بررسی اثر ضدبیماری‌های سه گونه از گیاهان تبره نعناع (کاکوئی، مریم گلی و نعناع) بر ۱۵ سویه باکتری بیماری‌زای رده‌ای و عامل مسمومیت غذایی

دکتر شهید مهرانی. دکتر ملااباشی. دکتر واحد مدد
دانشگاه تربیت معلم، دانشکده علوم، گروه زیست‌شناسی

خلاصه:
در این بررسی مجموعه خواص ضدبیماری‌کننده گیاهان تبره نعناع شامل کاکوئی، مریم گلی و نعناع مورد مطالعه قرار گرفت.

۱- مواد ضدبیماری‌کننده مولکول‌های درون‌ما می‌باشند که با اکسیدان جنس‌هایی می‌پیوندند.

۲- بهترین مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۳- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۴- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۵- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۶- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۷- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۸- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۹- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۱۰- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۱۱- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۱۲- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۱۳- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۱۴- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.

۱۵- مواد ضدبیماری‌کننده درون‌ما می‌باشند که اکسیدان جنس‌هایی می‌پیوندند.
مواد و روش کار

الف) کبیاها مورد آزمایش شامل: کاکوتی (Plectranthus verticillatus) مریم گلی (Mentha spicata) و نعناع (Salvia fruticosa) بوده که بطور مشترک بر سر خشک نشانه‌های گیاهی مصرف روده‌ای در بوی هرگز همه‌چیزی در دستورالعمل و گردیده گردن در مراحل پیشین تحقیقات بعدها پیوستن به در دستورالعمل بر اساس مطالعه‌های گفته شده است.
نتایج:

امپرسی اثر ضدبیکروپیور مصرف دوگانه گیاهی از تیره نعناع بر 15 گلها در میدان آزادی نشان داد که گیاهان مصرفی اثر ضدبیکروپیوری می‌باشند. این اثر در مورد عصاره ای گیاهی نشان داد. عصاره آبی گیاه خشک شده یکسان بوده و عصاره آبی بر عقیضی از یک گیاه خشک شده یکسان بوده.

اهداف

1. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم های مورد آزمایش
2. تأثیر دندان عصاره‌های تیره نعناع بر میکروگالکانیسم‌ها
3. تأثیر دندان عصاره‌های تیره نعناع بر میکروگالکانیسم‌ها
4. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم‌ها
5. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم‌ها
6. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم‌ها
7. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم‌ها
8. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم‌ها
9. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم‌ها
10. تأثیر دندان عصاره‌های تحت شده روی میکروگالکانیسم‌ها

بحث:

پژوهش‌های انجام شده بر روی سگ‌گونه‌گی‌های نیز به تمرکز در هر
اساسی‌گونه‌های مختلف گیاهان انگشان شد. نسبت‌های Carum carvi، Salvia officinale، Caraway (carum carvi)، and Syzygium aromaticum (cuminum) را بر سه یک کریم منفی (thymus vulgaris) و با پاسیون‌سوسنی سیستم‌ها می‌پیچیده‌اند. مثال است. اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌است. این گیاهان بر اثر ضدپیکرویی دوگونه از گیاهان به میزان 13.18% به دست آمده‌ است.
References

7- Sabri - NN. Abou Denis - AA; Ghezy - NM; Assed - AM; (1989). Two new rearranged abietane diterpene quinones from salvia egyptica. journal - of - organic chemistry; 59: 17, 4097-4099.

میکروب‌های مختلف میوه گلی (Salvia) بر باکتری‌های بیماری‌زا و فروست‌طلب بیماری‌زای روده‌ای و عوامل مسمومیت غذایی

<table>
<thead>
<tr>
<th>میکرو‌ورگن‌ها</th>
<th>ماتانول</th>
<th>اکتان</th>
<th>آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoli O¹¹ B⁴</td>
<td>11.2 ± 0</td>
<td>11 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>Ecoli O²¹ B¹⁵</td>
<td>22 ± 0.38</td>
<td>18 ± 0.2</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Ecoli O¹² B⁸</td>
<td>16 ± 0.8</td>
<td>14 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Shigella dysentriae</td>
<td>30 ± 0</td>
<td>28 ± 0</td>
<td>21 ± 0</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>17.2 ± 6.58</td>
<td>16 ± 0.72</td>
<td>16 ± 0.92</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>16 ± 0</td>
<td>26 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>23 ± 0.58</td>
<td>17 ± 0.88</td>
<td>12 ± 0.82</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>24 ± 0</td>
<td>19 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Salmonella paratyphi B</td>
<td>18 ± 0.5</td>
<td>16 ± 0.2</td>
<td>18 ± 0</td>
</tr>
<tr>
<td>Aerobaeter aerogenese</td>
<td>21 ± 0.5</td>
<td>15 ± 0</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Kelebiella oxytoca</td>
<td>28 ± 0.29</td>
<td>20 ± 0.2</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>21 ± 0.5</td>
<td>25 ± 0.29</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>23 ± 0.06</td>
<td>25 ± 0.03</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>23 ± 0</td>
<td>21 ± 0</td>
<td>20 ± 0</td>
</tr>
</tbody>
</table>
تأثیر ضدبакتریای عصار دهای مختلف نعناع (Spearmint) بر باکتری‌های بیماریز
و فرستار طلب بیماریهای روده‌ای و عوامل مسمومیت غذایی

<table>
<thead>
<tr>
<th>MICROORGANISMS</th>
<th>METHANOL</th>
<th>ACETON</th>
<th>WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoli O²¹¹B⁴</td>
<td>16 ± 0</td>
<td>7 ± 0.2</td>
<td>0</td>
</tr>
<tr>
<td>Ecoli O²¹⁵B¹⁵</td>
<td>20 ± 0</td>
<td>8 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Ecoli O¹²²B⁸</td>
<td>14 ± 0.5</td>
<td>8 ± 0</td>
<td>7 ± 0</td>
</tr>
<tr>
<td>Shigella dysentriae</td>
<td>20 ± 0</td>
<td>17 ± 0</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>16 ± 0.5</td>
<td>19 ± 0</td>
<td>13 ± 0</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>15 ± 0</td>
<td>20 ± 0</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>20 ± 0</td>
<td>15 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>17 ± 0</td>
<td>14 ± 0</td>
<td>10 ± 0.2</td>
</tr>
<tr>
<td>Salmonella paratyphi B</td>
<td>15 ± 0.62</td>
<td>14 ± 0.2</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Aerobacter acrogense</td>
<td>15 ± 0.5</td>
<td>12 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>20 ± 0</td>
<td>18 ± 0.5</td>
<td>19 ± 0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>17 ± 0</td>
<td>14 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>21 ± 0.3</td>
<td>20 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>12 ± 0</td>
<td>16 ± 0.1</td>
<td>7 ± 0</td>
</tr>
<tr>
<td>MICROORGANISMS</td>
<td>METHANOL</td>
<td>ACETON</td>
<td>WATER</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Ecoli O^{11}B^{4}</td>
<td>16.2 ± 0</td>
<td>14 ± 1</td>
<td>0</td>
</tr>
<tr>
<td>Ecoli O^{21}B^{15}</td>
<td>19 ± 0.5</td>
<td>16 ± 0.5</td>
<td>10 ± 0.86</td>
</tr>
<tr>
<td>Ecoli O^{12}B^{8}</td>
<td>15 ± 0</td>
<td>14 ± 0</td>
<td>14 ± 0</td>
</tr>
<tr>
<td>Shigella dysenteriac</td>
<td>25 ± 0.8</td>
<td>21 ± 0</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>19 ± 0.5</td>
<td>19 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>22 ± 0</td>
<td>25 ± 0.8</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>19 ± 0</td>
<td>20 ± 0.2</td>
<td>0</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>26 ± 1.86</td>
<td>25 ± 0</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Salmonella paratyphi B</td>
<td>17 ± 0</td>
<td>16 ± 0</td>
<td>15 ± 0.5</td>
</tr>
<tr>
<td>Acetobacter aerogenes</td>
<td>20 ± 0</td>
<td>15 ± 0.5</td>
<td>0</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>21 ± 0.5</td>
<td>21 ± 0</td>
<td>20 ± 0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>18 ± 0.5</td>
<td>22 ± 0</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>22 ± 0.69</td>
<td>25 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>20 ± 0</td>
<td>21 ± 0.28</td>
<td>15 ± 0</td>
</tr>
</tbody>
</table>
Effects of Different Salvia Extracts on Enteric Pathogens, Opportunistics and Food Poisoning Bacteria

Methanol

<table>
<thead>
<tr>
<th>E. coli O111 B4</th>
<th>E. coli O125 B15</th>
<th>Shigella dysenteriae</th>
<th>Shigella Flexneri</th>
<th>Salmonella Typhi</th>
<th>Salmonella para A</th>
<th>Aerobacter aerogenes</th>
<th>Klebsiella oxytoca</th>
<th>Proteus mirobili</th>
<th>Staph. aureus</th>
<th>Bacillus cereus</th>
<th>Bacillus subtilis</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>22</td>
<td>16</td>
<td>30</td>
<td>17.2</td>
<td>16</td>
<td>23</td>
<td>24</td>
<td>18</td>
<td>21</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Aceton</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>14</td>
<td>28</td>
<td>16</td>
<td>26</td>
<td>17</td>
<td>19</td>
<td>16</td>
<td>15</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>12</td>
<td>21</td>
<td>16</td>
<td>12</td>
<td>12.2</td>
<td>12</td>
<td>18</td>
<td>10</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

mm
Effects of Different Spearmint Extracts on Enteric Pathogens, Opportunistics and Food Poisoning Bacteria

<table>
<thead>
<tr>
<th></th>
<th>Methanol</th>
<th>Aceton</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli 0111 B4</td>
<td>16</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>E. coli 0125 B15</td>
<td>20</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>16</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Shigella sonnet</td>
<td>15</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>20</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>Salmonella para A</td>
<td>15</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Aerobacter aerogenes</td>
<td>15</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Staph. aureus</td>
<td>17</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>21</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>12</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Effects of Different Ziziphora Extracts on Enteric Pathogens, Opportunistics, and Food Poisoning Bacteria

Graph

- X-axis: Bacterial Species
- Y-axis: mm

Table

<table>
<thead>
<tr>
<th>Solution</th>
<th>E. coli O111 B4</th>
<th>E. coli O125 B15</th>
<th>Shigella dysenteriae</th>
<th>Shigella flexneri</th>
<th>Salmonella typhi</th>
<th>Salmonella para A</th>
<th>Klebsiella oxytoca</th>
<th>Proteus mirabilis</th>
<th>Staph. aureus</th>
<th>Bacillus cereus</th>
<th>Bacillus subtilis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>16.2 19 15 25</td>
<td>19 22</td>
<td>19 26</td>
<td>17</td>
<td>20 21</td>
<td>0</td>
<td>18 22</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aceton</td>
<td>11 18 14 28</td>
<td>16 26</td>
<td>17 19</td>
<td>16</td>
<td>15 20</td>
<td>0</td>
<td>25 25</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0 10 14 15</td>
<td>15 12</td>
<td>0 15</td>
<td>15</td>
<td>0 20</td>
<td>0</td>
<td>10 12</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
شناسایی و حركت سلول‌های پری مارودیال زرم در جنین جوجه موم

مقدمه:
سلول‌های پری مارودیال (PGCs) سلول‌های پری مارودیال زرمی‌که‌روی، گلابی‌شکلی بین اندازه ۱۱ تا ۲۵ میکرون و تا (Chick embryo) منشأ جنینها در جزء مرگم ساینسیا. مدت‌ها (Ã germinat crescent) سلول‌های پری مارودیال زرم در رونق جوجه مرگ در طول مرحله بخت اولیه وجود می‌آیند. ولی امروزه ثابت شده که منشأ آنها این بلاست سی باشد. این سلول‌ها با روش گنگ آمیزی (PAS Periodic Acid Schiff) در اکثر سلول‌های پری مرگم زرم از جنس مرگم دیده می‌شود. در این تحقیق سلول‌های جوجه مرگ و حركت سلول‌های پری مارودیال زرم و تعداد آنها در خون از این نظر گرفته مرحله تکثیر جوجه مرگ و همچنین تعداد سلول‌های پری مرگم در ارتباط با تعداد سو‌جنینهای جنین جوجه مرگ تعبیر گردید.

نتایج نشان داد، هنگامی که تعداد سو ویتی‌های هاربرد ۳۰ باشد، تعداد سلول‌های پری مارودیال زرم به حد بیشتری سی رشد و همچنین در مرحله ۱۷ تکثیر سلول‌های پری مارودیال زرم به سی‌ریه‌های دیده می‌شوند و از این مرحله به بعد این سلول‌ها در درگاه مسیر شده و در مرحله ۱۹ کاملاً می‌گردد.