اثر زیادی سولفات مینیزیم خاک بر محتوای عناصر کلسیم، مینیزیم، پتاسیم و
شدت تشکیل اندومیکوریز در پستهٔ رقم بادامی

مینو بهرامی‌پور، علی احمدی مقدم: دانشگاه شهید باهنر کرمان
سیامک محمودی: مرکز تحقیقات پسته کشور در رفسنجان

چکیده
بر اساس گزارش‌های منتشر نشده از مرکز تحقیقات بیست و هفتم در رفسنجان در حال حاضر
بسیاری از مناطق پسته کاری با افراش میزبان مینیزیم در خاک مواجه هستند. در تحقیق انجام شده تأثیر
زیادی عنصر مینیزیم از طریق اعمال غذایهای متفاوت نمک سولفات مینیزیم که به ترتیب حاصل
۴ی۱،۱۲۰ و ۰۴۰ گرم/کیلوگرم سولفات مینیزیم بود، بر گیاه بسته رقم بادامی در بستر خاک
در یک آزمایش گلدانی و بر اساس طرح بلوکی کامل تصادفی بررسی شد. پس از برداشت گیاهان،
مجموع طول ریشه، وزن خشک اندام‌های گیاه و تعداد اسپور حاصل از فعالیت قارچ‌های میکوریزیا
در خاک، میزان آشفتگی ریشه گیاهان به میکوریز و محتوای یون‌های K، Mg، Ca در VAM
وسط و ساقه اندازه‌گیری شد. نتایج حاصل از آنالیز داده‌ها نشان داد که با افزایش نمک سولفات
منیزیم در خاک، اسپور فارق‌های VAM، وزن خشک ساقه، ریشه و میزان آشفتگی ریشه به
میکوریز و همچنین محتوای یون‌های کلسیم، مینیزیم، پتاسیم گیاه افراشیز یافت. افراشیز یون‌های مینیزیم
در ریشه بیش از ساقه بود.

مقدمه
نقش تغذیه‌ای عناصر، خصوصاً عناصر مینیزیم و کلسیم در گیاه بسته پسته سبیل مهم است. با توجه به اینکه
بسیاری از خاک‌های استان کرمان و خصوصاً شهرستان رفسنجان بستر مناسبی برای کشت این گیاه است و همگی
به خویی بر افزایش فضایی و اقتصادی این محصول واقفند. در این تحقیق به بررسی یکی از مشکلات موجود، یعنی
همان افراشیز تغذیه‌ی مینیزیم در خاک‌ها از طریق آب‌های زیرزمینی بردارخته شده است. بر اساس گزارش‌های منتشر
شده از مرکز تحقیقات پسته کشور در رفسنجان پایین رفت سطح آب‌های زیرزمینی و برداشت از آب‌های عمیق‌تر

واژه‌های کلیدی: مینیزیم، خاک، VAM، بسته رقم بادامی

۱. Pistacia vera L. ۲. Vesicular Arbascular mycorrhizae
باعث افزایش برخی عناصر، از جمله منیزیم در آب شده است. با توجه به مشاهده علایم کمبود کلسیم در بافت پسته و نیز شباهت‌ها و روابطی که دو عنصر کلسیم و منیزیم با هم دارند، همچنین تا جهت به نفس و اهمیت قارچ‌های میکورسی اخلاصاً سیستم‌های میکوریزی VAM در جذب عناصر و مقابله با شرایط تنظیم‌های محیطی [5]، [8] و با توجه به این که ریشه گیاه پسته نیز با این قارچ‌ها همبستگی است، برای شدید که به بررسی این موضوع بپردازیم که این عناصر به ایجاد مشکلات کمبود کلسیم و پتاسیم در پسته است؟ یا مشکلاتی دیگری از جمله خشکسالی و کمبود توانسته است موجب کاهش کلسیم در درختان شود؟ بر این اساس، آزمایش‌هایی بپرداز و بطرح بلوک‌های کامل تصادفی در شرایط گلخانه‌ای در بستر خاک در حالت غیراستریل (میکوریزیز) انجام شد. در این بررسی گیاهان پسته رقم بدامی در معرض مقادیر مختلف منیزیم رشد داده شدند و سپس وزن خشک، مجموع طول در ساقه و ریشه آنها و نیز میزان آشگشگی ریشه بی قارچ‌های میکوریزی و K، Mg، Ca ریشه، و نیز مقادیر تعداد اسپور قارچ‌های میکوریزی VAM در خاک قبل و پس از آزمایش‌ها اندازه‌گیری و نتایج با استفاده از برنامه SPSS تجزیه و تحلیل شد.

مواد روش‌ها

خاک لوم کامل یا کشتی از باغ پسته در کرمان تهیه شد. و در گلدان‌های PVC به ارتفاع 50 و قطر 20 سانتی متر تا ارتفاع یک سوم خاک بدون سولفات منیزیم ریخته شد. دو سوم بقیه گلدان‌ها با خاک محتوی سولفات منیزیم پر شد. مقادیر سولفات منیزیم اضافه شده به صورت جامد و بر طبق محلول هوگلنده با نسبت ۲/۰ و مخلوط با دو سوم خاک سطح گلدان محاسبه و به خاک در قابلی قارچ‌های آزمایشی به ترتیب آنی اضافه شدند. گره‌های آزمایشی به ترتیب هر کدام مقادیر زیر از سولفات منیزیم را دریافت کردند:

- گره ۱: برای با خاکی که به آن سولفات منیزیم اضافه نشده و به عنوان شاهد در نظر گرفته شد.
- گره ۲: برای با مقدار سولفات منیزیم محلول هوگلنده ۱/۲
- گره ۳: برای با مقدار سولفات منیزیم محلول هوگلنده ۱/۲
- گره ۴: چهار برای مقدار سولفات منیزیم محلول هوگلنده ۱/۲
- گره ۵: یکت برای مقدار سولفات منیزیم محلول هوگلنده ۱/۲

در ضمن محتوای اولیه منیزیم خاک صفر در نظر گرفته شد در این گروه آزمایشی فقط فاکتورهای آشگشگی اسپور و مجموع طول ریشه اندازه‌گیری شد (برای گره ۱ = گره شاهد). بنابراین بر اساس IMF از ضمن عفونی شدن در گلدان‌ها کاشته شد. مقدار آب مورد نیاز برای ایجاد گلدان‌ها از طریق محاسبه تفاوت وزن حالت اشباع و
طرح‌های منیزیم‌زا تی
اثر زیادی سوالات منیزیم خاک بر محیطی عناصر کلسیم...

میترا بهرامی و همکاران

سپس لوله‌ها در حمام آب گرم و در 90 درجه سانتی‌گراد گذاشته شدند.
- پس از خلاص کردن رنگ، نمونه‌ها کاملاً به خوبی با آب شیر شسته شدند.
- رنگ اضافی نمونه‌ها با قرار دادن آن‌ها در محلول رنگ‌شونده (اسبیلاتیوک، گلسیرول، آب، به نسبت 14-1-1) به‌مدت یک شب پاک شد.

- نمونه‌ها در محلول رنگ‌شونده بر روی لام میکروسکوپ فراراده شد، سپس لام روی آن گذاشته و مشاهده گردید.

اندازه‌گیری میزان آغشته‌گی

پس از رنگ‌آمیزی ریشه‌ها به روشنی که در قبیل ذکر شد، قطعات ریشه رنگ‌آمیزی شده در داخل پرتودش که در

از دیدار می‌شود قرارداده شده بود به طور تصادفی پخش شدند. پس از آن در زیر میکروسکوپ تشخیص

(ابستروسکوب) نقاط برخورد ریشه با خطوط اصلی کاغذ و نیز تعداد نقاط برخوردی که واجد آغشته‌گی بودند شمارش

شد. پس از آن نسبت این نقاط آغشته به کل نقاط برخورد بر حسب درصد محاسبه گردید و به صورت درصد

آغشته‌گی ریشه‌ها به میکروئیر VA 0.2 ذکر شد.[4].

شمارش تعداد اسپور قازی‌های وزیکولار-آری‌سکولار در نمونه‌های خاک با روش غربال کردن مرطوب انجام

شد.[9].

تغییر محتواهای بیون‌های منیزیم کلسیم پتاسیم در گیاه

بعد از خشک کردن نمونه‌های گیاهی برای تغییر محتواهای بیون‌های منیزیم، کلسیم و پتاسیم در ریشه و اندام

هواای ویزیو گیاهی به روش خاکستر خشک تهیه شد و سپس محلول‌های مورد نظر تهیه و میزان کلسیم و

منیزیم با روش تیتراسیون و پتاسیم با استفاده فیلما فوتومتری اندام‌گیری شدند.[1].

محاسبات آماری

در مراحل مختلف آزمایش برای هر تیم سه تکرار در نظر گرفته شد. سپس آنالیز آماری داده‌ها انجام شد.

داده‌های به‌عنوان آماری حاصل از منجیل این پارامترها از طریق طرح بلانک کامل تصادفی و تجزیه واریانس یک‌طرفه

تحلیل EXCELL و SPSS و با استفاده از نرم‌افزارهای TUKEY و آزمون 95 درصد و آزمون (با ضریب اطمنیان)

آماری شدند.
نتایج
نتایج نشان دادند که در مجموع طول ریشه هیچ تفاوت معنی‌داری در بین تیمارهای متفاوت سولفات مسیم به وجود نیامد (شکل 1).

![Diagram 1](image1.jpg)

MgSO₄ g/kg

شکل 1. مجموع طول ریشه گیاه بر حسب سانتی‌متر وس از رشد گیاهان در تیمارهای که به صورت مقدارهای متفاوت سولفات مسیم جامد به گیاه داده شده است.

خطوط عمودی خطای معیار آزمایش است. هر ستون میانگین حداکثر سه تکرار است.(p>0.05)

میزان آغشته‌گی ریشه به میکوریز VA هیزمان با افزایش میزان مسیم در خاک افزایش یافته است (شکل 2).

![Diagram 2](image2.jpg)

MgSO₄ g/kg

شکل 2. میزان آغشته‌گی ریشه گیاه پسته بادامی به میکوریز و زیکولار آربابکولار.

خطوط عمودی خطای معیار آزمایش است. هر ستون میانگین حداکثر سه تکرار است.(p<0.05)

تعداد اسپور پس از کاشت گیاه و اعمال تیمار در مقایسه با تعداد اسپور قبل از کاشت گیاه افزایش یافته است (شکل 3).
اثر زیادی سولفات منیزیم خاک بر محوریت عناصر کلسیم... میتو برجامیور و همکاران

شکل ۳. تعداد اسپور در یک گرم خاک پیش از رسیدن (AG) و پس از رسیدن (BG) گیاه پسته بادامی (p<0/05).

وزن خشک ساقه و ساقه در تیمار ۴/۸۶ گرم سولفات منیزیم به بیشترین مقدار رسیده این افزایش وزن در ساقه بیشتر از ریشه بود (شکل ۴).

شکل ۴. وزن خشک ریشه (Root) و ساقه (Shoot) گیاه پسته بادامی (p<0/05).

همراه با افزایش سولفات منیزیم در خاک محوریت کلسیم در ساقه و ریشه گیاهان بیشتر شد (شکل ۵).
اثر زیادی سولفات منیزیم خاک بر محصول و محیط گیاهان

شکل 5. میزان منیزیم گیاه پسته پادامی

خطوط عمودی خطای معیار آزمایش است. هر سطون میانگین حداکثر سه تکرار است \((p<0.05)\)

با افزایش مقدار سولفات منیزیم، محتوای عنصر منیزیم در ریشه و ساقه افزایش یافت، ولی این افزایش در همه تیمارها در ریشه بیش از ساقه بود (شکل 6).

شکل 6. میزان منیزیم گیاه پسته پادامی

خطوط عمودی خطای معیار آزمایش است. هر سطون میانگین حداکثر سه تکرار است \((p<0.05)\)

محتوای پتاس اندامگیری شده نیز در ساقه و ریشه گیاهان به تدریج زیاد شد و این افزایش گیاه در ساقه گیاه بیش از ریشه بود (شکل 7).
بحث

نتایج حاصل از تحقیق حاضر نشان می‌دهد که قارچ‌های میکوریزی احتمالاً در ژن‌ب و کنترل عناصر به‌وسیله گیاه نش دارند؛ به‌ویژه در حالتی که گیاه میزبان تحت نش میزبان است. این امر با توجه به اینکه طول مجموع ریشه‌های گیاهان با گیاه‌هایی که نش میزبانند، به یک صورت قابل توجه است که افزایش شبکه میکروژیمی بدون افزایش طول ریشه، خود می‌تواند نش‌گذارند و می‌توانند کنند که در مقابل یون‌های ناخواسته و یا بیش از حد اعمال کنند. بنابراین که این نتایج بر می‌آید هر افزایش میزان میکوریزیم یک‌گیاهی و تولید اسپور قارچی افزایش داشته و به بیشترین مقدار سولفات میکوریزی به دلیل جنب مواد غذایی بیشتر و در عین حال با توجه به نش‌یون سولفات که به اندازه کافی در اختیار گیاه قرار داشته، جدایی وزن خشک به دست آمده. افزایش فعالیت شبکه میکروژیمی در افزایش ژن‌ب عناصر مورد نیاز کلسیم و نیکل ممکن است. در حالی که هیپزرما با ژن‌ب عناصر مذکور میزان انتقال میزبان به ساقه در تیمارها بالای میزبان افزایش نیافت. این امر احتمالاً ناشی می‌باشد که سیستم میکوریزی در ریشه گیاه را نشان می‌دهد. برای بیان اثرات مخصوص بیون میزبان روزه‌گیاهی ریشه به قارچ‌های میکوریزی باید گفت که سولفات میزبان ممکن است به عنوان یک جزئی اصلی از نظر اسمز در محول غذایی فعالیت کند و چنان‌که می‌دانیم شامل هسته‌ی توسه‌های هیپزرما VAM اثر سرگذار و افزایش ریشه را زیاد می‌کند [3]. بنابراین این ارتباط با تیمارها رایگان می‌باشد و در نتیجه افزایش میزان یک‌گیاهی اثرات تحریکی به یون‌های میزبان نسبت داده شدیداند. افزایش مقدار میزبانی در ریشه نسبت به ساقه افزایش همیان وضعیت است. در تحقیق حاضر نتایج حاصل از اندوزه‌گیری کلسیم و میزبانی و پایداری نشان داد که ژن‌ب این عناصر به گیاه در مقدارهای...
فراوان سلولهای منیزیم زیاد شده که این نیز به دلیل شرایط میکروژی قابل توجیه است. چنان‌که می‌دانیم در صورت اضافه شدن منیزیم در محیط یک گیاه به دلیل رقابتی که این عنصر با کلسیم و پتاسیم دارد، انظار می‌روید که عنصر اخر در گیاه کم شود. اما در تحقیق حاضر مقایسه این عنصر در گیاهان نیز همراه با افزایش منیزیم در خاک و نیز گسترش شبکه فارقی زیاد شده بود. به طور کلی در مکانیسم برای جذب کلسیم و منیزیم و پتاسیم توسط قارچ‌های میکروژی پیشنهاد شده است: اول سیستم مستقیم که بیان می‌کند با توجه به نقاط اندازه جذب از سیستمهای ریشه یا هیپ‌های قارچی که در سیستم VAM قابل روتین نیستند، فعالسازی می‌تواند مواد غذایی بیاید در داخل خاک حركة کند تا به روش‌هاً به روش‌ها‌

