مطالعه ترمودینامیکی تشکیل کمپلکس‌های ذی‌اکسولوآنادیم (V) با‌گلوتامیک اسید

دکتر حسین آقایی - سیده کتایی - دکتر فرخ زریب

<table>
<thead>
<tr>
<th>لایه‌ها (ک)</th>
<th>V/O</th>
<th>V/(VO+)</th>
<th>V/(VO2+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.5</td>
<td>0.18</td>
<td>0.5</td>
</tr>
<tr>
<td>0.10</td>
<td>0.5</td>
<td>0.26</td>
<td>0.5</td>
</tr>
<tr>
<td>0.15</td>
<td>0.5</td>
<td>0.28</td>
<td>0.5</td>
</tr>
<tr>
<td>0.20</td>
<td>0.5</td>
<td>0.32</td>
<td>0.5</td>
</tr>
</tbody>
</table>

خلاصه:

در سال‌های اخیر به دنبال کشف وجود ترکیبات وانادیم در بقای موجودات زنده و بررسی ترکیبات آن در این ترکیبات به عنوان یک نظریه جدید مطرح گردیده که در روند ترکیب وانادیم به ویژه کمپلکس‌های آن با آنتی‌می‌باز مواد ترجمه قرار گرفته است. برای مثال، وانادیم در بافت‌های ژنرل‌زنده مورد تحقیق قرار گرفته است.

در این پژوهش، تشکیل کمپلکس‌های ذی‌اکسولوآنادیم (V) با‌گلوتامیک اسید در بآنترودکسولوآنادیم (V) با‌گلوتامیک اسید متعادل در مورد کمپلکس‌های ذی‌اکسولوآنادیم (V) با‌گلوتامیک اسید صورت گرفته است. آزمایش کمپلکس‌نگاری که در مورد کمپلکس‌های آنها با V/O2+ مطالعه صورت گرفته است، عبارت است از:

\[\text{MIDA} + \text{CDTA} \rightarrow \text{IDA} \]

در غیر حال، در مورد کمپلکس‌های ذی‌اکسولوآنادیم با آنتی‌می‌باز، مطالعات زیادی متشار شده است. \[\text{CDTA} + \text{EDA} \rightarrow (1) \]

مقدمه:

ن. ج. سفیدی (1931) توصیف کرده است که این تحقیق نشان‌دهنده این امر است که در مورد این عناصر، تصویری از آن‌ها را می‌توان به سطح زمین برساند.

\[\text{I - inhibitor} \]

1- منبع را در سال 1931 توسط
بخش تجزیه:
مواد شیمیایی مورد استفاده:

اسید پرکلریک (با درصد خلوص 99% و مصرف 0.6 g/cm³، d=1.153)

Table 1: کمپیوتریکهای حساسیت یک فی‌کریک

<table>
<thead>
<tr>
<th>pH</th>
<th>pKө(COOH)</th>
<th>pKө(a-NH3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3/77 ± 0/05</td>
<td>3/32 ± 0/05</td>
</tr>
<tr>
<td>0.5</td>
<td>3/72 ± 0/05</td>
<td>3/33 ± 0/05</td>
</tr>
<tr>
<td>1</td>
<td>3/67 ± 0/05</td>
<td>3/33 ± 0/05</td>
</tr>
<tr>
<td>1.5</td>
<td>3/67 ± 0/05</td>
<td>3/33 ± 0/05</td>
</tr>
<tr>
<td>2</td>
<td>3/67 ± 0/05</td>
<td>3/33 ± 0/05</td>
</tr>
<tr>
<td>3</td>
<td>3/67 ± 0/05</td>
<td>3/33 ± 0/05</td>
</tr>
</tbody>
</table>

در استفاده باید به روند فرخوانه (هب‌کاری) Harvard Graphic اشاره کرد.

برای تغییر وضعیت تریلاپتون سدیم یک فی‌کریک (با درصد خلوص 99%) و مصرف هیدروکسید سدیم (با درصد خلوص 99%) از شرکت تیم شدن می‌باشد. این کاپیتون سدیم و مصرف هیدروکسید سدیم یک فی‌کریک (با درصد خلوص 99%) از شرکت Riedel - Dehaen Angew. Chem. (2).

به شکل آن، در محلول مایع مسی و سولفاته‌های مشابه شد. این استاندارد به روش تعریف‌شده در محورهای مختلف مانند [1] و همچنین استایل پرکلریک این هیدروکسید سدیم به ترتیب با محلول‌های استاندارد با تریلاپتون کربنات [18] و اسید پرکلریک تغییر عمق ورود مناسب از آب دیوار تغییر شده با هدایت الکتریکی (μohm) 1/1.1 ± 0/1 استفاده شد.

دستگاه‌های مورد استفاده:

در استفاده pH متر مورد استفاده از شرکت pHM 2000 Eyela مدل 2000 بوده است. همچنین مصرف انداژه‌های اندازه‌گیری توسط الکترونسیمپتر از شرکت Shimadzu 2100 UV-vis و شرکت Shimadzu CDU-20C توسط الکترونسیمپتر از شرکت Shimadzu TB 85 با دقت C استفاده شده است. محلول‌های خاکسپر پیچ کیسه 260 و در سیپر Sipper در از شرکت گیمی برای اندازه‌گیری توسط الکترونسیمپتر از شرکت Shimadzu 2100 UV-vis و حمام آب از نوع Shimadzu CDE-20C با دقت C استفاده شده است.
شکل 1: اثرات نیترات نیتریک بر حساب pH برابر کمپلکس VO_2^+-گلولات‌امید، در $C=15$ و در طول مدت 265 ساعت.

در معادله (1)، واکنش تشکیل کمپلکس VO_2^+ در مقدار $1/2$ در مایع معمول است به صورت زیر داده شده:

$$
\text{VO}_2^+ + \text{H}_2\text{Y} \rightleftharpoons \text{VO}_2\text{Y}^- + 2\text{H}^+
$$

(1)

و در معادله (2) به صورت زیر است:

$$
A = \varepsilon_0 [\text{VO}_2^+] + \varepsilon_1 [\text{VO}_2\text{Y}^-]
$$

(2)

و در معادله (3) به صورت زیر می‌رسید:

$$
[\text{VO}_2^+] = C_{\text{VO}_2} - [\text{VO}_2\text{Y}^-]
$$

(3)

$$
[H_2\text{Y}] = C_{\text{H}_2\text{Y}} - [\text{VO}_2\text{Y}^-]
$$

(4)

$$
[\text{VO}_2\text{Y}^-] = C_{\text{VO}_2\text{Y}^-}
$$

(5)
جدول 2: ضریب جذب فیزیکی کیلپلکس-\(\text{VO}_2\text{Y}^-\) در فقرت‌های مختلف و بیشتر پیک‌های فیزیکی کیلپلکس-\(\text{VO}_2\text{Y}^-\) در سه‌مای دو در طول موجه‌های مختلف.

<table>
<thead>
<tr>
<th>(\text{C}/\text{M})</th>
<th>250</th>
<th>225</th>
<th>210</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1181</td>
<td>1089</td>
<td>1039</td>
<td>1011</td>
</tr>
<tr>
<td>30</td>
<td>1929</td>
<td>1874</td>
<td>1738</td>
<td>1611</td>
</tr>
<tr>
<td>50</td>
<td>1354</td>
<td>1255</td>
<td>1283</td>
<td>1376</td>
</tr>
</tbody>
</table>

جدول 3: میانگین ضرایب \(\text{logK}_{\text{VO}_2\text{Y}^-}\) در دماهای مختلف.

<table>
<thead>
<tr>
<th>دمای/(^\circ\text{C})</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{logK}_{\text{VO}_2\text{Y}^-})</td>
<td>(-0.64\pm(0.04))</td>
<td>(-0.76\pm(0.07))</td>
<td>(-0.83\pm(0.12))</td>
</tr>
</tbody>
</table>

\[
\text{logK}_{\text{VO}_2\text{Y}^-} = \text{logK}_{\text{VO}_2\text{Y}^-}^0 + \frac{pK_R}{pK_2}
\]

(1)

\[
\text{K}_{\text{VO}_2\text{Y}^-} = \frac{[\text{VO}_2\text{Y}^-]}{[\text{VO}_2^2][\text{Y}^3^-]}
\]

(2)
شکل ۲: اندازه‌گیری تغییرات جذب در کروم و نیکل (V) بر حسب pH در طول موج‌های مختلف: (a) ۲۵۵، (b) ۲۶۰، (c) ۲۶۰ نانومتر در دما ۲۵ درجه سانتی‌گراد.

جدول ۲: میانگین ضرایب logc_{VO_{2}^{+}}.

<table>
<thead>
<tr>
<th>C_{O} / C</th>
<th>λ / nm</th>
<th>۲۵۵</th>
<th>۲۶۰</th>
<th>۲۶۵</th>
<th>۲۷۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۵۵۰</td>
<td>۵۰۰</td>
<td>۴۵۰</td>
<td>۴۰۰</td>
<td>۳۵۰</td>
</tr>
<tr>
<td>۵</td>
<td>۶۱۹</td>
<td>۵۸۵</td>
<td>۵۵۱</td>
<td>۵۱۷</td>
<td>۴۸۴</td>
</tr>
<tr>
<td>۳</td>
<td>۷۵۸</td>
<td>۷۱۳</td>
<td>۶۷۸</td>
<td>۶۴۳</td>
<td>۶۰۸</td>
</tr>
</tbody>
</table>

جدول ۳: میانگین ضرایب logK_{VO_{2}Y}.

<table>
<thead>
<tr>
<th>C_{O} / C</th>
<th>λ / nm</th>
<th>۲۵۵</th>
<th>۳۰۰</th>
<th>۳۵۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td>۱۱۸۹</td>
<td>۱۱۸۵</td>
<td>۱۱۸۲</td>
<td></td>
</tr>
<tr>
<td>۳۰</td>
<td>۱۱۸۴</td>
<td>۱۱۸۰</td>
<td>۱۱۷۶</td>
<td></td>
</tr>
</tbody>
</table>

logK_{VO_{2}Y} = \frac{C_{O}}{A} \frac{1}{\varepsilon_{2}} \frac{(e^{2}-e_{1})A\varepsilon_{2}C_{O}}{[H^{+}]} \frac{K_{Y}}{V^{{O}_{2}{Y}}+C_{O_{2}}{L}_{2}} \frac{2e_{1}C_{O_{2}}+3A}{A}

به همراه استدلال‌های قبلی ممکن است به شکل این کپلکس به دست جواد آمد.
در معادله آخر، ضریب جذب مولی کمپلکس VO_2Y^{3-} تابع $K_{\text{VO}_2\text{Y}}^{\text{H}+}$ و VO_2Y^{3-} ضریب جذب مولی کمپلکس VO_2Y^{3-} تابع $K_{\text{VO}_2\text{Y}}^{\text{H}+}$ می‌باشد.

با توجه به معادله (6) اگر منحنی تغییرات

$\frac{(A-x)C_{\text{VO}_2}}{A}$

بر حسب x (نمایش نتخیب A و C_{VO_2} در طول)

شکل 4، نمایش نتخیب A و C_{VO_2} در طول

موجهی (11) 286 و 2764 نانومتر

جدول 2: مشخصات جذب مولی کمپلکس VO_2Y^{3-} در سه دما و در طول موجهی مشخص و در هر دو یون یک مول فیزیک ترکیبات سایشی در طول

<table>
<thead>
<tr>
<th>دمای/°C</th>
<th>λ/nm</th>
<th>250</th>
<th>350</th>
<th>450</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
بحث و نتیجه‌گیری:

با توجه به جدول ۲ و ۳ مشخص می‌شود که ضریب جذب مولی و کل جذب کمیکلیس VO₂\(^{+}\) به‌طور کلی بیشتر از VO₂\(^{2-}\) بزرگتر از \(\Delta H\) و ضریب جذب مولی VO₂\(^{2-}\) بزرگتر از VO₂\(^{+}\) بیشتر از \(\Delta H\) و \(\Delta S\) است. جدول ۲ و ۳ نشان دهنده است که تغییرات آناتروپی و انتقال کمیکلیس و تغییرات آناتروپی حلالی اطراف بیونیا شرکت‌کننده در واکنش‌های کوادرس و واکنش‌های واکنش ۱ و ۲ چنینی‌های کلیکلیس به‌طور کلی بیشتر از VO₂\(^{+}\) و بیشتر از VO₂\(^{2-}\) هستند. با توجه به واکنش‌های واکنش ۱ و ۲

\[
\begin{align*}
\text{VO}_2^{+} + \text{Y}^2 &\rightarrow \text{VO}_2\text{Y}^2^- \\
\text{VO}_2^{2-} + \text{Y}^2 &\rightarrow \text{VO}_2\text{Y}^2^- \\
\end{align*}
\]

در دو کمیکلیس جود از واکنش‌های مختلف حامل
REFERENCES

