The Existence of a Topolinear Isomorphism on an infinite dimensional Hilbert Space H Corresponding to a Homeomorphism on it's Projective Space $P(H)$

Ebrahim Esrafilian

Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran-16, Iran

Abstract
In this paper we prove a theorem which states the relationship between the topolinear isomorphisms on an infinite dimensional Hilbert Space H and the Homeomorphisms on projective Space $P(H)$. This theorem is proved by E.Artin in the finite dimensional case.

Key words: Topolinear Isomorphism, Hilbert Space, Homeomorphism, Projective.
Introduction

The following \(H \) is an infinite dimensional separable Hilbert Space and \(P(H) \) is its projective space which is given a smooth structure as in [2]. We mean by \([x] \in P(H) \) the one dimensional vector subspace of \(H \) generated by \(x \in H \). \([x] + [y] \) means the two dimensional subspace generated by \(x, y \in H \). in fact \([z] \subseteq [x] + [y] \) means that there exists \(a, b \in \mathbb{R} \) such that \(z = ax + by \) and if \([z] \neq [x] \), There exists a unique \(dy \) such that \([z] = [x + dy] \). We quote some necessary statemtents from [2].

Theorem 1.1 Let \(S \) be a unit sphere in a normed linear space \(B \) and \(T : B \rightarrow B \) a linear bijection, and \(\tilde{T} \) be the induced bijection on \(S \)

\[
\tilde{T} : S \rightarrow S
\]

defined by \(\tilde{T}(u) = \frac{T(u)}{||T(u)||} \) for \(u \in S \subseteq B \).

If \(T \) is a homeomorphism then \(T \) is also homeomorphism.

We are ready to state the theorem which is the main goal of this paper

Theorem 1.2 Let \(f : P(H) \rightarrow P(H) \) be a homeomorphism such that

\[
[x] \subseteq [y] + [z] \rightarrow f[x] \subseteq f[y] + f[z].
\]

Then there exists a topolinear isomorphism \(T : H \rightarrow H \) such that the induced transformation \(P(H) \rightarrow P(H) \) agrees with \(f \).

Proof: the hypothesis implies that if \([x] \subseteq [y] + [z] \) then \(f^{-1}[x] \subseteq f^{-1}[y] + f^{-1}[z] \) and by induction on \(k \), we get that if \([z] \subseteq [z_1] + \cdots + [z_k] \) then \(f[z] \subseteq f[z_1] + \cdots + f[z_k] \), and \(f^{-1}[z] \subseteq f^{-1}[z_1] + \cdots + f^{-1}[z_k] \).

Let \(\{x_i\} \) be a Hamel basis for \(H \) where \(i \) is an arbitrary element of a set \(A \). It is clear that if \(f[x_i] = [y_i] \) then \(\{y_i\} \) is also a Hamel basis for \(H \).

Now we choose an element of \(A \) call it 1, then for any \(i \neq 1 \) the line

\[
L_i = [x_1 + x_i] \subseteq [x_1] + [x_i]
\]

where \(L_i \) is not coincide with \([x_i] \) or \([x_1] \), consequently

\[
fL_i \subseteq [y_1] + [y_i]
\]

and \(fL_i \) is not coincide with \([y_i] \) or \([y_1] \). Then, for some unique \(d_i \in \mathbb{R} \) we have

\[
fL_i = [y_1 + d_i y_i].
\]

by choosing a suitable \(y_i \) we may assume that \(d_i = 1 \). Then

\[
\text{for } i \in A, \quad f[x_i] = [y_i] \tag{1}
\]

and for \(i \neq 1, f[x_1 + x_i] = [y_1 + y_i] \).

Now we choose another index from \(A \), call it 2. Then for \(a \in \mathbb{R} \)

\[
L = [x_1 + ax_2] \subseteq [x_1] + [x_2] \quad \text{where } L \neq [x_2]
\]

Therefore

\[
fL \subseteq [y_1] + [y_2], \quad \text{where } fL \neq [y_2].
\]

Then for a unique \(a' \in \mathbb{R} \) we have

\[
fL = [y_1 + a'y_1].
\]
Introduction

If the following H is an infinite dimensional separable Hilbert Space and $P(H)$ is its projective space which is given a smooth structure as in [2]. We mean by $[x] \in P(H)$ the one dimensional vector subspace of H generated by $x \in H$. $[x]+[y]$ means the two dimensional subspace generated by $x, y \in \hat{H}$, in fact $[z] \subset [x]+[y]$ means that there exists $a,b \in \mathbb{R}$ such that $z = ax + by$ and if $[z] \neq [x]$, There exists a unique $\frac{z}{z}$ such that $[z] = [x + dy]$. We quote some necessary statments from [2].

Theorem 1.1 Let S be a unit sphere in a normed vector space B and $T : B \rightarrow B$ a linear bijective transformation, and \hat{T} be the induced bijective transformation

$$\hat{T} : S \rightarrow S$$

defined by $\hat{T}(u) = \frac{T(u)}{\|T(u)\|}$ for $u \in S \subset B$. If T is a homeomorphism then T is also a homeomorphism.

We are ready to state the theorem which is the goal of this paper.

Theorem 1.2 Let $f : P(H) \rightarrow P(H)$ be a homeomorphism such that

$$[x] \subset [y] + [z] \rightarrow f[x] \subset f[y] + f[z].$$

Then there exists a topolinear isomorphism $T : P(H) \rightarrow H$ such that the induced transformation $f^* : P(H) \rightarrow P(H)$ agrees with f.

Proof. the hypothesis implies that if $[x] \subset [y] + [z]$ then $f^{-1}([x]) \subset f^{-1}([y]) + f^{-1}([z])$ and by induction on k, we get that if $[z] \subset [z_1] + \cdots + [z_k]$ then $f[z] \subset f[z_1] + \cdots + f[z_k]$, and $f^{-1}([z]) \subset f^{-1}([z_1]) + \cdots + f^{-1}([z_k])$.

Let $\{x_i\}$ be a Hamel basis for H where i is an arbitrary element of a set A. It is clear that if $f[x_i] = [y_i]$ then $\{y_i\}$ is also a Hamel basis for H.

Now we choose an element of A call it 1, then for any $i \neq 1$ the line

$$L_i = [x_1 + x_i] \subset [x_1] + [x_i]$$

where L_i is not coincide with $[x_i]$ or $[x_1]$, consequently

$$f[L_i] \subset [y_i] + [y_i]$$

and $f[L_i]$ is not coincide with $[y_i]$ or $[y_1]$. Then, for some unique $d_i \in \mathbb{R}$ we have

$$f[L_i] = [y_1 + d_i y_i].$$

by choosing a suitable y_i we may assume that $d_i = 1$. Then

$$f[x_i] = [y_i] \quad (1)$$

and for $i \neq 1$, $f[x_1 + x_i] = [y_1 + y_i].$

Now we choose another index from A, call it 2. Then for $a \in \mathbb{R}$

$$L = [x_1 + ax_2] \subset [x_1] + [x_2]$$

where $L \neq [x_2]$.

Therefore

$$f[L] \subset [y_1] + [y_2]$$

where $f[L] \neq [y_2]$.

Then for a unique $a' \in \mathbb{R}$ we have

$$f[L] = [y_1 + a'y_2].$$
Now we define
\[\mu : R \rightarrow R \]
by \(\mu(a) = a' \) and we will show that \(\mu \) is the identity function on \(R \). Since
\[[x_1 + ax_2] \neq [x_1 + bx_2] \text{ if } a \neq b \]
it follows that \(a' \neq b' \), then \(\mu \) is injective. We have also from (1) that
\[0' = 0 \text{ and } 1' = 1. \quad (2) \]
Now, we will show that for any \(i \in \mathcal{A} \)
\[f[x_1 + ax_i] = [y_1 + a'y_i] \]
For any fixed \(i \neq 1, 2 \) in \(\mathcal{A} \) we have
\[f[x_1 + ax_i] = [y_1 + by_i] . \]
On the other hand \(L = [ax_2 - ax_i] \subset [x_2] + [x_i] \)
with \(L \neq [x_i] \), and so \(fL \subset [y_2] + [y_i] \) with
\(fL \neq [y_i] \). Consequently, \(fL = [y_2 + dy_i] \) for
some unique \(d \). On the other hand,
\[L \subset [x_1 + ax_2] + [x_1 + ax_i] \text{ with } L \neq [x_1 + ax_i] . \]
Then as before \(fL = (y_1 + a'y_2) + d'(y_1 + by_i) \)
and it follows that \(d' = -b' \). But
\[L \subset [x_1 + x_2] + [x_1 + x_i] \text{ with } L \neq [x_1 + x_i] \]
and by (1)
\[fL \subset [y_1 + y_2] + [y_1 + y_i] \text{ with } fL \neq [y_1 + y_i] \]
Then for some unique \(h \) we have \(fL = [y_1 + y_2 +\]
\(h(y_1 + y_i)] \), consequently \(d = -1 \) and \(b = a' \),
then for all \(i \in \mathcal{A} \) and \(a \in R \) we have
\[f[x_1 + ax_i] = [y_1 + a'y_i] . \quad (3) \]
Now we are going to prove that \(\mu \) is surjective. Choose a finite number of \(n \) vectors of \(\{x_i \} \)
including \(x_1 \) and \(x_2 \) say \(x_1, x_2, \ldots, x_n \). Then
induction we have
\[f[x_1 + a_2x_2 + \ldots + a_nx_n] = [y_1 + a'_2y_2 + \ldots + a'_nx_n] \]
and it follows that
\[f[a_2x_2 + \ldots + a_nx_n] = [a'_2y_2 + \ldots + a'_ny_n] . \quad (4) \]
Let \(L = [y_1 + by_2] \) be a point of \(P(H) \), since
is bijective, then there exists some \(v \in \hat{H} \) such that \(L = f[v] \), then \(v \) can be written as a linear combination of \(x_j \) including \(x_1, x_2 \). For the purpose we can use the above set \(x_1, x_2, \ldots, x_n \)
then
\[v = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n . \]
By (5) we have \(\alpha_1 \neq 0 \) and consequently,
\[L = f[x_1 + \beta_2x_2 + \ldots + \beta_nx_n] \text{ with } \beta_j = \frac{\alpha_j}{\alpha_1} . \]
Then by (4) \(\beta'_2 = b \) and consequently \(\mu \) is surjective.

To show that \(\mu(a + b) = \mu(a) + \mu(b) \) we consider the line \(L = [x_1 + (a + b)x_2 + x_3] \). Then
by (2) and (3) we have
\[fL = [y_1 + (a + b)'y_2 + y_3] \]
but
\[L \subset [x_1 + ax_2] + [bx_2 + x_3] \text{ and } L \neq [bx_2 + x_3] . \]
By (4) and (5)
\[fL \subset [y_1 + a'y_2] + [y'_2 + y_3] \text{ with } fL \neq [y'_2 + y_3] . \]
References

