بررسی اثر ضدمیکروژیکی سه گونه از گیاهان تیره نعناع (کاکوتی، مریم گلی و نعناع) بر 15 سویه باکتری بیماری‌زا رویده‌ای و عامل مسمومیت غذایی

دکتر صدیقه مهرابیان. زمربی ملامشی. دکتر احمد بعد
دانشگاه تربیت معلم، دانشکده علوم، گروه زیست‌شناسی

خلاصه:
در این بررسی مجموعه خواص ضدبакتریایی 3 گونه گیاهان تیره نعناع شامل کاکوتی، مریم گلی و نعناع نورد مطالعه تکرار گردید. است. این بررسی به طور عمدی روی عصاره‌های مایل‌پذیر، استنی و آب انجام گرفت. عصاره‌گیری با استفاده از سولفات انجام شد و عصاره‌ها با فلز‌های به‌کارگیری روز 13 سه‌ی سه‌روی بیماری‌زا و 3 سویه شناسایی و فرست گردید.

میکروگرایفیسم‌های گونه مطالب که با کمک از میکروسکوپ و تعدادی از مواد آزمایشی آلوده جداسازی شده بودند، بعد از خالص شدن و تمرکز مطالب به پیش‌بینی و تمرکز اسید اسکلرورجف و نمونه میکروسکوپ‌های بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند. این گونه‌ها مورد مطالعه بیشتری و سرم‌های اشکالی قرار گرفتند.

مقدمه:
گیاهان تیره نعناع از زبان‌های گیاه‌شناسی در طبقه سنتی مورد استفاده و به‌طور معمول در درمان عفونت‌های دستگاه گوارش و دل‌درد بکار می‌رود. در این کار، آنتی‌بیوتیک آنتی‌بیوتیک که به‌طور معمول عناصری به‌طور دستگاه گوارش و جانداری در ریزرونوژها و دستگاه‌های دستگاه‌ها در آن استفاده می‌شود. به‌طور کلی، نعناع در این آلوده با کمک چندین بیماری و درست تطبیق دارویی و عاملی مسئول غذایی و عاملی مسئول غذا
مواد و روش کار

(الف) گیاهان مورد آزمایش شامل: کاکوتوی (Mentha pulegium) و نعناع (Salvia officinalis) بودند. گیاهان روغن زیتون (Olea europaea) و ترشحات فشار کاهش یافته (Saturus officinalis) نیز در این استانداردها به کار رفته بودند. برای استانداردهای حساسیتی و شکل‌گیری جفت‌های مختلف گیاهان تهیه گردید. در این مطالعه مدل ماتریس Salvia albaecareata به کار گرفته شد.

(ب) از تعدادی از این گیاهان و نعناع مولکول‌های آنتی‌بیوتیک با استفاده از تیپ آنالیز و فیزیولوژیک تهیه و پژوهش کردند.

نتایج:

1. عصاره‌های مختلف از گیاهان مورد آزمایش شامل: کاکوتوی، نعناع، سالویا و روغن زیتون با کاربرد در عرصه‌های مختلفی مورد بررسی قرار گرفتند.

2. در مطالعه، مقدار میکروب‌های بافت‌گیری درون‌های مختلف گیاهان و عصاره‌های آنها به صورت پایین‌تری مشاهده گردید.

3. نتایج به اثبات درستی در قبال گیاهان و عصاره‌های آنها که در عرصه‌های مختلفی مورد استفاده قرار گرفته، کمک کردند.

4. در نهایت، میزان قاب‌گیری مکونیکی و اکتیویتی میکروب‌های بافت‌گیری درون‌های مختلف گیاهان به صورت پایین‌تری مشاهده گردید.

5. نتایج نشان داد که گیاهان و عصاره‌های آنها می‌توانند به عنوان مواد طبیعی در درمان بیماری‌های مختلف به کار رفته نشان دهنده آنتی‌بیوتیک با垢‌های از دسترسی جدیدی برای درمان بیماری‌های مختلف هستند.
شده. ازین چهار، بیشتری منطقه‌ای مختلفی از جمله (گل‌کوک، آقایان کناری‌زایی‌بردارهای هیدروزون سفلتوده، انگل، لیبرن، حکرتکی) بالای آن‌ها وارد. (24) برای شناسایی ذاتی و تفسیری گروه‌ها مختلف انجام شد. علاوه بر همکاریات بین‌نشسته‌ای شاخص‌ها، شامل میکروگراف و روی‌ای کلیک‌های سریال، نامبر چپ باید به عنوان جزئی از نظرات و تحلیلی برخی نظرسنجی‌ها (Kaufmann and White) اوروس، ساسیوس سوسوس، نموهای پیمایش آزاده و پیمان ارزیابی در روش هم‌جفتی‌های انجام یافته و انجام نهایی از آزمایش از جمله لیکنیک، تاکو، و نتیجه‌گیری مبتنی بر روی کلیدی و خالص‌تر.

2. تأثیر دادن عصاره‌های دریایی و روی میکروگرافی‌های مورد آزمایش:
الف- به‌مستند به سپاسیون میکروگرافی از کلسترول 30 ساعت و خاصی هر یک از 15 میکروگرافی‌های مورد مطالعه با صورت استریل شانه در دستگاه کرده و در محیط نانوتیتریت سریال استریل شده و مدت 8 ساعت در گرم‌مانه قرار داده تا یک کدیراپی نسبی برخورد شود.

حال سپاسیون میکروگرافی سریال دارد از لحاظ کدیراپی مطلق روی مورد بررسی کمتری را داشته و کدیراپی محیطی میکروگرافی از حدود 10 در میلی‌لیتر تخمین زده شد.
ب- کشت میکروگرافی‌های روی پلست: بعد از تهیه نمونه میکروگرافی استاندارد با صورت استریل اقدام به کشت و به‌کمک 15 سپاسیون میکروگرافی پهلو جدایی در روی محیط موله‌تیتون نمایید. عمل کدیراپی را برند و در سه جهت تفاوت کدیراپی تا نامناسب نشان کست داده شود. حال این پلست روی کنک ماهی ترغیب دارو آماده می‌باشد.

3. تأثیر دادن عصاره‌های دریایی و روی میکروگرافی‌های مورد آزمایش:
روی هر پلست به قطر داخلی 6 میلی‌متر چاهک ایجاد می‌کنید. از عصاره‌های تهیه شده (زهفت) (0.1 میکروگرم mg/ml) به وسیله سرتاب استریل 10 میکروگرم می‌کنید با دقت می‌شود 2 میلی‌لیتر عصاره‌ها کاملاً خار جاهای مزبور ریخته شود. نقدار عصاره به کار رفته در هر
اساسنگونه‌های مختلف گیاهان انجام شد. نسبت‌های سال‌ vieille Salvia officinalis Caraway (carum carvi), Carum carvi و Salvia سال‌ vieille Syzygium armaticum Carum carvi (cumin)

روی بررسی‌های اثر ضدبیکتریایی اثر ضدبیکتریایی دوگونه از گیاهان تهیه نماید (Biondi D. 1993)

را در با کمترین بازیل B. subtilis, استافیلوکوکوس اوراسوس و شرکتهای MRI و پروتونس و لگاریس عروسی نموده، این گیاهان بر

با اکثریت موارد آزمایش اثر ضدبیکتریایی داشته نتایج پژوهش‌های ما نیز با این کارها همسونی دارد (Biondi. D. 1994)

در ادامه یافت شده‌های خرد نشان داده‌اند که این اثر ضدبیکتریایی به ترکیبات

فندل موجود در عصاره مربوط می‌باشد.

در پژوهش‌هایی که ما انجام دادیم به‌شکل‌هایی اثر منفی به

حلناتوریا و استنست بوده و عصاره آن اثر کمتری داشته است. در پژوهش‌های 1994 بررسی سال‌ vieille Salvia scabra می‌کنیم در بروسا (6 mg/ml) می‌کنیم و با کمترین بازیل B. subtilis, استافیلوکوکوس اوراسوس و شرکتهای MRI و پروتونس و لگاریس عروسی نموده، این گیاهان بر

بیاراکی و گیسیک همکاری‌ها مورد شیوع و جداسازی کردند. موارد مزبور علمی

در با کمترین بازیل B. subtilis, استافیلوکوکوس اوراسوس و شرکتهای MRI و پروتونس و لگاریس عروسی نموده، این گیاهان بر

بررسی‌های اثر ضدبیکتریایی شیرینی دارد. در این منتهی تحقیقات زیادی

Sabri-N-N 1990 روی جنس هالایا انجام شده از کلمه در مصر مرگ

و همکاران اثرات ضدبیکتریایی ضدسرطانی قوی در ریشه‌گونه

گزارش نمودند اثر ضدبیکتریایی گیاه مزارع را بر Salvia acgratica

پس از درمان اثر و زیستی، استافیلوکوکوس اوراسوس و

کانون آلیکاس و پاساکولس سوئیپس مشاهده نمودند که با

نتایج کارآی مهیا می‌باشد. این پژوهشگران با استفاده از روش

کروماتوگرافی سنتی و راه ناک آوراند گنجی را که واکنش به

ترکیبات تاشون‌دار می‌باشند مطالعه نمودند. ساختمان این

ترکیبات را بوسیله استخراج مواد مشخص نموده و این بنای

X نیز تایید گردید. اختلال اثر ضدبیکتریایی جنسیات مختلف تیره

تشابه می‌باشد. در پژوهش‌هایی که استفاده

یافت شده‌های خرد نشان داده‌اند که این اثر ضدبیکتریایی به ترکیبات

فندل موجود در عصاره مربوط می‌باشد.

در پژوهش‌هایی که ما انجام دادیم به‌شکل‌هایی اثر منفی به

حلناتوریا و استنست بوده و عصاره آن اثر کمتری داشته است. در پژوهش‌های 1994 بررسی سال‌ vieille Salvia scabra می‌کنیم در بروسا (6 mg/ml) می‌کنیم و با کمترین بازیل B. subtilis, استافیلوکوکوس اوراسوس و شرکتهای MRI و پروتونس و لگاریس عروسی نموده، این گیاهان بر

بیاراکی و گیسیک همکاری‌ها مورد شیوع و جداسازی کردند. موارد مزبور علمی

در با کمترین بازیل B. subtilis, استافیلوکوکوس اوراسوس و شرکتهای MRI و پروتونس و لگاریس عروسی نموده، این گیاهان بر

بررسی‌های اثر ضدبیکتریایی شیرینی دارد. در این منتهی تحقیقات زیادی

Sabri-N-N 1990 روی جنس هالایا انجام شده از کلمه در مصر مرگ

و همکاران اثرات ضدبیکتریایی ضدسرطانی قوی در ریشه‌گونه

گزارش نمودند اثر ضدبیکتریایی گیاه مزارع را بر Salvia acgratica

پس از درمان اثر و زیستی، استافیلوکوکوس اوراسوس و

کانون آلیکاس و پاساکولس سوئیپس مشاهده نمودند که با

نتایج کارآی مهیا می‌باشد. این پژوهشگران با استفاده از روش

کروماتوگرافی سنتی و راه ناک آوراند گنجی را که واکنش به

ترکیبات تاشون‌دار می‌باشند مطالعه نمودند. ساختمان این

ترکیبات را بوسیله استخراج مواد مشخص نموده و این بنای

X نیز تایید گردید. اختلال اثر ضدبیکتریایی جنسیات مختلف تیره

تشابه می‌باشد. در پژوهش‌هایی که استفاده

یافت شده‌های خرد نشان داده‌اند که این اثر ضدبیکتریایی به ترکیبات

فندل موجود در عصاره مربوط می‌باشد.
References

Antimicrobial activity and chemical composition of essential oils
from Sicilian aromatic Plants. Flavour-and Fragrance journal;
8:6, 331-337.

2- Edward, P. R. and Ewing, W. H (1962) Burgess publ co
Minneapolis 15 Minnesota Identification of Enterobacteriaceae. 2

3- Farge - Rs Salem - H; Bader - Azana, Hassanein - DE (1989).
Antimicrobial activity of some Egyptian spice essential oil.

4- Kirby W. M. & Bauer, A. W. (1959). Disk antibiotic sensitivity
testing to staphylococci: An Analysis of Technique and results,

5- Leon Leminor (1972). Le Diagnostic de laboratoire de

antimicrobial abietane - type diterpene from salvia albaeaulesa.

7- Sabi - NN, Abou Denis - AA; Ghezzy - NM; Assed - AM; (1989).
Two new rearranged abietane diterpene quinones from salvia
egyptica. journal - of - organic chemistry; 59: 17, 4097-4099.

8- Ulubele - A, Topcu - G, Eris - C; Sonez - U, Kartal - M; Karceu
- S; Bozok - Johnson - c (1994). Terpenoids from salvia sclarea
phytochemistry; 36: 4, 971-974.

9- Vichkanova - SA, Izosimova - SB; Adgina - UV; Shipulina - LD
(1979), prospects of a search for antimicrobial substances among
تأثیر ضد باکتریایی عصاره‌های مختلف مریم‌گلی (Salvia) بر باکتری‌های بیماری‌زا و فرد استخوان بیماری‌زا و درمان می‌تواند سبب داشته باشد.

<table>
<thead>
<tr>
<th>MICROORGANISMS</th>
<th>METHANOL</th>
<th>ACETON</th>
<th>WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoli O^{11}B^{4}</td>
<td>11.2 ± 0</td>
<td>11 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Ecoli O^{215}B^{15}</td>
<td>22 ± 0.38</td>
<td>18 ± 0.2</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Ecoli O^{127}B^{8}</td>
<td>16 ± 0.8</td>
<td>14 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Shigella dysentriae</td>
<td>30 ± 0</td>
<td>28 ± 0</td>
<td>21 ± 0</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>17.2 ± 6.58</td>
<td>16 ± 0.72</td>
<td>16 ± 0.92</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>16 ± 0</td>
<td>26 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>23 ± 0.58</td>
<td>17 ± 0.88</td>
<td>12 ± 0.82</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>24 ± 0</td>
<td>19 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Salmonella paratyphi B</td>
<td>18 ± 0.5</td>
<td>16 ± 0.2</td>
<td>18 ± 0</td>
</tr>
<tr>
<td>Aerobaeter aerogenese</td>
<td>21 ± 0.5</td>
<td>15 ± 0</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>28 ± 0.29</td>
<td>20 ± 0.2</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>21 ± 0.5</td>
<td>25 ± 0.29</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>23 ± 0.06</td>
<td>25 ± 0.03</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>23 ± 0</td>
<td>21 ± 0</td>
<td>20 ± 0</td>
</tr>
</tbody>
</table>
Tabla 1. تأثیر ضدباکتریای عصارهای مختلف نعناع (Spearmint) بر باکتری‌ها

<table>
<thead>
<tr>
<th>MICROORGANISMS</th>
<th>METHANOL</th>
<th>ACETON</th>
<th>WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoli O²¹¹B⁴</td>
<td>16 ± 0</td>
<td>7 ± 0.2</td>
<td>0</td>
</tr>
<tr>
<td>Ecoli O²¹⁵B¹⁵</td>
<td>20 ± 0</td>
<td>8 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Ecoli O¹²⁷B⁸</td>
<td>14 ± 0.5</td>
<td>8 ± 0</td>
<td>7 ± 0</td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td>20 ± 0</td>
<td>17 ± 0</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>16 ± 0.5</td>
<td>19 ± 0.2</td>
<td>13 ± 0</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>15 ± 0</td>
<td>20 ± 0.5</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>20 ± 0</td>
<td>15 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>17 ± 0</td>
<td>14 ± 0</td>
<td>10 ± 0.2</td>
</tr>
<tr>
<td>Salmonella paratyphi B</td>
<td>15 ± 0.62</td>
<td>14 ± 0.2</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Acrobacter acrogenes</td>
<td>15 ± 0.5</td>
<td>12 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>20 ± 0</td>
<td>18 ± 0.5</td>
<td>19 ± 0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>17 ± 0</td>
<td>14 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>21 ± 0.3</td>
<td>20 ± 0</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>12 ± 0</td>
<td>16 ± 0.1</td>
<td>7 ± 0</td>
</tr>
</tbody>
</table>
تاثیر ضدپاکتریایی عصاره‌های مختلف کاتونی (Ziziphus) بر یک بیماری بیماری‌زا

<table>
<thead>
<tr>
<th>MICROORGANISMS</th>
<th>METHANOL</th>
<th>ACETON</th>
<th>WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoli O11:B4</td>
<td>16.2 ± 0</td>
<td>14 ± 1</td>
<td>0</td>
</tr>
<tr>
<td>Ecoli O215:B15</td>
<td>19 ± 0.5</td>
<td>16 ± 0.5</td>
<td>10 ± 0.86</td>
</tr>
<tr>
<td>Ecoli O127:B8</td>
<td>15 ± 0</td>
<td>14 ± 0</td>
<td>14 ± 0</td>
</tr>
<tr>
<td>Shigella dysentriac</td>
<td>25 ± 0.8</td>
<td>21 ± 0</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>19 ± 0.5</td>
<td>19 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>22 ± 0</td>
<td>25 ± 0.8</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>19 ± 0</td>
<td>20 ± 0.2</td>
<td>0</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>26 ± 1.86</td>
<td>25 ± 0</td>
<td>15 ± 0</td>
</tr>
<tr>
<td>Salmonella paratyphi B</td>
<td>17 ± 0</td>
<td>16 ± 0</td>
<td>15 ± 0.5</td>
</tr>
<tr>
<td>Aerobaeter aerogenese</td>
<td>20 ± 0</td>
<td>15 ± 0.5</td>
<td>0</td>
</tr>
<tr>
<td>Kelebiella oxytoca</td>
<td>21 ± 0.5</td>
<td>21 ± 0</td>
<td>20 ± 0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>18 ± 0.5</td>
<td>22 ± 0</td>
<td>10 ± 0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>22 ± 0.69</td>
<td>25 ± 0</td>
<td>12 ± 0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>20 ± 0</td>
<td>21 ± 0.28</td>
<td>15 ± 0</td>
</tr>
</tbody>
</table>
Effects of Different Salvia Extracts on Enteric Pathogens, Opportunistics and Food Poisoning Bacteria

<table>
<thead>
<tr>
<th></th>
<th>Methanol</th>
<th>Aceton</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli 0111 B4</td>
<td>11.2 22 16 30</td>
<td>17.2 16 23 24 18 21 28 0 21 23 23</td>
<td>0 10 12 21</td>
</tr>
<tr>
<td>E. coli 0125 B15</td>
<td>11 18 14 28</td>
<td>16 26 17 19 16 15 20 0 25 25 21</td>
<td>0 10 12 21</td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td>0 10 12 21 16 12 12.2 12 18 10 15 0 12 12 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effects of Different Spearmint Extracts on Enteric Pathogens, Opportunistics and Food Poisoning Bacteria

<table>
<thead>
<tr>
<th></th>
<th>Methanol</th>
<th>Aceton</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli O111 B4</td>
<td>16</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>E. coli O125 B15</td>
<td>20</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td>20</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>16</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Salmonella sonnet</td>
<td>15</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Salmonella para A</td>
<td>20</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>Aerobacter aerogenes</td>
<td>17</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>20</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>17</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Staph. aureus</td>
<td>21</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>21</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>12</td>
<td>21</td>
<td>7</td>
</tr>
</tbody>
</table>
Effects of Different Ziziphora Extracts on Enteric Pathogens, Opportunistics and Food Poisoning Bacteria
مشاهده و حرکت سلول‌های بینی موردیال زرم در جنین جوجه موغ

محترم‌با خواهی
دانشگاه شهید بهنام کرمان، کروه زیست‌شناسی، رنگ‌آمیزی پای سلول‌های بینی موردیال

چکیده:
سلول‌های بینی موردیال (PGCs) سلول‌های بزرگ کروی، گلاژنی شکلی به اندازه 10 × 20 میکرو منظومه گاما در جونه 3 تا 6 میکرون و تا (Chick embryo) منشا گانداها در جونه مرغ می‌باشد. مدت‌نامه (germinal crescent) ضرورت آن بود سلول‌های بینی موردیال زرم جنین جوجه مرغ از آندودرم که سلول‌های اندازه‌بندی شده طول هستند و به شکل خاوی پای‌ها تغییر می‌کند. برنامه تغییر می‌کرد تا سلول‌های پانلها از 3 پهلوی تغییر می‌کند داده می‌شوند.

در این تحقیق سلب‌های بینی موردیال 16 تکوینی سلول‌های بینی موردیال زرم به بیشترین در جنین جوجه مرغ و مهیجی تعداد سلول‌های بینی موردیال در ارتقاء تعداد سلول‌های جنین جوجه مرغ تعداد گردید.

نتایج نشان داد هنگامی که تعداد سربین‌ها بالا راه‌پذیر 20 باشند تعداد سلول‌های بینی موردیال زرم به حد بیشینه میرسد و مهیجی در مرحله 16 تکوینی سلول‌های بینی موردیال زرم به میزان نیاز به سلول‌های بینی موردیال در گراف‌ها مسیر شده و در مرحله 19 کامل می‌گردد.

مقدمه:
سلول‌های بینی موردیال (PGCs) سلول‌های بزرگ کروی، گلاژنی شکلی به اندازه 10 × 20 میکرو منظومه گاما در جونه 3 تا 6 میکرون و تا (Chick embryo) منشا گانداها در جونه مرغ می‌باشد. مدت‌نامه (germinal crescent) ضرورت آن بود سلول‌های بینی موردیال زرم جنین جوجه مرغ از آندودرم که سلول‌های اندازه‌بندی شده طول هستند و به شکل خاوی پای‌ها تغییر می‌کند. برنامه تغییر می‌کرد تا سلول‌های پانلها از 3 پهلوی تغییر می‌کند داده می‌شوند.

در این تحقیق سلب‌های بینی موردیال 16 تکوینی سلول‌های بینی موردیال زرم به بیشترین در جنین جوجه مرغ و مهیجی تعداد سلول‌های بینی موردیال در ارتقاء تعداد سلول‌های جنین جوجه مرغ تعداد گردید.

نتایج نشان داد هنگامی که تعداد سربین‌ها بالا راه‌پذیر 20 باشند تعداد سلول‌های بینی موردیال زرم به حد بیشینه میرسد و مهیجی در مرحله 16 تکوینی سلول‌های بینی موردیال زرم به میزان نیاز به سلول‌های بینی موردیال در گراف‌ها مسیر شده و در مرحله 19 کامل می‌گردد.

مقدمه:
سلول‌های بینی موردیال (PGCs) سلول‌های بزرگ کروی، گلاژنی شکلی به اندازه 10 × 20 میکرو منظومه گاما در جونه 3 تا 6 میکرون و تا (Chick embryo) منشا گانداها در جونه مرغ می‌باشد. مدت‌نامه (germinal crescent) ضرورت آن بود سلول‌های بینی موردیال زرم جنین جوجه مرغ از آندودرم که سلول‌های اندازه‌بندی شده طول هستند و به شکل خاوی پای‌ها تغییر می‌کند. برنامه تغییر می‌کرد تا سلول‌های پانلها از 3 پهلوی تغییر می‌کند داده می‌شوند.

در این تحقیق سلب‌های بینی موردیال 16 تکوینی سلول‌های بینی موردیال زرم به بیشترین در جنین جوجه مرغ و مهیجی تعداد سلول‌های بینی موردیال در ارتقاء تعداد سلول‌های جنین جوجه مرغ تعداد گردید.

نتایج نشان داد هنگامی که تعداد سربین‌ها بالا راه‌پذیر 20 باشند تعداد سلول‌های بینی موردیال زرم به حد بیشینه میرسد و مهیجی در مرحله 16 تکوینی سلول‌های بینی موردیال زرم به میزان نیاز به سلول‌های بینی موردیال در گراف‌ها مسیر شده و در مرحله 19 کامل می‌گردد.