ON THE SINGULAR SETS OF A MODULE II

Dr M. H. BIJAN-ZADEH

Department of Mathematics, U. T. E

A. TEHRANIAN

Research Unit, Islamic Azad University

Dr. M. Toosi

Department of Mathematics, Shahid Beheshti University

Throughout this note, A and B will denote a (non-trivial) commutative Noetherian ring with a multiplicative identity element and M will denote a non-zero finitely generated B-module.

For every non-negative integer \(k \), the set
\[
S^*_k(M) = \{ p \in \text{Spec}(A) \mid \text{depth } M_p + \text{dim } A/p \leq k \}
\]
is called the singular set of \(M \) with respect to \(k \).

It is known that when the ring \(A \) is homomorphic image of a biequidimensional regular ring, then the singular sets of \(M \) are all closed in the Zariski topology on \(\text{Spec}(A) \) (see[3; ch. IV, 5]).

A development of this famous theorem has been recently shown in the sense that if \(A \) is a homomorphic image of a biequidimensional Gorenstein ring, the singular sets of \(M \) are still closed (Sec[2]).

The purpose of this article is to show that if \(B \) is homomorphic image of a Cohen-Macaulay local ring \(\hat{\mathfrak{m}} \), then \(S^*_k(N) \) is closed, for every finitely generated \(B \)-module \(N \).

First we prove some preliminary lemmas which help us to conclude the subsequent main theorem. From now on, \(A \) will denote a Cohen-Macaulay local ring with the unique maximal ideal \(\mathfrak{m} \), and \(\hat{A} \) (respectively \(\hat{M} \)) will denote the maximal ideal of \(A \) (respectively \(M \)).

1. Proposition. Let \(\phi : A \rightarrow \hat{A} \) be the natural homomorphism. Then for every \(q \in \text{Spec}(\hat{A}) \),
\[
S^*_k(M) \iff P = q^\circ \in S^*_k(M) \quad \text{(for any ideal } J, \text{ we write } J^\circ \text{ for } \phi^{-1}(J)).
\]

Proof. By [5,23.3],

\[
\text{depth}_{A_q} (M_p \otimes_{A_p} \hat{A}^\circ)
\]
depth_{A_p}(M_p) + \text{depth}((\hat{A}_q/pA_p\hat{A}_q))\), since.

\[\hat{\varphi}: A_p \rightarrow \hat{A}_q \]

\[\frac{a}{s} \mapsto \frac{\varphi(a)}{\varphi(s)} \]

is a flat homomorphism. Also we have

\[M_p \otimes_{A_p} \hat{A}_q \equiv (M \otimes_{A_p} A_p) \otimes_{A_p} \hat{A}_q = M \otimes_{A_p} (A_p \otimes_{A_p} \hat{A}_q) \]

\[= M \otimes_{A_p} \hat{A}_q = M \otimes_{\hat{A}_q} \hat{A}_q \equiv (M \otimes_{\hat{A}} \hat{A}) \otimes_{\hat{A}} \hat{A}_q \equiv \hat{M} \otimes_{\hat{A}_q} \hat{A}_q = \hat{M}_q. \]

Thus we conclude that

\[\text{depth}_{\hat{A}_q}(\hat{M}_q) = \text{depth}_{A_p}(M_p) + \text{depth}(\hat{A}_q/pA_p\hat{A}_q). \]

On the other hand, since \(A \) is Cohen-Macaulay, \(\hat{A} \) is a Cohen-Macaulay local ring; whence, by corollary of [5;23.3], \(\hat{A}_q/pA_p\hat{A}_q \) is a Cohen-Macaulay ring. But

\[\hat{A}_q/pA_p\hat{A}_q = \hat{A}_q/p\hat{A}_q. \]

Hence

\[\text{depth}_{\hat{A}_q}(\hat{M}_q) = \text{depth}_{A_p}(M_p) + \text{ht}_q \cdot \text{ht}_p. \]

Moreover, by [5;15.1],

\[\text{ht}_q = \text{ht}_p + \text{dim}(\hat{A}_q/p\hat{A}_q). \]

Hence

\[\text{depth}_{\hat{A}_q}(\hat{M}_q) = \text{depth}_{A_p}(M_p) + \text{ht}_q \cdot \text{ht}_p. \]

From which we get, by [5;17.4],

\[\text{depth}_{\hat{A}_q}(\hat{M}_q) + \text{dim}(\hat{A}_q) = \text{depth}_{A_p}(M_p) + \text{dim}(\hat{A}_q) \cdot \text{ht}_p. \]

\[= \text{depth}_{A_p}(M_p) + \text{dim}(\hat{A}_q) \cdot \text{ht}_p. \]

The result now follows.

2. Proposition. With the same assumption as in Proposition 1. Let \(p, q \in \text{Spec}(\hat{A}) \) be prime ideals such that \(p \subseteq q \) and \(p \in S^*_k(M) \). Then \(\hat{p} \in S^*_k(M) \).

Proof. Since \(\varphi: A \rightarrow \hat{A} \) is a faithfully flat homomorphism, there exists \(\hat{q} \in \text{Spec}(\hat{A}) \) for which \((\hat{q})^c = \hat{p} \) (by [5;7.3]). But \(\varphi \) has the going down property (see [5;9.5]). Hence there is a prime ideal \(q \in \text{Spec}(\hat{A}) \) such that \(q^c = p \) and \(q \subseteq q \). By Proposition 1, this implies that \(q \in S^*_k(M) \). But \(\hat{A} \) is a homomorphic image of a regular local ring (see [5;29.4(ii)]); thus by [3], \(S^*_k(M) \) is a closed subset of \(\text{Spec}(\hat{A}) \) (note that, every Cohen-Macaulay local ring is biequidimensional ring). This implies that \(\hat{q} \in S^*_k(M) \). Again from Proposition 1, this in turn implies that \((\hat{q})^c = \hat{p} \in S^*_k(M) \) as required.

3. Lemma. (See [4,ch.1, §6, Ex. 1]) Let \(R \subseteq T \) be rings and \(p \) a minimal prime ideal in \(R \). Then there exists in \(T \) a prime ideal contracting to \(p \).

Proof. Let \(p \) be a minimal prime ideal of \(R \). Set \(S = R - p \) and

\[K = \{ a \mid a \cap S = \varnothing \text{ \& \ } a \text{ \ is \ an \ ideal \ of } T \}. \]

Then \(K \) have a maximal element which is prime ideal of \(T \). Let \(q \) be such prime ideal. Since \((q \cap R) \cap S = \varnothing \), we have \((q \cap R) \subseteq p \) and consequently \(q \cap R = p \).

We now turn to the main theorem of the note.

4. Theorem. For every positive integer \(k \), \(S^*_k(M) \) is a closed subset of \(\text{Spec}(\hat{A}) \).

Proof: Since \(S^*_k(M) \) is closed in \(\text{Spec}(\hat{A}) \), there exists an ideal \(\hat{J} \) of \(\hat{A} \) such that \(V(\hat{J}) = S^*_k(M) \). It is enough to show that

\[V(J^c) = S^*_k(M). \]

Let \(p \in S^*_k(M) \). Hence there is \(q \in S^*_k(\hat{A}) \) such that \(q^c = p \). Hence \(q \in S^*_k(M) \). Thus \(J \subseteq q \); this implies that \(J^c \subseteq q^c = p \); i.e., \(p \in V(J^c) \).

Now let \(p \in V(J^c) \). \(\varphi \) induces the one-to-one homomorphism
\[\varphi : \mathfrak{A}/\mathfrak{J}^c \to \mathfrak{A}/\mathfrak{J}^c \]
\[a + \mathfrak{J}^c \to \varphi(a) + \mathfrak{J}^c. \]

There is also a minimal prime ideal of \(\mathfrak{J}^c \) as \(\mathfrak{p} \) such that
\[\mathfrak{J}^c \subseteq \mathfrak{p} \subseteq \mathfrak{J}^c. \]

Now by Lemma 3, there is \(\mathfrak{q}/\mathfrak{J} \) in Spec(\(\mathfrak{A}/\mathfrak{J} \)) such that
\[\varphi^{-1}(\mathfrak{q}/\mathfrak{J}) = \mathfrak{p}/\mathfrak{J}^c. \]

Hence \(\mathfrak{p} = \mathfrak{q}^c \) and \(\mathfrak{J} \subseteq \mathfrak{q} \). Hence, \(\mathfrak{q} \in V(\mathfrak{J}) = \mathfrak{S}^*_k(\mathfrak{M}) \). It
follows from Proposition 1 that \(\mathfrak{p} \in \mathfrak{S}^*_k(\mathfrak{M}) \). By
Proposition 2, we conclude that \(\mathfrak{p} \in \mathfrak{S}^*_k(\mathfrak{M}) \).

Hence \(V(\mathfrak{J}^c) = \mathfrak{S}^*_k(\mathfrak{M}) \) and \(\mathfrak{S}^*_k(\mathfrak{M}) \) is closed as
claimed.

5. **Corollary.** Let \(\mathfrak{B} \) be a homomorphic image of \(\mathfrak{A} \).
Then for every finitely generated \(\mathfrak{B} \)-module \(\mathfrak{N} \) the
singular sets \(\mathfrak{S}^*_k(\mathfrak{N}) \) are closed.

Proof. Let \(f : \mathfrak{A} \to \mathfrak{B} \) be the relevant ring epimorphism.
By \([1,5]\), for every non-negative integer \(k \),
\[\mathfrak{S}^*_k(\mathfrak{N}) = \{ \mathfrak{p} \in \text{Spec}(\mathfrak{B}) : f^{-1}(\mathfrak{p}) \in \mathfrak{S}^*_k(\mathfrak{N} | \mathfrak{A}) \} \]
in which \(\mathfrak{N} | \mathfrak{A} \) is the module \(\mathfrak{N} \) to be considered by
restriction of scalars by means of \(f \). Since \(\mathfrak{S}^*_k(\mathfrak{N} | \mathfrak{A}) \) is
a closed subset of \(\text{Spec}(\mathfrak{A}) \), and \(f^* : \text{Spec}(\mathfrak{B}) \to \text{Spec}(\mathfrak{A}) \) is a continuous map, we conclude that
\[f^{*-1}\mathfrak{S}^*_k(\mathfrak{N} | \mathfrak{A}) = \mathfrak{S}^*_k(\mathfrak{N}) \] is a closed subset of \(\text{Spec}(\mathfrak{B}) \).

References

[1.] Kh. Ahmad-Ahmadi, M. Tousi, *On the singular sets of modules, to
.arb.\mathfrak{A} \mathfrak{M} \mathfrak{N} \mathfrak{O} \mathfrak{C} \mathfrak{N} \mathfrak{I} \mathfrak{P} \mathfrak{A} \mathfrak{P} \mathfrak{P} \mathfrak{A} *

[4.] I. Kaplanski. *Commutative Rings*, The University of Chicago