اگرچه جوی از مصالح مهم کشورها صنعتی و در حال توسعه است، صنعت آلومینیومیستیک یکی از آنها که در تهیه صنایع برقی خصوصاً زیبایی می‌باشد. به ویژه از این سیستم‌های تولیدی که به برق‌ها و انرژی‌های سنتزی، به‌ویژه (SiF₄), (HF), (NaF), (MgF₂), (LiF), (CaF₂) ترکیبات فلوریدی می‌باشد که به شکل‌های گازی، سیار و (NaF) به برق‌ها می‌رساند. این تکنیک‌ها منجر به (1) باعث می‌شود تا به‌طور خاص روی آینده‌ها جوی کارخانه آلومینیوم سازی ایران و ایران‌آرایا و چند کشور و گیاهان آنها انجام گرفته است. کارخانه‌ای که در شمال شرقی ایران در کیلومتر ۶ از دشت تهران-آراک و در فاصله حدود ۵۰ کیلومتری تهران واقع شده است. غنیت آلومینیوم فلورورتی در اطراف کارخانه توسط سازمان‌ها و زیست‌ریزی از کیلومتری‌هایی تیتانیوم و گیاهان می‌باشد. این فاصله دوسرات می‌باشد به ۲/۵ کیلومتری به کارخانه فلورورتی دریافت می‌شود. (۱) کارخانه هر ۱۰۰۰ کیلوتریکار بسته در فاصله ۱۰ کیلومتری به کارخانه می‌رسد. (۲) میزان کربن‌هایی که در ۱۳۶۹ جمع‌یافته شدند در گیاهان اطراف کارخانه حتی تا شماره ۲۳۰۰ کیلومتری از جوار کارخانه است (۳).
کاشش محلولی ماس (Lupinus, Vicia sativa) و لوبیا کرکری (Alium cepa)، کم شدن رشد گیاه در چندمین ماه
(Solanum) بای تغذیه غلظت‌های بالا و تکراری از این میزان تغذیه غلظت به وسیله Phasesolus (Betula) و
در ماده‌های گیاهی، مانند استخوانات، سیسی، سبزی و گوشت مصرف پایین‌ترین سطح در داده
باشد (37). همچنین در کنار بالا و افزایش میزان تغذیه، سطح در این ماده‌ها در سطح ناحیه
در اصطلاح یک کاشش آلومینیوم‌سازی و به SP (I) با سبزی و
تغذیه غلظت بالا و تکراری از این میزان، رشد و نمو طبیعی
گاه‌ها را در هم می‌برند. بطوریکه برای مثال در گونه‌های درختی (Salix) و بسیاری
که به وسیله آلودگی HF در اثرات یک کاشش آلومینیوم‌سازی و
بدون پودرزنگ فرآیند است (37).

کاشش چاودARENT و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).

کاشش جوان‌زنی و رشد یک‌رهی گرده
(1971) کاوش جوان‌زنی و رشد لوله‌های گرده
را در گیاه‌هایی که در مصرف
37/100gH _2SO _4 با چهار هفته گرده بوده، از کاشش گرده است (37).
یافته‌ها و نتایج
در مرحله رویشی، در سطح مکرویونکوپی، آیندگانی کارخانه
موجی تکرر و کلرولیک، کوکبی مانند اینگونه که در صورت وجود
مانند اعضا از گیاهان و کاهش م참 در کاروکیل برای گردد. این
تغییرات در استرس‌های محور کارخانه‌ای نیز دیده می‌شود (شکل 1).
در میکرویویونکوپی نیز روند‌گذاری گیاهان تحت تأثیر آنتی‌اگنت
تغییر شکل می‌دهد، کودهای مانند وی به صورت ممرستی مسطح و
وسعی در در آمد (شکل 1، مقایسه 6 با 7).
در ساختار تشدید بیمار، شرقی‌گونه و آسیب‌گیری سلول‌های
سطحی (بیابن و انسداد پاراسیت‌های زرد ایزید) احساس دیدن
سلول‌های پرایشی موجب به دسترسی آب و درهم ویرانی و
پایداری‌های متغیر برای پیش‌بینی در پارامتر فتوتکسیزی از تغییرات
توجه اولتیمیت (شکل 1، مقایسه 7 با 8)
در مرحله زایده تسریع تیسی در مدت‌ها، رنگ را زیاد و شدت
گیاهان کاهش می‌دهد و کاهش می‌بیند. این اختلاف‌ها در استرس‌های
ترجمه الکتریکی، کودهای مانند وی به صورت ممرستی مسطح و
وسعی در در آمد (شکل 1، مقایسه 6 با 7).
در ساختار تشدید بیمار، شرقی‌گونه و آسیب‌گیری سلول‌های
سطحی (بیابن و انسداد پاراسیت‌های زرد ایزید) احساس دیدن
سلول‌های پرایشی موجب به دسترسی آب و درهم ویرانی و
پایداری‌های متغیر برای پیش‌بینی در پارامتر فتوتکسیزی از تغییرات
توجه اولتیمیت (شکل 1، مقایسه 7 با 8)
در مرحله زایده تسریع تیسی در مدت‌ها، رنگ را زیاد و شدت
گیاهان کاهش می‌دهد و کاهش می‌بیند. این اختلاف‌ها در استرس‌های
ترجمه الکتریکی، کودهای مانند وی به صورت ممرستی مسطح و
وسعی در در آمد (شکل 1، مقایسه 6 با 7).

کاهش محصول می‌گردد.
نتایج ما در مورد اثرات آلاینده‌ها بر روی تكوین تخمک‌ها و میزان می‌دهد که سطح بالایی آلاینده‌ها موجب کاهش تخمک‌کوچک مانند کیسه روبانی در تخمک و پایداری تنشی سولوهای با خورش می‌گردد. این تغییرات می‌تواند عکس عمل سایه‌ای در رویان در این شرایط باشد. این نتایج با آنچه که مجد و چیتی (1972) در گزارش تصدیق مطالعات دارد، مطابق هستند.
نتایج این پژوهش در مورد اثر آلاینده‌ها بر کشت دانه‌ها در مورد اثرات آلاینده‌ها بر فعالیت فلورونتری مشارکت می‌گردد.

Weinstein (1977) می‌نویسد که خشکی

فضاهای بین سلولی، سوختگی سلولهای پاترالشیمی زیر ایهدم و سلولهای ایهدم فوق‌العاده و تحتانی، اسبی دیدن پاترالشیمی ترددی و حفره‌ای به ویژه در اطراف دستگاه آن‌ها است که با گزارشات Miller و Evans (1973) و Soikkeli & Tuovinen (1979) می‌توان یکی باشد.

Metro (1981) می‌نویسد که این بیشترین اسپری‌های

یافته شده در تکوین پرچم‌ها، بسیاری و گردش‌های گیاهان به ویژه در مرحله قبل از تغییر میزی، مرحله تولید و تشکیل میکروسورفاژ جوان می‌باشند. مجموعاً این آسیب‌ها که در نهایت موجب ناهنجاری گردد ها، عدم قدرت روبش آن‌ها و با در برخی ایستگاه‌ها تصاویر در روبش گردد ها می‌شود. همین دلیل برای ناموفقیت مانند لقاح و در نتیجه
شکل 1- مقایسه برک گیاهان لوپیا در ایستگاه‌های اطراف کارخانه با پاره‌ای به فاصله آنها (1، 2، 3، 4) و گیاهان شاهد (5).

- وضعیت تشريحي مريقتіم رئاسی گیاه تخریب در ایستگاه نشانه. - وضعیت تشريحي مريقتیم تخریب گیاه در معرض آلودگی قرار داشته است. - وضعیت تشريحي برک گیاه لوپیا در ایستگاه نشانه. - وضعیت برک گیاه لوپیا که در معرض آلودگی شدید قرار داشته است (سولنکی سولنگ، پیداپر و زیر آن به خوبی مشخص است).
شکل ۲-٠-وضع بریدگی‌های پرچمی و برجسته در گیاهان شاهد، ۰-پیمودیومهای پرچمی و برجسته در گیاهان در معرض آلودگی، ۰-پیمودیومی و سوختگی نترادها در بسکام. ۰-پیمودیومی و سوختگی میکروسپورهای جوان در بسکام. ۰-رشد زودرس دانه‌های کرده و تشکیل لوله کرده در بسکام‌های شکل‌نشده در غل گیاهان تحت تأثیر آلودگی.
تخمک در کیاه نخود، c-سومکی پریمورداری مهای تخمکی در لوییا، d-تنرادهای خطي ای در لوییا (کیاه شاهد)، f-تنرادهای نودهای در کیاهی که تحت تأثیر آلودگی شدید بوده است.
نمودار ۱. نتایج ثابت‌کردن CO₂ در کیاها انستگم‌های مختلف.
افراش نتایج ثابت کردن در انستگم‌های مختلف. بیشتر انستگم‌های که در انتهای ۱ بینه‌کننده کاهش فتوستاتز است.
نمودار ۲ مقایسه وزن نیامگاه‌ها: وزن نیامگاه‌ها متناسب با افزایش میزان آلودگی کاهش یافته است، ایستگاه‌های (۱.۲).
(۳) گیاهان تحت تأثیر آلودگی و ایستگاه N کیهان شاهد می‌باشند.

نمودار ۳ مقایسه وزن نیامگاه‌ها: وزن نیامگاه‌ها متناسب با افزایش میزان آلودگی کاهش یافته است، ایستگاه‌های (۱.۲).
(۴) گیاهان تحت تأثیر آلودگی و ایستگاه N کیهان شاهد می‌باشند.