The Existence of a Topolinear Isomorphism on an infinite dimensional Hilbert Space H Corresponding to a Homeomorphism on it's Projective Space $P(H)$

Ebrahim Esrafilian

Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran-16, Iran

Abstract

In this paper we prove a theorem which states the relationship between the topolinear isomorphisms on an infinite dimensional Hilbert Space H and the Homeomorphisms on projective Space $P(H)$. This theorem is proved by E.Artin in the finite dimentional case.

Key words: Topolinear Isomorphism, Hilbert Space, Homeomorphism, Projective.
Introduction

The following \(H \) is an infinite dimensional separable Hilbert Space and \(P(H) \) is its positive definite space which is given a smooth structure as in [2]. We mean by \([x] \in P(H)\) the \(n\)-dimensional vector subspace of \(H \) generated by \(x \in H = H - 0 \).

\([x] + [y]\) means the two dimensional subspace generated by \(x, y \in H \). in fact \([z] \subset [x] + [y]\) if and only if there exists \(a, b \in H \) such that \(z = ax + by \). and if \([z] \neq [x]\), There exists a unique \(z \) such that \([z] = [x + d]y\). We quote some of the previous statments from [2].

Theorem 1.1 Let \(S \) be a unit sphere in a normed vector space \(B \) and \(T : B \to B \) a linear bijective transformation, and \(\hat{T} \) be the induced bijective transformation

\[
\hat{T} : S \to S
\]

defined by \(\hat{T}(u) = \frac{T(u)}{\|T(u)\|} \) for \(u \in S \subset B \).

If \(\hat{T} \) is a homeomorphism then \(T \) is also homeomorphism.

We are ready to state the theorem which is the goal of this paper

Theorem 1.2 Let \(f : P(H) \to P(H) \) be a homeomorphism such that

\([x] \subset [y] + [z] \to f[x] \subset f[y] + f[z] \).

Then there exists a topolinear isomorphism \(T : P(H) \to H \) such that the induced transformation \(f : P(H) \to P(H) \) agrees with \(f \).

Proof. the hypothesis implies that if \([x] \subset [y] + [z]\) then \(f^{-1}[x] \subset f^{-1}[y] + f^{-1}[z] \) and by induction on \(k \), we get that if \([z] \subset [z_1] + \cdots + [z_k]\) then \(f[z] \subset f[z_1] + \cdots + f[z_k] \), and \(f^{-1}[z] \subset f^{-1}[z_1] + \cdots + f^{-1}[z_k] \).

Let \(\{x_i\} \) be a Hamel basis for \(H \) where \(i \) is an arbitrary element of a set \(A \). It is clear that if \(f[x_i] = [y_i] \) then \(\{y_i\} \) is also a Hamel basis for \(H \).

Now we choose an element of \(A \) call it 1, then for any \(i \neq 1 \) the line

\[
L_i = [x_1 + x_i] \subset [x_1] + [x_i]
\]

where \(L_i \) is not coincide with \([x_i] \) or \([x_1] \), consequently

\[
fL_i \subset [y_1] + [y_i]
\]

and \(fL_i \) is not coincide with \([y_i] \) or \([y_1] \). Then, for some unique \(d_i \in R \) we have

\[
fL_i = [y_1 + d_i y_i].
\]

by choosing a suitable \(y_i \) we may assume that \(d_i = 1 \). Then

\[
\text{for } i \in A, \quad f[x_i] = [y_i] \quad (1)
\]

and for \(i \neq 1 \), \(f[x_1 + x_i] = [y_1 + y_i] \).

Now we choose another index from \(A \), call it 2. Then for \(a \in R \)

\[
L = [x_1 + ax_2] \subset [x_1] + [x_2] \text{ where } L \neq [x_2]
\]

Therefore

\[
fL \subset [y_1] + [y_2], \text{ where } fL \neq [y_2].
\]

Then for a unique \(a' \in R \) we have

\[
fL = [y_1 + a' y_2].
\]
Introduction

The following H is an infinite dimensional separable Hilbert Space and $P(H)$ is its projective space which is given a smooth structure as in [2]. We mean by $[x] \in P(H)$ the closed two dimensional vector subspace of H generated by $x, y \in \hat{H}$, in fact $[z] \subset [x] + [y]$ means the two dimensional subspace generated by $x, y \in \hat{H}$, in fact $[z] \subset [x] + [y]$ means the two dimensional subspace generated by $x, y \in \hat{H}$, in fact $[z] \subset [x] + [y]$. We quote some necessary statements from [2].

Theorem 1.1 Let S be a unit sphere in a normed linear space B and $T : B \rightarrow B$ a linear bijection, and \tilde{T} be the induced bijection transformation

$$\tilde{T} : S \rightarrow S$$

defined by $\tilde{T}(u) = \frac{T(u)}{||T(u)||}$ for $u \in S \subset B$.

If T is a homeomorphism then T is also homeomorphism.

We are ready to state the theorem which is the goal of this paper.

Theorem 1.2 Let $f : P(H) \rightarrow P(H)$ be a homeomorphism such that

$$[x] \subset [y] + [z] \rightarrow f([x]) \subset f([y]) + f([z]).$$

Then there exists a topological isomorphism $T : P(H) \rightarrow H$ such that the induced transformation $P(H) \rightarrow P(H)$ agrees with f.

Proof. the hypothesis implies that if $[x] \subset [y] + [z]$ then $f^{-1}[x] \subset f^{-1}[y] + f^{-1}[z]$ and by induction on k, we get if $[z] \subset [z_1] + \cdots + [z_k]$ then $f(z) \subset f(z_1) + \cdots + f(z_k)$, and $f^{-1}[z] \subset f^{-1}[z_1] + \cdots + f^{-1}[z_k]$.

Let $\{x_i\}$ be a Hamel basis for H where i is an arbitrary element of a set A. It is clear that if $f(x_i) = [y_i]$ then $\{y_i\}$ is also a Hamel basis for H.

Now we choose an element of A call it 1, then for any $i \neq 1$ the line

$$L_i = [x_1 + x_i] \subset [x_1] + [x_i]$$

where L_i is not coincide with $[x_i]$ or $[x_1]$. Consequently

$$fL_i \subset [y_1] + [y_i]$$

and fL_i is not coincide with $[y_i]$ or $[y_1]$. Then, for some unique $d_i \in R$ we have

$$fL_i = [y_1 + d_i y_i].$$

by choosing a suitable y_i we may assume that $d_i = 1$. Then

$$f[x_i] = [y_i] \quad (1)$$

and for $i \neq 1$, $f[x_1 + x_i] = [y_1 + y_i]$.

Now we choose another index from A, call it 2. Then for $a \in R$

$$L = [x_1 + ax_2] \subset [x_1] + [x_2] \text{ where } L \neq [x_2].$$

Therefore

$$fL \subset [y_1] + [y_2], \text{ where } fL \neq [y_2].$$

Then for a unique $a' \in R$ we have

$$fL = [y_1 + a'y_2].$$
Now we define
\[\mu : R \rightarrow R \]
by \(\mu(a) = a' \) and we will show that \(\mu \) is the identity function on \(R \). Since
\[\lfloor x_1 + ax_2 \rfloor \neq \lfloor x_1 + bx_2 \rfloor \text{ if } a \neq b \]
it follows that \(a' \neq b' \), then \(\mu \) is injective. We have also from (1) that
\[0' = 0 \text{ and } 1' = 1. \quad (2) \]
Now, we will show that for any \(i \in A \)
\[f[x_1 + ax_i] = [y_1 + a'y_i] \]
For any fixed \(i \neq 1, 2 \) in \(A \) we have
\[f[x_1 + ax_i] = [y_1 + by_i]. \]
On the other hand \(L = [ax_2 - ax_1] \subset [x_2] + [x_1] \)
with \(L \neq [x_1] \), and so \(fL \subset [y_2] + [y_1] \) with \(fL \neq [y_1] \). Consequently, \(fL = [y_2 + dy_i] \) for some unique \(d \). On the other hand,
\[L \subset [x_1 + x_2] + [x_1 + ax_i] \text{ with } L \neq [x_1 + ax_i]. \]
Then as before \(fL = ([y_1 + a'y_2] + d'(y_1 + by_i)) \)
and it follows that \(d = -\frac{b}{a'} \). But
\[L \subset [x_1 + x_2] + [x_1 + x_i] \text{ with } L \neq [x_1 + x_i] \]
and by (1)
\[fL \subset [y_1 + y_2] + [y_1 + y_i] \text{ with } fL \neq [y_1 + y_i] \]
Then for some unique \(h \) we have \(fL = [y_1 + y_2 + \ h(y_1 + y_i)] \), consequently \(d = -1 \) and \(b = a' \),
then for all \(i \in A \) and \(a \in R \) we have
\[f[x_1 + ax_i] = [y_1 + a'y_i]. \quad (3) \]
Now we are going to prove that \(\mu \) is surjective. Choose a finite number of \(n \) vectors of \(\{x \} \)
including \(x_1 \) and \(x_2 \) say \(x_1, x_2, \ldots, x_n \). Then
induction we have
\[f[x_1 + a_2x_2 + \ldots + a_nx_n] = [y_1 + a'_2y_2 + \ldots + a'_nx_n] \]
and it follows that
\[f[a_2x_2 + \ldots + a_nx_n] = [a'_2y_2 + \ldots + a'_ny_n]. \quad (4) \]
Let \(L = [y_1 + by_2] \) be a point of \(P(H) \), since \(\mu \)
is bijective, then there exists some \(v \in \hat{H} \) such that \(L = f[v] \), then \(v \) can be written as a linear combination of \(x_j \) including \(x_1, x_2 \). For this purpose we can use the above set \(x_1, x_2, \ldots, x_n \)
then
\[v = \alpha_1x_1 + \alpha_2x_2 + \ldots + \alpha_nx_n. \]
By (5) we have \(\alpha_1 \neq 0 \) and consequently,
\[L = f[x_1 + \beta_2x_2 + \ldots + \beta_nx_n] \text{ with } \beta_j = \frac{\alpha_j}{\alpha_1}. \]
Then by (4) \(\beta_2 = b \) and consequently \(\mu \) is surjective.
To show that \(\mu(a + b) = \mu(a) + \mu(b) \) we consider the line \(L = [x_1 + (a+b)x_2 + x_3] \). Then
by (2) and (3) we have
\[fL = [y_1 + (a+b)y_2 + y_3] \]
but
\[L \subset [x_1 + ax_2] + [bx_2 + x_3] \text{ and } L \neq [bx_2 + x_3]. \]
By (4) and (5)
\[fL \subset [y_1 + a'y_2 + y_3] \text{ and } L \neq [by_2 + x_3]. \]
and so \(fL = [(y_1 + a'y_2) + \lambda(b'y_2 + y_3)] \) for some \(\lambda \). It follows that \(\lambda = 1 \) and so

\[
\mu(a + b) = (a + b)' = a' + b' = \mu(a) + \mu(b). \tag{6}
\]

Similarly by considering a line \(x_1 + (ab)x_2 + x_3 = 0 \) we get

\[
\mu(ab) = \mu(a)\mu(b) \tag{7}
\]

thus \(\mu \) is a bijective mapping satisfying (2),(6) and (7) and therefore it is the identity mapping \(\mathbb{H} \). Consequently

\[
f[x_1 + \cdots + a_kx_k] = [a_1y_1 + \cdots + a_ky_k]. \tag{8}
\]

The equation (8) has been derived by fixing \(a_k \) from the Hamel basis \(\{x_i\} \). Since it still holds for \(a_1, a_2 \) zeros, it follows that (8) is true for any finite combination of vectors in \(\{x_i\} \).

if \(x \in \mathbb{H} \), then \(x = \sum a_i x_i \) (a finite sum)

and so we define a linear map

\[
T : \mathbb{H} \to \mathbb{H} \text{ by } T(x) = \sum a_i y_i.
\]

The map \(T \) is also a bijection and it induces a map

\[
\overline{T} : \mathbb{P} H \to \mathbb{P} H
\]

where

\[
\overline{T}[x] = [T(x)] = [\sum a_i y_i] = f[x]
\]

consequently, \(\overline{T} \) agrees with \(f \).

The bijection \(\overline{T} : S \to S \) defined by \(T \) as in theorem 1.1 is a homeomorphism. This follows from the commutative diagram

\[
\begin{array}{c}
P(H) \xrightarrow{f} P(H) \\
\phi \uparrow \quad \uparrow \phi \\
S \xrightarrow{T} S
\end{array}
\]

because \(f \) is supposed a homeomorphism and \(\phi \) is the local diffeomorphism between \(S \) and \(\mathbb{P}(H) \), it follows from Theorem 1.1 that \(T \) is a

References

