در گیاهان تیمار شده با کادیموم باشد. نشان داد که با افزایش غلظت کادیموم، اسباب رشدی به سلول‌های ریشه نیز افزایش معنی‌داری پیدا می‌کند (شکل ۱ ب).

نتایج حاصل از پرسی مرگ سلولی در H_{2}O_{2} درون زا نشان‌گرد آن است که میزان H_{2}O_{2} درون زا با افزودن کادیموم به محیط کاشت در گیاهان تحت تیمار به طور معنی‌داری افزایش می‌یابد (شکل ۱ ج). اندیشگیری میزان مالتون دی آلدئدید (MDA) به عواملی مانند پراکسیداز و گلوتاتیون روندکن (MDA) به عواملی مانند پراکسیداز و گلوتاتیون روندکن (شکل ۲ د) در هر دو اندام هواپیمایی و ریشه‌ها افزایش معنی‌داری نسبت به گیاهان کادیموم به طور معنی‌داری نسبت به گیاهان سنجش آنیزمی‌ها نشان داد که فعالیت آنزیم‌های کاتالاز (شکل ۲ ب)، اسکوپربات پراکسیداز (شکل ۲ ج)، گلیکول پراکسیداز (شکل ۲ د) و گلوتاتیون روندکن (شکل ۲ د) در هر دو اندام هواپیمایی و زمینی گیاهان تیمار دیده با کادیموم به طور معنی‌داری نسبت به گیاهان شاهد افزایش یافته است.

جدول ۱: اثر کادیموم بر میزان طول، وزن خشک ریشه و میزان تراکم فلز کادیموم در اندام هواپیمایی و زمینی گیاهان نه معرف تفاوت آماری در سطح ۰/۵، بر اساس آزمون ANOVA است.

<table>
<thead>
<tr>
<th>میزان کادیموم (µM)</th>
<th>طول ریشه (cm)</th>
<th>وزن خشک ریشه (g)</th>
<th>میزان کادیموم نماینده در ریشه (mg/KgDW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0.1 ± 0.05</td>
<td>0.05 ± 0.02</td>
<td>0.1 ± 0.02</td>
</tr>
<tr>
<td>50</td>
<td>0.2 ± 0.06</td>
<td>0.09 ± 0.02</td>
<td>0.2 ± 0.02</td>
</tr>
<tr>
<td>75</td>
<td>0.3 ± 0.07</td>
<td>0.07 ± 0.02</td>
<td>0.3 ± 0.02</td>
</tr>
</tbody>
</table>

شکل ۱. اثر کادیموم بر نشانگر ریشه (الف)، میزان مرگ سلولی ریشه، ب، و میزان H_{2}O_{2} درون زا، ج دیگر در گیاه ذرت. سنتونها نماینده میانگین سه تکرار و بارهای عمومی نشان‌گر انحراف استاندارد به همراه میزان معنی‌دار تغییرات در گروه تجربی در مقایسه با شاهد بر اساس آزمون ANOVA در سطح ۰/۵، است.

شکل ۲. اثر کادیموم بر میزان MDA (الف) و فعالیت آنزیم‌های کاتالازیک دیاکلریک (ب) با در و سطح کادیموم، ج، گلیکول پراکسیداز (د) و گلوتاتیون روندکن (د) در اندام هواپیمایی و ریشه‌ها ذرت. سنتونها نماینده میانگین سه تکرار و بارهای عمومی نشان‌گر انحراف استاندارد به همراه میزان معنی‌دار تغییرات در گروه تجربی در مقایسه با شاهد بر اساس آزمون ANOVA در سطح ۰/۵، است.
بحث

افزایش سطوح فلزات سنگین مثل کادمیوم در محیط ارمزوه واقعیتی اکسانشی‌باکترل است. کاهش غنی‌دار در وزن خشک ریشه ناشی از اثر سبیت در این اندام است. به‌دلیل اینکه ریشه‌ای اولین اندامی است که در معرض سمنی قرار دارد و پیش از سایر اندام‌ها در معرض آسیب عوامل بیومولکولار می‌باشد، در واقع می‌توان گفت که ریشه به‌طور مستقیم در معرض سبیت کادمیوم قرار دارد. اما این سبیت در سایر قسمت‌های دیگر گیاه با به‌طور غیرمستقیم عمل می‌کند [23]. اثر کاهش بیوماس ریشه و رشد ان در اثر سمومیت کادمیوم در گیاهان، در تحقیقات دیگر نیز گزارش شده است [23]. [36]. رشد ریشه‌ها و ظرفیت‌آنها به عوامل سطوح جذب کننده آب و مواد غذایی، به عوامل محیطی زیادی بستگی دارد. تنش فلزات سنگین از جمله عوامل محدود کننده رشد ریشه است که این نیز می‌تواند یکی از عوامل کاهش وزن ریشه و خشک ریشه‌ها باشد [5]. با بررسی درصد مرگ سلنیو در این تحقیق مشخص گردید که با افزایش کادمیوم در محلول غذایی درصد مرگ سلنیو نیز در ریشه‌های گیاه گزارش می‌شود. توانایی تعدادی از سلنیو در تجم می‌باشد و سپس مرگ‌ها نیز می‌تواند به سایر سلنیو اجازه دهد که غلظت‌های غیرآبی‌رسان کادمیوم را حفظ نموده و به عمل کردن طبیعی خود ادامه دهد [23].

نتایج حاصل از سنجش میزان کادمیوم در اندام هوابی و زمینی نشان دهنده این بود که کادمیوم بیشتر در اندام زمینی گیاه در نتیجه تجمع می‌یابد. میزان جنوب کادمیوم توسط گیاه و غلظت آن در یک گیاه به شرایط محیطی، فیزیولوژیکی و فاکتورهای بیوشیمیایی بستگی دارد. ریشه‌ها معمولاً محلی کادمیوم بیشتری نسبت به اندام هوابی نشان می‌دهند زیرا آنها اولین اندام‌های هستند که در ارتباط با کادمیوم قرار می‌گیرند و بیشتری کادمیوم در بافت‌های گیاهی رسوب می‌کند و تا حد امکان از جابجایی به اندام هوابی جلوگیری می‌کند. بنابراین نشان ریشه بسیار مهم است؛ زیرا ریشه‌ها می‌توانند به عوامل محل اصلی برای رسوب‌گیری و غیرفعال‌سازی فلزات عمل نمایند [5] که این باید پاسخها با تحقیق تحقیقات انجام گرفته بر روی گندم، خیار، سوراگوم و غلظت آن نیز مشابه است [23].

تحقیقات نشان داده است که وجود فلزات سنگین در سطح منتشر به تجمع گونه‌های فعال آزاد اکسیدزن (OH) می‌گردد [23]. در این تحقیق نشان دهنده تنش اکسیداتور رشد تحت روش تولید

تیمار کادمیوم در این تحقیق نشان دهنده تنش اکسیداتور ناشی از تیمار کادمیوم در این گیاه است.

پیک با فناوری‌های اکسیداتور متابولیسم گیاهی است و یک محصول عملی بسته‌بوده در واکنش‌های اکسیداتور کلروپلاستی و پراکسیدیزمی است [10].

می‌تواند در واکنش‌های آرد و واکنش‌های هیدروکسی فعال شده بیشتری را شکل دهد [9]. رادیکال‌ها آزاد هیدروکسی آگزاغی واکنش‌های بیشتری که موجب پراکسیداسیون چربی می‌شود [9]. همچنین افزایش سطوح

\[\text{H}_2\text{O}_2 \]

درون‌زا هم موجب الکتریکی بی‌سی‌ال چسب

479
برکسیداسیون گریبی در گیاهان می‌گردد. [9] سطوح MDA به عنوان یک شاخص سلولی تجمع برکسیداسیون گریبی در گیاهان می‌گردد. این پژوهش سنجدجد شده. افزایش MDA در برگ‌ها ریشه‌های ذرت تحت تیمار کادیموم نشان دهنده است. کادیموم در این گیاه تنک اکسیداتیو را افزایش می‌دهد. افزایش MDA در ریشه‌ها مشاهده شده که بسیار به تجمع بیشتر کادیموم در ریشه ذرت است. نتایج مطالعات همکاران در اثر افزایش MDA تولید رادیکال‌های آزاد سمت اکسیدنز بعد از قرار گرفتن در معرض فلزات سنگین است [10]. افزایش MDA با افزودن Cd نشان دهنده آسیب‌رسانی این فلز به عضو سلولی است که می‌تواند با اتصال به پروتئین‌های غشای و آنزیم‌ها منجر به آسیب‌رسانی به ساختار و عمل غشا شود [9]. از طرف دیگر کادیموم هم‌اکنون دیگر فلزات شیب یابان می‌باشد. لیگاندهای بی‌پروتئین و سولفونورپروتئین‌ها دارای پس با تشکیل پیوند با پروتئین‌ها موجب تخریب کالسلاژ لیپیدی و نتیجه بی‌پروتئین‌دار می‌گردد [11]. بنابراین انتقال نفوذ پنیدری غشا نیز اسید به یک تدریج حاصل از اندوز‌گیری نشت پتاسیم به میکروکت هم‌اکنون می‌کند. این تناسب با نتایج اکسیدنز 1 و همکاران [11] هم‌اکنون نشان می‌دهد.

گیاهان دارای مکانیزم انسحاب‌های محافظ و مکانیزم غیرانزیمی برای پاکسیدزایی گونه‌های فعال اکسیدنز (ROS) و کاهش آنتی‌مورض آنها هستند. انزیم‌های آنتی‌کاسیدانی می‌توانند عنوان سپرده فشار می‌لایند در گیاهان در مقابل تنش‌های کاسیداتیو ایجاد شده با بیولوژی فلزات بروش‌های ترشود [34] سیستم اکسیدنز شام کالسلاژ (GPX)، و گیاه‌پرکاسیدز (APX) کاهش‌زا آنتی‌کاسیدنز که می‌تواند با دیسموتاز (CAT) و گلوتانیون نروکاتاز (GR) است در حالی که مولکول‌های مثل گلوتانیون، اسکوربیت و کاروتئنیدها حفاظت کننده‌اند غیرانزیمی را تأمین می‌کنند. پاسخ اکسیدنز گیاهان در این گیاهان در داخل می‌تواند، و در کل به فلزات، بهبود برناگی‌های مانده است و در بین گونه و حتی در بین بافت‌های گیاهان می‌تواند است. نتایج این بررسی پاسخ‌های متناسب گیاهان انتی‌کاسیداتیوی به کادیموم در قسمت‌های مختلف گیاه را نشان می‌دهند. [37] انتزیمی در بین نشان‌های کاسیداتیوی است. این انتزیم می‌تواند H2O2 را به که می‌تواند با تولید بسیاری منجر به سلول‌های ممکن است. پاکسیدزی زکنی یک تناو که می‌تواند عمومی کاسیدوزکاتاز باشد. که در پی تولید CAT به طور معمولی در ریشه‌ها نسبت به اندام گیاهان تیمار شده با کادیموم افزایش یافته بود که این پیشنهاد می‌کند که تحت تیمار کادیموم نشان‌های نشان‌های آنزیمی در گیاهان CAT به واسطه رادیکال‌های آزاد در طی سیستم کادیموم کاهش دهنده می‌باشد. افزایش MDA در گیاهان تیمار شده با کادیموم در تعقیبیه مربوط به روش‌های راکیاک یافته 17 و گروه فرگنی 3 نیز می‌تواند در آن بررسی مورد سنجش قرار گرفت. افزایش فعالیت این APX به عنوان آنزیم دیگر جاری کردن هم‌اکنون افزایش تیمار کادیموم در گیاهان تیمار شده با H2O2 در واقع نشان می‌کنند در پاسخ گیاهان به آنزیم‌های تیماری مورد APX آنزیم در گیاهان تیمار شده با Cd

1. Ekmekci
2. Coffea arabica

480
در اثر تشکیل کامبیوم، در سلول تولید می‌شود و برای حفظ حالت
اهیا در سلول‌ها مورد نیاز است [31].

نتایج حاصل در مورد افزایش فعالیت GPX در اثر تشکیل کامبیوم، نشان می‌دهد که این آنزیم به عنوان سیستم‌های
دفاعی در مقاوت بی‌سیبید، انتی‌کامبیوم، انتی‌کامبیوم ملکی در ذرت عمل می‌کند. افزایش فعالیت GPX در گیاهان هجین
نیز گزارش شده است [32]. [7]. تحت شرایط سبیت
فلز، از میزان فعالیت GPX می‌توان به عنوان یوپمارکر در تعیین شدید سیستمیک استفاده کرد [27].

نتایج این تحقیق نشان داد کلماتانی رودکان ها (NADPH) واکنش واکنش‌های اکسید شده کامبیوم را کاتالیز می‌کند. به طور معمول نیاز در گیاهان تحت تأثیر با Cd افزایش می‌یابد. فلز و هالیول [21] گفته‌اند که
به‌طور عمدی به مولکول‌های پرده‌کننده گلولتیون-اسکوربیت و گلولتیون می‌تواند با به‌وسیله GPX، CAT و APX، H$_2$O$_2$
پدیده کند. به‌وسیله CAT، GPX، APX، NADPH، H$_2$O$_2$
جهن می‌شود. به‌وسیله CAT، GPX، APX، NADPH، H$_2$O$_2$
کلیدی در طی مکانیسم دفاعی آنتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم آنتی‌کامبیوم انتی‌کامبیوم می‌کند. انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح
انزیم‌های انتی‌کامبیوم کاتالیزه می‌گردد. نتایج حاصل نشان می‌دهد که افزایش سطح

منابع
1. طیبیه فریدونیا، بررسی اثرات اکسیدولوژیکی و کیسیمایی از آلودگی سرب بر دانه‌سی بی‌سیبید. اثر
pH و $EDTA$

3. K. Asada, "Ascorbate peroxidase a hydrogen peroxide scavenging enzyme in plants.", Plant

