The Existence of a Topolinear Isomorphism on an infinite dimensional Hilbert Space H Corresponding to a Homeomorphism on its Projective Space $P(H)$

Ebrahim Esrafilian

Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran-16, Iran

Abstract

In this paper we prove a theorem which states the relationship between the topolinear isomorphisms on an infinite dimensional Hilbert Space H and the Homeomorphisms on projective Space $P(H)$. This theorem is proved by E. Artin in the finite dimensional case.

Key words: Topolinear Isomorphism, Hilbert Space, Homeomorphism, Projective.
Introduction

The following H is an infinite dimensional separable Hilbert Space and $P(H)$ is its projective space which is given a smooth structure as in [2]. We mean by $[x] \in P(H)$ the one dimensional vector subspace of H generated by $x \in H = H^* - 0$.

$[x] + [y]$ means the two dimensional subspace generated by $x, y \in \hat{H}$, in fact $[x] \subset [x] + [y]$ is that there exists $a, b \in \hat{H}$ such that $z = ax + by$, and if $[z] \neq [x]$, There exists a unique $y \in \hat{H}$ such that $[z] = [x + dy]$. We quote some necessary statments from [2].

Theorem 1.1 Let S be a unit sphere in a normed space B and $T : B \rightarrow B$ a linear bijective transformation, and \hat{T} be the induced bijective transformation

$$\hat{T} : S \rightarrow S$$

defined by $\hat{T}(u) = \frac{T(u)}{||T(u)||}$ for $u \in S \subset B$.

This homeomorphism then T is also homeomorphism.

Now we are ready to state the theorem which is the main goal of this paper

Theorem 1.2 Let $f : P(H) \rightarrow P(H)$ be a homeomorphism such that

$$[x] \subset [y] + [z] \rightarrow f[x] \subset f[y] + f[z].$$

Then there exists a topolinear isomorphism $T : H \rightarrow H$ such that the induced transformation $P(H) \rightarrow P(H)$ agrees with f.

Proof the hypothesis implies that if $[x] \subset [y] + [z]$ then $f^{-1}[x] \subset f^{-1}[y] + f^{-1}[z]$ and by induction on k, we get that if $[z] \subset [z_1] + \cdots + [z_k]$ then $f[z] \subset f[z_1] + \cdots + f[z_k]$, and $f^{-1}[z] \subset f^{-1}[z_1] + \cdots + f^{-1}[z_k]$.

Let $\{x_i\}$ be a Hamel basis for H where i is an arbitrary element of a set A. It is clear that if $f[x_i] = [y_i]$ then $\{y_i\}$ is also a Hamel basis for H.

Now we choose an element of A call it 1, then for any $i \neq 1$ the line

$$L_i = [x_i + x_i] \subset [x_1] + [x_i]$$

where L_i is not coinide with $[x_i]$ or $[x_1]$, consequently

$$fL_i \subset [y_i] + [y_i]$$

and fL_i is not coinide with $[y_i]$ or $[y_1]$. Then, for some unique $d_i \in \mathbb{R}$ we have

$$fL_i = [y_1 + d_i y_i].$$

by choosing a suitable y_i we may assume that $d_i = 1$. Then

for $i \in A$, \hspace{2cm} f[x_i] = [y_i]$ \hspace{2cm}(1)

and for $i \neq 1$, \hspace{2cm} f[x_i] = [y_1 + y_i].$

Now we choose another index from A, call it 2. Then for $a \in \mathbb{R}$

$$L = [x_1 + ax_2] \subset [x_1] + [x_2] \text{ where } L \neq [x_2]$$

Therefore

$$fL \subset [y_1] + [y_2], \text{ where } fL \neq [y_2].$$

Then for a unique $a' \in \mathbb{R}$ we have

$$fL = [y_1 + a'y_2].$$
Chapter 1: Introduction

The following H is an infinite dimensional separable Hilbert Space and $P(H)$ is its predual space which is given a smooth structure as in [2]. We mean by $[x] \in P(H)$ the 1-dimensional vector subspace of H generated by x. $[x] \subset [y] + [z]$ means the two dimensional subspace generated by $x, y \in H$. In fact $[z] \subset [x] + [y]$ as that there exists $a, b \in \mathbb{R}$ such that $z = ax + by$ and if $[z] \neq [x]$, there exists a unique $\xi \in \mathbb{R}$ such that $[z] = [x + d \xi y]$. We quote some necessary statements from [2].

Theorem 1.1 Let S be a unit sphere in a normed space B and $T : B \to B$ a linear bijection, and \hat{T} be the induced bijection transformation

$$\hat{T} : S \to S$$

defined by $\hat{T}(u) = \frac{T(u)}{\|T(u)\|}$ for $u \in S \subset B$. Then if \hat{T} is a homeomorphism then T is also homeomorphism.

Now we are ready to state the theorem which is the main goal of this paper.

Theorem 1.2 Let $f : P(H) \to P(H)$ be a homeomorphism such that

$$[x] \subset [y] + [z] \implies f([x]) \subset f([y]) + f([z]).$$

Then there exists a topological isomorphism $T : P(H) \to H$ such that the induced transformation $f : P(H) \to P(H)$ agrees with f.

Proof. the hypothesis implies that if $[x] \subset [y] + [z]$ then $f^{-1}([x]) \subset f^{-1}([y]) + f^{-1}([z])$ and by induction on k, we get that if $[z] \subset [z_1] + \cdots + [z_k]$ then $f([z]) \subset f([z_1]) + \cdots + f([z_k])$, and $f^{-1}([z]) \subset f^{-1}([z_1]) + \cdots + f^{-1}([z_k])$.

Let $\{x_i\}$ be a Hamel basis for H where i is an arbitrary element of a set A. It is clear that if $f(x_i) = [y_i]$ then $\{y_i\}$ is also a Hamel basis for H.

Now we choose an element of A call it 1, then for any $i \neq 1$ the line

$$L_i = [x_1 + x_i] \subset [x_1] + [x_i]$$

where L_i is not coinside with $[x_i]$ or $[x_1]$, consequently

$$fL_i \subset [y_1] + [y_i]$$

and fL_i is not coinside with $[y_i]$ or $[y_1]$. Then, for some unique $d_i \in \mathbb{R}$ we have

$$fL_i = [y_1 + d_i y_i].$$

by choosing a suitable y_i we may assume that $d_i = 1$. Then

for $i \in A, \quad f[x_i] = [y_i]$ \quad (1)

and for $i \neq 1, f[x_1 + x_i] = [y_1 + y_i]$.

Now we choose another index from A, call it 2. Then for $a \in \mathbb{R}$

$$L = [x_1 + ax_2] \subset [x_1] + [x_2]$$

where $L \neq [x_2]$. Therefore

$$fL \subset [y_1] + [y_2], \quad \text{where } fL \neq [y_2].$$

Then for a unique $a' \in \mathbb{R}$ we have

$$fL = [y_1 + a' y_2].$$
Now we define
\[\mu : R \rightarrow R \]
by \(\mu(a) = a' \) and we will show that \(\mu \) is the identity function on \(R \). Since
\[[x_1 + ax_2] \neq [x_1 + bx_2] \text{ if } a \neq b \]
it follows that \(a' \neq b' \), then \(\mu \) is injective. We have also from (1) that
\[0' = 0 \text{ and } 1' = 1. \quad (2) \]

Now, we will show that for any \(i \in A \)
\[f[x_1 + ax_i] = [y_1 + a'y_i] \]
For any fixed \(i \neq 1, 2 \) in \(A \) we have
\[f[x_1 + ax_i] = [y_1 + by_i]. \]

On the other hand \(L = [ax_2 - ax_i] \subset [x_2] + [x_i] \)
with \(L \neq [x_i] \), and so \(fL \subset [y_2] + [y_i] \) with
\[fL \neq [y_i]. \]
Consequently, \(fL = [y_2 + dy_1] \) for some unique \(d \). On the other hand,
\[L \subset [x_1 + ax_2] + [x_1 + ax_i] \text{ with } L \neq [x_1 + ax_i]. \]

Then as before \(fL = \left[(y_1 + a'y_i) + d'(y_1 + by_i) \right] \)
and it follows that \(d = -\frac{b}{a'} \). But
\[L \subset [x_1 + x_2] + [x_1 + x_i] \text{ with } L \neq [x_1 + x_i] \]
and by (1)
\[fL \subset [y_1 + y_2] + [y_1 + y_i] \text{ with } fL \neq [y_1 + y_i]. \]

Then for some unique \(h \) we have \(fL = [y_1 + y_2 + h(y_1 + y_i)] \), consequently \(d = -1 \) and \(b = a' \),
then for all \(i \in A \) and \(a \in R \) we have
\[f[x_1 + ax_i] = [y_1 + a' y_i]. \quad (3) \]

Now we are going to prove that \(\mu \) is surjective. Choose a finite number of \(n \) vectors of \(\{x\} \) including \(x_1 \) and \(x_2 \) say \(x_1, x_2, \ldots, x_n \). Then induction we have
\[f[x_1 + a_2x_2 + \cdots + a_n x_n] = [y_1 + a_2'y_2 + \cdots + a'_n y_n] \]
and it follows that
\[f[a_2x_2 + \cdots + a_n x_n] = [a_2'y_2 + \cdots + a'_n y_n]. \] (4)

Let \(L = [y_1 + by_2] \) be a point of \(P(H) \), since \(\mu \) is bijective, then there exists some \(v \in H \) such that \(L = f[v] \), then \(v \) can be written as a linear combination of \(x_j \) including \(x_1, x_2 \). For the purpose we can use the above set \(x_1, x_2, \ldots, x_{n-1} \), then
\[v = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n. \]

By (5) we have \(\alpha_1 \neq 0 \) and consequently,
\[L = f[x_1 + \beta_2x_2 + \cdots + \beta_n x_n] \text{ with } \beta_j = \frac{\alpha_j}{\alpha_1}. \]
Then by (4) \(\beta_2' = b \) and consequently \(\mu \) is surjective.

To show that \(\mu(a + b) = \mu(a) + \mu(b) \) we consider the line \(L = [x_1 + (a+b)x_2 + x_3] \). Then by (2) and (3) we have
\[fL = [y_1 + (a+b)y_2 + y_3] \]
but
\[L \subset [x_1 + ax_2] + [bx_2 + x_3] \text{ and } L \neq [bx_2 + x_3]. \]

By (4) and (5)
\[fL \subset [y_1 + a'y_2] + [0 + y_3] \text{ with } 0 \neq b. \]

References

