پیاده‌سازی بر پایه‌ورودگر درستنامی‌بیشینه تقیی‌پارامتریک فراورش (1) مبنی بر یک AR سری دوتایی و مقایسه آن با برآورده‌گر درستنامی بیشینه دادههای اولیه

حسنعلی نیروی‌نده

چکیده:
در این مقاله یک فرآیند انرژی‌مرورگری ویژه ارائه می‌شود که می‌تواند در سیستم‌های تصادفی N(O(t),o(t)) که از مجموعه‌هایی تشکیل شده در N(O(t),o(t)) که از مجموعه‌هایی تشکیل شده در (Z(t)=\phi Z(t-1)+u(t)) می‌باشد، با توجه به رابطه آنالوژیکی بین فرآیندها این فرآیند با دو تایی کرد. در این رابطه، (X(t)) که یک تغییر مارکفی ساده برآورده‌گر درستنامی بیشینه تقیی‌پارامتریک (\phi) برای برآورده‌گر درستنامی بیشینه دادههایی اولیه می‌باشد. برای مثال، در برآورده‌گر درستنامی بیشینه، استفاده از مدل تغییرات dynamical به جای مدل‌های آماری معمول، می‌تواند منجر به بهترین مقدار بیشینه دادههای اولیه شود.

واژه‌های کلیدی:
برآورده‌گر انرژی‌مرورگری، فرآیند دوتایی، تغییر مارکف، برآورده‌گر درستنامی بیشینه

مقدمه:
هدف این مقاله ارائه یک جدیدی در تحلیل سری‌های زمانی است. تحلیلی که در بازارهای دیده‌بان یا فرآیندهای شمارشی است. این مقاله به همراه بررسی برآورده‌گر پارامتریک عاملی را به بهبود و بهبود در آن مدل‌های فرآیندهای تصادفی و دو تایی ارائه می‌دهد. برآورده‌گر پارامتریک یک فرآیند از ویژگی‌های کاهشی در داده‌ها است. در این مقاله، با توجه به رابطه آنالوژیکی بین فرآیندها، استفاده از مدل تغییرات dynamical به جای مدل‌های آماری معمول، می‌تواند منجر به بهترین مقدار بیشینه دادههای اولیه شود.
نریه علوم داشته‌ای، ترتیب معلم

\[
P(X_{i}, X_{j}) = \frac{1}{2}(\sum_{t=1}^{n} P(X_{t} | X_{i, t})) P(X_{j} | X_{j})
\]

\[
P(X_{i} | X_{j}) = \frac{1}{2}(\sum_{t=1}^{n} \lambda_{1}^{(1/2-n, t, t)} \lambda_{2}^{(1-n) \prod_{t=2}^{n} x_{t}})
\]

\[
P(X_{i} = x_{i}, ..., X_{n} = x_{n}) = \frac{1}{2}(\prod_{i=2}^{n} y_{i}^{x_{i} \prod_{i=1}^{n-1} y_{i}})
\]

\[
\phi = \sin^{\pi 2} \left(\lambda_{1} \frac{1}{2} \right)
\]

\[
\phi = \cos^{\pi 2} \left(\frac{1}{n-1} \sum_{t=2}^{n} Z_{t} \right)
\]

\[
X_{i} = x_{i}, ..., X_{n} = x_{n}
\]

\[
P(X_{i} = x_{i}, ..., X_{n} = x_{n}) = \frac{1}{2}(\prod_{i=2}^{n} y_{i}^{x_{i} \prod_{i=1}^{n-1} y_{i}})
\]

\[
\text{وقتی} \sum_{i=1}^{n} X_{i} = \text{سیستم } M \text{ مستقل است.}
\]

\[
\text{وقتی} \sum_{i=1}^{n} X_{i} = \text{سیستم } M \text{ مستقل است.}
\]

\[
P(X_{1}, X_{2}, X_{n} = x_{n}) = \frac{1}{2}(\prod_{i=2}^{n} y_{i}^{x_{i} \prod_{i=1}^{n-1} y_{i}})
\]

\[
\text{وقتی} \sum_{i=1}^{n} X_{i} = \text{سیستم } M \text{ مستقل است.}
\]

\[
\phi = \sin^{\pi 2} \left(\lambda_{1} \frac{1}{2} \right)
\]

\[
\phi = \cos^{\pi 2} \left(\frac{1}{n-1} \sum_{t=2}^{n} Z_{t} \right)
\]

\[
\text{وقتی} \sum_{i=1}^{n} X_{i} = \text{سیستم } M \text{ مستقل است.}
\]

\[
\phi = \sin^{\pi 2} \left(\lambda_{1} \frac{1}{2} \right)
\]

\[
\phi = \cos^{\pi 2} \left(\frac{1}{n-1} \sum_{t=2}^{n} Z_{t} \right)
\]
است که در آن ϕ و ϕ برای دیگر درست‌نمایی شبیه‌سازی نیست که از $\text{MSE}(\phi)$، $\text{MSE}(\phi_1)$، و $\text{MSE}(\phi_2)$ بدست می‌آید نیاز به \mathbf{Z}_t و \mathbf{Z}_s دو متغیر دمو بوده و \mathbf{Y}، \mathbf{X}_t و \mathbf{X}_s می‌باشند. مقایسه با $\text{MSE}(\phi)$ درست‌نمایی شبیه‌سازی جدیدتر خوب است؟ برای انجام این امر با استفاده از شبیه‌سازی ϕ و ϕ_1، مقایسه ϕ و ϕ_1 کاربردی خویش دارد.

برای هر متغیر $\text{MSE}(\phi)$، $\text{MSE}(\phi_1)$ و $\text{MSE}(\phi_2)$ در جدول (1) متعکس همکاری می‌کنند. مطالعه برای داده‌های زیاد تفاوت بین ϕ و ϕ_1 قابل اغراض است.

<table>
<thead>
<tr>
<th>σ^2</th>
<th>ϕ</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>$\text{MSE}(\phi)$</th>
<th>$\text{MSE}(\phi_1)$</th>
<th>$\text{MSE}(\phi_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>400</td>
<td>0.771</td>
<td>0.777</td>
<td>0.003</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.780</td>
<td>0.789</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.779</td>
<td>0.788</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>0.5</td>
<td>400</td>
<td>0.466</td>
<td>0.474</td>
<td>0.004</td>
<td>0.008</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.472</td>
<td>0.479</td>
<td>0.003</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.471</td>
<td>0.480</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>-0.4</td>
<td>400</td>
<td>-0.392</td>
<td>-0.371</td>
<td>0.004</td>
<td>0.007</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>-0.405</td>
<td>-0.382</td>
<td>0.002</td>
<td>0.005</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>-0.404</td>
<td>-0.391</td>
<td>0.002</td>
<td>0.006</td>
<td>0.004</td>
</tr>
<tr>
<td>0.8</td>
<td>400</td>
<td>0.806</td>
<td>0.799</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.801</td>
<td>0.801</td>
<td>0.000</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.803</td>
<td>0.801</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>0.5</td>
<td>400</td>
<td>0.505</td>
<td>0.509</td>
<td>0.002</td>
<td>0.006</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>0.497</td>
<td>0.494</td>
<td>0.001</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.500</td>
<td>0.490</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>0</td>
<td>400</td>
<td>0.004</td>
<td>-0.013</td>
<td>0.003</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>800</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>-0.006</td>
<td>-0.002</td>
<td>-0.387</td>
<td>-0.402</td>
<td>-0.400</td>
<td>0.001</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

REFERENCES