Synthesis of 1,8-dioxo-octahydroxanthene derivatives using NBS under mild conditions

G.H. Mahdavinia: Islamic Azad University-Marvdasht Branch
M.A. Bigdeli: Tarbiat Moallem University
Firouzeh Nemati: Faculty of Science, Semnan University

Abstract

An efficient one-pot synthesis of 1,8-dioxo-octahydroxanthene is achieved through a condensation of arylaldehydes and 5,5-dimethyl-1,3-cyclohexanedione in the presence of N-bromosuccinimide. This method enjoys several advantages such as low cost, simple work up procedure and safe reaction conditions.

Graphical Abstract

![Graphical Abstract](image)

Table 1. Optimization of reaction condition.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amount of NBS</th>
<th>Condition</th>
<th>Yield (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 mol %</td>
<td>Reflux/ethanol/20 h</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2 mol %</td>
<td>50°C/ethanol/12 h</td>
<td>tr</td>
</tr>
<tr>
<td>3</td>
<td>2 mol %</td>
<td>Reflux/ethanol/14 h</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>5 mol %</td>
<td>Reflux/ethanol/14 h</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>10 mol %</td>
<td>Reflux/ethanol/14 h</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>15 mol %</td>
<td>Reflux/ethanol/14 h</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>20 mol %</td>
<td>Reflux/ethanol/14 h</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>20 mol %</td>
<td>MW/DMAC/5 min</td>
<td>90</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yield.

Keywords: One-pot, NBS, 1,8-Dioxo-octahydroxanthene, Organocatalyst.

Received 3 Jan. 2008 Revised 6 May. 2009

E-mail: mabig397@yahoo.com
Table 2. Preparation of 1,8-dioxo-octahydroxanthene derivatives catalyzed by NBS under reflux and MW conditions

<table>
<thead>
<tr>
<th>Product</th>
<th>Ar</th>
<th>Method A (h)</th>
<th>Method B (min)</th>
<th>Yield (%)<sup>a</sup></th>
<th>Method A Method B</th>
<th>Found</th>
<th>Reported[ref.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td>12</td>
<td>5</td>
<td>94</td>
<td>90</td>
<td>204-205</td>
<td>202-204[20]</td>
</tr>
<tr>
<td>3b</td>
<td>4-ClC<sub>6</sub>H<sub>4</sub></td>
<td>10</td>
<td>5</td>
<td>94</td>
<td>93</td>
<td>225-226</td>
<td>228-230[20]</td>
</tr>
<tr>
<td>3c</td>
<td>2-ClC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>6</td>
<td>88</td>
<td>85</td>
<td>228-230</td>
<td>228-230[20]</td>
</tr>
<tr>
<td>3d</td>
<td>4-BrC<sub>6</sub>H<sub>4</sub></td>
<td>10</td>
<td>4</td>
<td>94</td>
<td>90</td>
<td>233-235</td>
<td>234-236[24]</td>
</tr>
<tr>
<td>3e</td>
<td>4-FC<sub>6</sub>H<sub>4</sub></td>
<td>10</td>
<td>4</td>
<td>96</td>
<td>90</td>
<td>224-225</td>
<td>224-226[24]</td>
</tr>
<tr>
<td>3f</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>5</td>
<td>92</td>
<td>85</td>
<td>218-220</td>
<td>217-218[20]</td>
</tr>
<tr>
<td>3g</td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>6</td>
<td>88</td>
<td>82</td>
<td>243-245</td>
<td>242-244[20]</td>
</tr>
<tr>
<td>3h</td>
<td>2-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>8</td>
<td>85</td>
<td>80</td>
<td>184-185</td>
<td>190-191[41]</td>
</tr>
<tr>
<td>3i</td>
<td>3-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>8</td>
<td>82</td>
<td>80</td>
<td>177-180</td>
<td>---</td>
</tr>
<tr>
<td>3j</td>
<td>2,4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>8</td>
<td>85</td>
<td>80</td>
<td>209-211</td>
<td>---</td>
</tr>
<tr>
<td>3k</td>
<td>4-OHC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>6</td>
<td>85</td>
<td>81</td>
<td>243-245</td>
<td>246-248[21]</td>
</tr>
<tr>
<td>3l</td>
<td>2-OHC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>8</td>
<td>82</td>
<td>75</td>
<td>202-205</td>
<td>205-206[41]</td>
</tr>
<tr>
<td>3m</td>
<td>4-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>10</td>
<td>5</td>
<td>94</td>
<td>90</td>
<td>226-227</td>
<td>226-228[20]</td>
</tr>
<tr>
<td>3n</td>
<td>3-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>5</td>
<td>92</td>
<td>87</td>
<td>168-170</td>
<td>168-170[20]</td>
</tr>
<tr>
<td>3o</td>
<td>C<sub>6</sub>H<sub>5</sub>CH=CH-</td>
<td>12</td>
<td>6</td>
<td>90</td>
<td>85</td>
<td>177-178</td>
<td>175-177[20]</td>
</tr>
<tr>
<td>3p</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>12</td>
<td>6</td>
<td>89</td>
<td>85</td>
<td>226-229</td>
<td>226-228[20]</td>
</tr>
<tr>
<td>3q</td>
<td>4-pyridil-</td>
<td>12</td>
<td>6</td>
<td>90</td>
<td>86</td>
<td>218-220</td>
<td>---</td>
</tr>
<tr>
<td>3r</td>
<td>2-naphthyl-</td>
<td>12</td>
<td>6</td>
<td>90</td>
<td>84</td>
<td>194-196</td>
<td>---</td>
</tr>
</tbody>
</table>

^a Isolated yields.
Introduction

The synthesis of xanthenes derivatives has been of considerable interest to chemists because of their wide range of biological and pharmaceutical properties such as antiviral [1], antibacterial [2], and anti-inflammatory activities [3]. Furthermore, these compounds have been used as dyes [4,5], in laser technology [6,7], pH-sensitive fluorescent materials for the visualization of biomolecular assemblies [8]. Xanthenediones, a closely related group of organic compounds, constitute a structural unit in a number of natural products [9,10] and have been used as versatile synthons because of the inherent reactivity of the inbuilt pyran ring [11].

So for several methods have been developed for the preparation of 1,8-dioxo-octahydroxanthene (xanthenediones). The conventional procedures involve acid- or base-catalyzed condensation of appropriate active methylene carbonyl compounds with aldehydes [12]. However, these methods are plagued by the limitation of prolonged reaction times, poor yields and side reactions of aldehydes.

Previous synthetic methods are reported using p-dodecylbenzenesulfonic acid (DBSA) in aqueous media [13,14], namely p-toluenesulfonic acid (p–TsOH) in organic solvent [15], heterogeneous catalysts (NaHSO$_4$–SiO$_2$ and silica chloride) [16], InCl$_3$·4H$_2$O in ionic liquid [17], amberlyst-15 [18], polyaniline-p-toluenesulfonate salt [19] and PPA-SiO$_2$ [20]. These methods also suffer from some disadvantages such as the use of toxic solvents, use of special apparatus, and toxic catalysts. Thus, the development of a new catalyst for the synthesis of xanthenediones derivatives is highly desirable.

The use of silica gel supported ferric chloride in dry media[21], Dowax-50W under solvent free conditions[22], diammonium hydrogen phosphate in aqueous media[23], ionic liquids at ambient temperatures under ultrasound irradiation[24] and others[25],[26],[27] are among the more recent attempts to eliminate some of the shortcomings of the previous methods.
The use of organic molecules as catalysts has become an attractive alternative to the traditional metal-catalysts. Interest in the field of organocatalysis has increased spectacularly in the last few years as the result of both the novelty of the concept and, more importantly, the fact that the efficiency and selectivity of many organocatalytic reactions meet the standards of established organic reactions [28]. N-Bromosuccinimide (NBS) is one such catalyst that has been known as a brominating agent and has recently received considerable attention as a catalyst in various organic transformations [29-37]. Furthermore, it is also used in oxidation and free radical reactions under mild and convenient conditions to afford the desired products in excellent yields and with high selectivities. However, there are no examples of the use of NBS as a catalyst for the synthesis of xanthenediones (Scheme 1).

Results and discussion

As part of our ongoing research concerning the use of economically and easily-available materials as catalysts for various organic transformations [38-40], we wish to report a simple and efficient use of NBS as a catalyst in synthesis of 1,8-dioxo-octahydroxanthene derivatives, under mild conditions. In this paper, physical and spectroscopic data including CHN analysis are reported for new compounds.

Initially, the reaction was performed by reacting dimedone (2.0 equiv.) and benzaldehyde (1.0 equiv.) in the presence of 2 mol % NBS in ethanol at room temperature. Under these conditions, only a trace amount of product was obtained after 10 h. The conditions for this transformation were optimized and the results are shown in Table 1. No product was obtained in the absence of the catalyst (Table 1, entry 1) even when the reaction time was extended to 20h, thus demonstrating the necessity of NBS. The amount of catalyst required for the transformation was investigated using 5–20 mol % of catalyst to aldehyde. Under these conditions, the yield of the product was in the range of 30–94% (see
Table 1, entries 4–7). The use of 20 mol % NBS resulted in the best yield (94%) at reflux temperature (See Table 1, entry 7).

As shown in Table 2, aromatic aldehydes having both electron donating or withdrawing groups reacted readily with dimedone to afford the corresponding 1,8-dioxo-octahydroxanthenes in 82-96% yields.

A plausible explanation for NBS role is the generation of Br\(^+\) ions which in turn activate the aldehyde for further reaction with dimedone. Another explanation for this process is that NBS probably generates small quantities of HBr or Br\(_2\), which may be the actual catalyst for the reaction.

Our results show high yields of products in the presence of ethanol as well as N,N-dimethylacetamide (DMAC). It is reported that Br\(^+\) is generated in DMAC and therefore we conclude that either in both media the active agent is Br\(^+\) ion or that Br\(^+\) ion is active in DMAC where as HBr is the active agent in a protic solvent such as ethanol [30].

Conclusions

In conclusion, we have successfully developed a simple and efficient crossed aldol methodology followed by a Micheal addition for the synthesis of 1,8-dioxo-octahydroxanthenes derivatives from dimedone under reflux and MW conditions, using cheap and readily available NBS as a catalyst. This simple procedure can be applied to the synthesis of a wide variety of xanthenediones in good to excellent yields. Further applications of this catalytic system are currently underway.

Experimental

The products (3a-r) were isolated and characterized by physical and spectral data. \(^1\)H NMR spectra were recorded on Bruker Avance-300 MHz spectrometers using 7–10mM solutions in CDCl\(_3\) in the presence of tetramethylsilane as an internal standard. IR spectra
were recorded using a Perkin-Elmer 843 spectrometer with KBr plates. Melting points were determined on an Electro thermal 9100, and are not corrected.

General procedure for the synthesis of 1,8-dioxo-octahydroxanthene derivatives:

Method A: A mixture of a substituted benzaldehyde (1 mmol), dimedone (2 mmol), NBS (0.2 mmol) and ethanol (10 mL) was stirred under reflux condition, for an appropriate time (Table 2). After completion of the reaction, the mixture was kept at room temperature and the resulting crystalline product was collected by filtration. The product was found to be pure and no further purification was necessary.

Method B: A mixture of substituted benzaldehyde (1 mmol), dimedone (2 mmol) and NBS (0.2 mmol) in DMAC (2 mL), contained in a tall beaker, was placed in the microwave oven. The beaker was covered with a watch glass and irradiated at 600 W powers for an appropriate time (Table 2). To control the evolution of DMAC from the reaction mixture and to prevent splashing, irradiation was interrupted after every 20 s. Then the reaction mixture was allowed to cool to r.t., and H$_2$O (5 mL) was added. The precipitate was filtered off and washed with H$_2$O and was recrystallized from ethanol to give the corresponding xanthene derivative.

The spectral (IR, 1H NMR, 13C NMR) and analytical data of unknown compounds are given below:

Compound 3i (Table 2): white solid; IR (KBr): $v_{\text{max}}/\text{cm}^{-1}$ 3005, 2959, 2873, 1674, 1660, 1625, 1605, 1584, 1486, 1447, 1360, 1274, 1201, 1164, 1139, 1047, 1001, 9001, 862, 801, 768, 691, 654, 574; 1H NMR (300 MHz; CDCl$_3$; Me$_4$Si): δ 1.00 (s, 6H, 2CH$_3$), 1.10 (s, 6H, 2CH$_3$), 2.21 (ABq, $J = 16.4$ Hz, 2CH$_2$, H-4, H-5), 2.45 (s, 4H, 2CH$_2$, H-2, H-7), 3.77 (s, 3H, OCH$_3$), 4.74 (s, 1H, H-9), 6.63-6.67 (m, 1H, ArH), 6.86-6.89 (m, 2H, ArH), 7.10-7.15 (m, 1H, ArH); 13C NMR (75 MHz, CDCl$_3$): δ 27.41, 29.22, 31.76, 32.18, 40.85, 50.74,
55.09, 55.13, 111.80, 114.29, 115.54, 120.87, 128.87, 145.68, 159.31, 162.25, 196.39; Anal. Calcd. for C_{24}H_{28}O_4: C, 69.33; H, 9.33; Found: C, 68.99; H, 9.41.

Compound 3j (Table 2): white solid; IR (KBr): $\nu_{\text{max}}/\text{cm}^{-1}$ 3019, 2967, 2890, 1679, 1667, 1628, 1613, 1589, 1508, 1468, 1429, 1364, 1301, 1272, 1217, 1201, 1170, 1140, 1048, 1005, 933, 836, 578; 1H NMR (300 MHz; CDCl$_3$; Me$_4$Si): δ 0.95 (s, 6H, 2CH$_3$), 1.09 (s, 6H, 2CH$_3$), 2.18 (ABq, 4H, $J = 16.4$ Hz, 2CH$_2$, H-4, H-5), 2.40 (ABq, 4H, $J = 17.4$ Hz, 2CH$_2$, H-2, H-7), 3.72 (s, 3H, OCH$_3$), 3.74 (s, 3H, OCH$_3$), 4.77 (s, 1H, H-9), 6.32 (d, 1H, $J = 2.3$ Hz, ArH), 6.43 (m, 1H, ArH), 7.3 (d, 1H, $J = 8.3$ Hz ArH); 13C NMR (75 MHz, CDCl$_3$): δ 26.67, 29.05, 29.54, 32.12, 40.93, 50.78, 54.99, 55.12, 98.53, 103.91, 113.71, 123.14, 132.55, 158.42, 159.44, 162.78, 196.73; Anal. Calcd. for C$_{25}$H$_{30}$O$_5$: C, 73.17; H, 7.32; Found: C, 73.26; H, 7.45.

Compound 3q (Table 2): white solid; IR (KBr): $\nu_{\text{max}}/\text{cm}^{-1}$ 3042, 2972, 2888, 1748, 1721, 1654, 1604, 1475, 1424, 1396, 1328, 1304, 1244, 1207, 1156, 1053, 973, 850, 636, 566; 1H NMR (300 MHz; CDCl$_3$; Me$_4$Si): δ 0.90 (s, 3H, CH$_3$), 1.12 (s, 3H, CH$_3$), 1.17 (s, 6H, 2CH$_3$), 2.21 (m, 4H, 2CH$_2$), 2.69 (m, 3H), 3.26 (d, 1H, $J = 14.7$ Hz), 4.81 (s, 1H, H-9), 7.77 (sbr, 2H, ArH), 8.70 (sbr, 2H, ArH); 13C NMR (75 MHz, CDCl$_3$): δ 26.41, 28.41, 28.78, 30.02, 30.82, 34.44, 37.25, 49.88, 50.76, 52.15, 53.95, 102.65, 113.18, 125.57, 145.08, 151.84, 177.95, 192.88, 198.07, 198.11; Anal. Calcd. for C$_{22}$H$_{25}$NO: C, 75.21; H, 7.12; N, 3.99; Found: C, 75.83; H, 6.99; N, 4.08.

Compound 3r (Table 2): with solid; IR (KBr): $\nu_{\text{max}}/\text{cm}^{-1}$ 3069, 2971, 2940, 2885, 1679, 1667, 1630, 1605, 1511, 1466, 1364, 1199, 1167, 1142, 1005, 829, 747, 484; 1H NMR (300 MHz; CDCl$_3$; Me$_4$Si): δ 0.98 (s, 6H, 2CH$_3$), 1.10 (s, 6H, 2CH$_3$), 2.19 (ABq, 4H, $J = 16.3$ Hz, 2CH$_2$, H-4, H-5), 2.51 (s, 4H, 2CH$_2$, H-2, H-7), 4.92 (s, 1H, H-9), 7.36-7.40 (m, 2H, ArH), 7.44-7.47 (m, 1H, ArH), 7.69-7.75 (m, 4H, ArH); 13C NMR (75 MHz, CDCl$_3$): δ 27.32, 29.30, 31.98, 32.21, 40.89, 50.72, 115.59, 125.29, 125.58, 126.87, 127.13, 127.45.
127.68, 127.97, 132.34, 133.37, 141.62, 162.31, 196.40; Anal. Calcd. for C_{27}H_{28}O_{3}: C, 81.00; H, 7.00; Found: C, 81.13; H, 7.07.

![.Scheme 1](image)

Acknowledgment

We gratefully acknowledge financial support from the Research Council of Tarbiat Moallem University.

References