روش هداف‌المراعات برای محاسبه نقطه ناپته عملکرد فروبنیوس - پرون

محمود محتشمی مقدم - مرتشی رحمانی
مرکز پژوهشی ریاضی مهان، دانشگاه کرمان - دانشکده ریاضی و کامپیوتر، دانشگاه کرمان

خلاصه:
یکی از مسائل مهم در نظریه ارگوکونی، محاسبه
\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_{\lambda}(S^{k}(\mathbf{x})) \]

است (در صورت وجود)، که در آن \(S \) یک تبدیل انتزاعی از \(X \)
به خودش و \(A \) یک مجموعه از \(X \) می‌باشد، در بسیاری از
موارد بالا ممکن است بلافاصله حد بدلیل خطا حاصل از گردیدن
این داده در کامپیوتر با مشکل بزرگی مواجه می‌شود. \(2 < 3 \) ولی با به
هم اجتمایی اینگونه انتزاعی ارگوکونی به کمک نقطه ناپته عملکرد فروبنیوس -
پرون محاسبه ساده تری اندک امکانپذیر است. در اینجا از ارحام
مقدمات لازوم بر حسب تعمیم روش هداف‌المراعات می‌بردیم، و
سپس وجود جواد غربی‌دهی و همگرایی روی را مورد بررسی قرار
می‌دهیم. در خانه محاسبه نتایج عدیدی حاصل با تناژی عددی روش
تست‌سازی \([2] \) مقایسه شده و نشان داده که با غیر
درجه انجام الگوی بدنه تابع نقطه ناپته عملکرد اگزیزی در
بزرگ و وجود نابودی نقاط ناپته، روش حاضر تنگری

مناسبتری از آن‌ها می‌باشد.

اکتمام
در انتزاعیه‌های فیزیکی گلیب با توزیع اختلال از یک کیست
فیزیکی روبرو هستیم. چنین وضعیتی را می‌توان در قالب ریاضی

بنویسیم: \(f : X \to \mathbb{R} \) نتایج \(X, \Omega, \mu) \)

تعریف ۱: در فضای انتزاعی \(X, \Omega, \mu) \)

یکی از ریات \(f \) به شکل \(\| f \| = 1 \)

\(f \in \mathcal{L}(X) \) تعریف ۲: تبدیل انتزاعی از \(X \)

به خودش با شرایط ذیل می‌باشد \(\lambda \) \)

\(\lambda \in \Omega, \lambda \neq \emptyset \) تعریف ۳: تبدیل انتزاعی از \(X \)

به خودش با شرایط ذیل می‌باشد \((A, \mu) \)

\(A \in \Omega \) تعریف ۴: تبدیل انتزاعی از \(X \)

به خودش با شرایط ذیل می‌باشد \((A, \mu) \)

\(A \in \Omega \) تعریف ۵: تبدیل انتزاعی از \(X \)

به خودش با شرایط ذیل می‌باشد \((A, \mu) \)

\(A \in \Omega \)

تعریف ۲: فرض کنید \(S : X \to X \) باشد عملکرد

\[
P_S : L^1(S) \to L^1(S)
\]

بایستی، \(\mu(S^{-1}(A)) = 0 \).

که در آن

\[
J^{-1}(x) = \left| \frac{dG^{-1}(x)}{dx} \right|
\]

تعریف ۳: فرض کنید \(S : X \to X \) یک تبدیل منفرد انت‌دازه‌پذیر باشد عملکرد

\[
P_S : L^1(X) \to L^1(X)
\]

روی بصورت

\[
\int_A P_Sf \, d\mu = \int_A f \, d\mu \quad \forall A \in \Omega
\]

تعیین می‌شود عملکرد فروبنیوس-پرونی

\[
f \in L^1(X) \quad \Rightarrow \quad\text{بایستی و تقریباً همه‌چیز}
\]

\[
\frac{1}{n} \sum_{k=1}^{n} f(S^k(x)) = f^{\circ n}(x) \quad \text{علی‌های بی‌این همکاره‌اند.}
\]

برای انت‌دازه‌های فوق بایستی و تقریباً همه‌چیز

\[
f^{\circ n}(x) = f^{n}(x)
\]

با توجه به قضیه ۲: روند است که به پایه‌ای حد (۱) کاهش می‌یابد

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_A(S^k(x)) = \nu(A) = \int_A f \, d\mu
\]

پیدا نمودن نقطه ثابت عملکرد فروبنیوس-پرونی دلالت این است که با روش‌های دیگر به خوبین جواب‌گیری نموده است.

جرج شومر [۷] از سال ۱۹۷۶ با استفاده از فضای تورلر

\[
Li(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
\]

شده به ترتیب تغییر ثابت سمت راست به چپ پایین‌ترین نقطه

\[
uch_{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
\]

در جهت پیدا نمودن تقریبی مناسب برای نقطه ثابت این مدل

عملاً با محاسبه Boyarsky و Gora [۹، ۱۰] تقریبی برای تبدیلات چگالی حافظ انت‌دازه (پایای) با افرآپه‌ای متمایز

روی پایای [۱۱] به حین سمت عالی‌المرتبه [۱۲] با استفاده از تقریب مناسب

\[
Ding \text{ و } L^1 \text{ انت‌دازه (پایای) توسط }
\]

از مارکوف در [۱۳] مواد به پیچیده و پروانه گزارش کرده است. تقریب نقطه

نیز به ترتیب عملاً پروانه و پروانه با استفاده از

\[
\chi_A(S^k(x)) = f^{\circ k}(x)
\]

در این راستا، انت‌دازه با پایای است. اگر در [۱۴] بررسی شده است، در اینجا برای نهایا

\[
\int_X P_S f \, d\mu = \int_X f \, d\mu
\]

برای عملکرد فروبنیوس-پرونی خواص عملاً در [۱۵] پایای

\[
\int_X \chi_A(S(x)) = P_S \chi_A(x)
\]

با استفاده از تقریبی مناسب

\[
Ding \text{ و } L^1 \text{ انت‌دازه (پایای) توسط }
\]

از مارکوف در [۱۶] مواد به پیچیده و پروانه گزارش کرده است. تقریب نقطه

نیز به ترتیب عملاً پروانه و پروانه با استفاده از

\[
\chi_A(S^k(x)) = f^{\circ k}(x)
\]
روش حداقلی جمع‌گیری نقاط ثابت عنصر گرین-بیلسپ - پرون

حال با استفاده از نماد

\[\alpha_{lm} = \frac{1}{1+\gamma} \left(\sum_{j=1}^{n} \xi_{ij} \right) \beta_{ji} \left(\sum_{j=1}^{n} \xi_{ij} \right)^{k} / \left(\sum_{j=1}^{n} \xi_{ij} \right)^{k+1} \]

که در آن \(\xi_{ij} \) و \(y_{lm} \) سطح و اندازه ای ماتریس‌های دارای ابعاد \(n \times n \) و \(m \times m \) است. در اینجا

روش حداقلی جمع‌گیری نقاط ثابت عنصر گرین-بیلسپ از جمله ایده‌های پرکامپتیک است. در پرون

فربینسوس - پرون ارائه می‌شود که در مقام مقایسه با سایر روش‌ها

بدین‌طور استفاده از اندازه‌گیری عددی و همچنین سادگی روش

از بین نمی‌گذارد. این است. علاوه بر این نسبت به روشهای

مشابه مانند مایو می‌تواند کمتری نیاز دارد و از سرعت هنگامی

بیشتری برخوردار است.

3- تقریب نقطه ثابت پذیری پک یک چندجمله‌ای قطعه‌ای به قطعه روي

افراز مشاهده مانند \(\{ B_{ji} \} \) از فاصله [1,0] است:

\[f(x) = \sum_{j=1}^{K} \left(\sum_{i=1}^{n} \alpha_{ji} x^{i} \right) B_{ji} \]

اپتیمیزه‌ای از پک \(B_{ji} \) با راهی به قسمت (3) قابلیت \(\alpha_{ji} \) معیار مانند می‌باشد. با توجه به عبارت D پس

\[\int_{A_{lm}} P_{s} f(x) \, dx = \int_{A_{lm}} f(x) \, dx \forall l, m \]

و با:

\[\int_{A_{lm}} P_{s} \sum_{j=1}^{K} \left(\sum_{i=1}^{n} \alpha_{ji} x^{i} \right) \chi_{B_{ji}} = 0 \forall l, m \]

و با توجه به قاعده پک داریم:

\[\sum_{j=1}^{K} \alpha_{ji} \left(\int_{A_{lm}} P_{S} x^{i} \chi_{B_{ji}} \, dx - \int_{A_{lm}} x^{i} \chi_{B_{ji}} \, dx \right) = 0 \forall l, m \]

و با:

\[\sum_{j=1}^{K} \alpha_{ji} \left(\int_{S_{lm}} P_{S} x^{i} \chi_{B_{ji}} \, dx - \int_{S_{lm}} x^{i} \chi_{B_{ji}} \, dx \right) = 0 \forall l, m \]

و به نهایت:

\[\sum_{j=1}^{K} \alpha_{ji} \left(\int_{S_{lm}} P_{S} x^{i} \chi_{B_{ji}} \, dx - \int_{S_{lm}} x^{i} \chi_{B_{ji}} \, dx \right) = 0 \forall l, m \]

\[\forall l, m \quad 1 \leq i \leq n, 1 \leq j \leq K \]
\[P_s = \sum_{i=1}^{m} \left| \frac{dS_i^{-1}(x)}{dx} \right| \chi_{A_i}(x) \] \hspace{1cm} (9)

حال اگر \(\lambda = \int f \left| \frac{dS_i^{-1}(x)}{dx} \right| \chi_{A_i}(x) \) بیستونده باشد، \(\lambda \) انتگر در تابع \(f \) می‌باشد.

\[\left\| g \right\|_{\infty} = \left\| P_s \right\|_{\infty} = \sum_{m=1}^{n} \left| \frac{dS_i^{-1}(x)}{dx} \right| \chi_{A_i}(x) \] \hspace{1cm} (10)

در حالت \(\lambda \) بیستونده باشد، \(\lambda \) انتگر در تابع \(f \) می‌باشد.

\[\left\| g \right\|_{\infty} = \left\| P_s \right\|_{\infty} \leq m \lambda^{-1} + 1 \hspace{1cm} (\infty) \]

در حالت \(\lambda \) بیستونده باشد، \(\lambda \) انتگر در تابع \(f \) می‌باشد.

\[g(x) = P_s f(x) - f(x) \] \hspace{1cm} (11)

در حالت \(\alpha \in (0, 1) \) و دارای نظریه کوثری، مقدار \(\alpha \) برای جواب دستگاه (3) در حالت خاص تناها افزایش \(\alpha \) به آن \(\alpha \) تابع بیستونده از دستگاه \(f(x) \) می‌گردد.

\[\alpha \int_{a}^{b} f(x) \, dx = \alpha = 1. \] \hspace{1cm} (12)

در حالت اگر تابع \(f(x) \) داشته باشیم:

\[S^{-1}(x) = \sum_{k=1}^{m} S^{-1}_k(x) \chi_{A_k}(x) \] \hspace{1cm} (13)

که \(\chi_{A_k}(x) \) تابع بیستونده از دستگاه (8) می‌باشد.

\[f(x) = \frac{dS^{-1}(x)}{dx} \] \hspace{1cm} (14)

که \(S^{-1}(x) \) تابع بیستونده از دستگاه (8) می‌باشد.

\[f(x) = \frac{dS^{-1}(x)}{dx} \] \hspace{1cm} (15)

که \(S^{-1}(x) \) تابع بیستونده از دستگاه (8) می‌باشد.
دنباله عددي
حال فرض کنید که برای هر داده پاسخ، \(y \) یک داده آماده باشد.

\[f(x) = \begin{cases} a & \text{در } x \leq \frac{1}{2} \\ b & \text{در } \frac{1}{2} < x \leq 1 \end{cases} \]

و با به نامسلوی هدن در نظر گرفته، در این بخش، \(S_n(x) \) را که توابع تبدیل‌زای نیاز در گام گذارهای، بدین ترتیب است، با نتایج عددي مقاله [2] مقایسه می‌کنیم.

\[S_n(x) = \left\{ \begin{array}{ll} a & \text{در } x \leq \frac{1}{2} \\ \frac{1}{2} & \text{در } \frac{1}{2} < x \leq 1 \end{array} \right. \]

و با توجه به قضیهٔ اول و قضیهٔ ولی‌پوشیده بدون کاستن از کلیت

\[S_n(x) = \left\{ \begin{array}{ll} a & \text{در } x \leq \frac{1}{2} \\ \frac{1}{2} & \text{در } \frac{1}{2} < x \leq 1 \end{array} \right. \]

و با به نامسلوی هدن در نظر گرفته در این بخش، \(S_n(x) \) را که توابع تبدیل‌زای نیاز در گام گذارهای، بدین ترتیب است، با نتایج عددي مقاله [2] مقایسه می‌کنیم.

\[S_n(x) = \left\{ \begin{array}{ll} a & \text{در } x \leq \frac{1}{2} \\ \frac{1}{2} & \text{در } \frac{1}{2} < x \leq 1 \end{array} \right. \]

و با به نامسلوی هدن در نظر گرفته در این بخش، \(S_n(x) \) را که توابع تبدیل‌زای نیاز در گام گذارهای، بدین ترتیب است، با نتایج عددي مقاله [2] مقایسه می‌کنیم.

\[S_n(x) = \left\{ \begin{array}{ll} a & \text{در } x \leq \frac{1}{2} \\ \frac{1}{2} & \text{در } \frac{1}{2} < x \leq 1 \end{array} \right. \]
در حالی که در روش [2] افزایش درجه باعث افزایش خطای محاسبه می‌شود، در مورد مثال پیدا کردن فواصل طی‌وقت و منفی‌کاشف، که انتخاب فواصل نقطه ابتدایی و انتخاب [0,1/2] با نقاط نابی‌پوشک (خ) باشد، با این انتخاب، گره کم‌کم نتایج خاستگی به قطعه بطور دقیق بدست می‌آید. در مورد روش [2] با تقریب درجه 3 با انتخاب یک فاصله می‌توان

S_1

<table>
<thead>
<tr>
<th>nod</th>
<th>deg. 0</th>
<th>deg. 1</th>
<th>deg. 2</th>
<th>deg. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/58e-2</td>
<td>5/11e-2</td>
<td>7/78e-2</td>
<td>1/13e-2</td>
</tr>
</tbody>
</table>

S_2

<table>
<thead>
<tr>
<th>nod</th>
<th>deg. 0</th>
<th>deg. 1</th>
<th>deg. 2</th>
<th>deg. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7/13e-2</td>
<td>2/25e-2</td>
<td>5/11e-2</td>
<td>1/13e-2</td>
</tr>
<tr>
<td>8</td>
<td>3/19e-2</td>
<td>5/37e-2</td>
<td>1/44e-2</td>
<td>1/11e-2</td>
</tr>
</tbody>
</table>

S_3

<table>
<thead>
<tr>
<th>nod</th>
<th>deg. 0</th>
<th>deg. 1</th>
<th>deg. 2</th>
<th>deg. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7/13e-2</td>
<td>2/25e-2</td>
<td>5/11e-2</td>
<td>1/13e-2</td>
</tr>
<tr>
<td>8</td>
<td>3/19e-2</td>
<td>5/37e-2</td>
<td>1/44e-2</td>
<td>1/11e-2</td>
</tr>
</tbody>
</table>

S_4

<table>
<thead>
<tr>
<th>nod</th>
<th>deg. 0</th>
<th>deg. 1</th>
<th>deg. 2</th>
<th>deg. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7/13e-2</td>
<td>2/25e-2</td>
<td>5/11e-2</td>
<td>1/13e-2</td>
</tr>
<tr>
<td>8</td>
<td>3/19e-2</td>
<td>5/37e-2</td>
<td>1/44e-2</td>
<td>1/11e-2</td>
</tr>
</tbody>
</table>

S_5

<table>
<thead>
<tr>
<th>nod</th>
<th>deg. 0</th>
<th>deg. 1</th>
<th>deg. 2</th>
<th>deg. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7/13e-2</td>
<td>2/25e-2</td>
<td>5/11e-2</td>
<td>1/13e-2</td>
</tr>
<tr>
<td>8</td>
<td>3/19e-2</td>
<td>5/37e-2</td>
<td>1/44e-2</td>
<td>1/11e-2</td>
</tr>
</tbody>
</table>
\[
S_x
\begin{array}{|c|c|c|c|}
\hline
\text{n} & \text{deg.} & \text{deg.} & \text{deg.} \\
\hline
& \frac{3}{2} & \frac{9}{2} & \frac{3}{2} \\
\hline
\end{array}
\]

\[1\]

