The Existence of a Topolinear Isomorphism on an infinite dimensional Hilbert Space H Corresponding to a Homeomorphism on it’s Projective Space $P(H)$

Ebrahim Esrafilian

Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran-16, Iran

Abstract

In this paper we prove a theorem which states the relationship between the topolinear isomorphisms on an infinite dimensional Hilbert Space H and the homeomorphisms on projective space $P(H)$. This theorem is proved by E. Artin in the finite dimensional case.

Key words: Topolinear Isomorphism, Hilbert Space, Homeomorphism, Projective.
Introduction

The following \(H \) is an infinite dimensional separable Hilbert Space and \(P(H) \) is its projection space which is given a smooth structure as in [2]. We mean by \([x] \in P(H) \) the one dimensional vector subspace of \(H \) generated by \(\{x\} \in H = H - 0 \).

\([x] + [y]\) means the two dimensional subspace generated by \(x, y \in \hat{H} \). in fact \([z] \subset [x] + [y] \) if and only if there exists \(a, b \in \hat{R} \) such that \(z = ax + by \), and if \([z] \neq [x] \), Then there exists a unique \(\frac{x}{z} \) such that \([z] = [x + dy] \). We quote some necessary statments from [2].

Theorem 1.1 Let \(S \) be a unit sphere in a normed linear space \(B \) and \(T : B \rightarrow B \) a linear bijective transformation, and \(\hat{T} \) be the induced bijective transformation then \(T \) is also homeomorphism.

We are ready to state the theorem which is the goal of this paper

Theorem 1.2 Let \(f : P(H) \rightarrow P(H) \) be a homeomorphism such that

\[[x] \subset [y] + [z] \rightarrow f[x] \subset f[y] + f[z]. \]

Then there exists a topological isomorphism \(T : H \rightarrow H \) such that the induced transformation \(P(H) \rightarrow P(H) \) agrees with \(f \).

Proof. the hypothesis implies that if \([x] \subset [y] + [z] \) then \(f^{-1}[x] \subset f^{-1}[y] + f^{-1}[z] \) and by induction on \(k \), we get that if \([z] \subset [z_1] + \cdots + [z_k] \) then \(f[z] \subset f[z_1] + \cdots + f[z_k] \), and \(f^{-1}[z] \subset f^{-1}[z_1] + \cdots + f^{-1}[z_k] \).

Let \(\{x_i\} \) be a Hamel basis for \(H \) where \(i \) is an arbitrary element of a set \(A \). It is clear that if \(f[x_i] = [y_i] \) then \(\{y_i\} \) is also a Hamel basis for \(H \).

Now we choose an element of \(A \) call it 1 , then for any \(i \neq 1 \) the line

\[L_i = [x_1 + x_i] \subset [x_1] + [x_i] \]

where \(L_i \) is not coinside with \([x_i] \) or \([x_1] \), consequently

\[fL_i \subset [y_1] + [y_i] \]

and \(fL_i \) is not coinside with \([y_i] \) or \([y_1] \). Then, for some unique \(d_i \in R \) we have

\[fL_i = [y_1 + d_i y_i] \]

by choosing a suitable \(y_i \) we may assume that \(d_i = 1 \). Then

\[f[x_i] = [y_i] \] \hspace{1cm} (1)

and for \(i \neq 1 \), \(f[x_1 + x_i] = [y_1 + y_i] \).

Now we choose another index from \(A \), call it 2. Then for \(a \in R \)

\[L = [x_1 + ax_2] \subset [x_1] + [x_2] \] where \(L \neq [x_2] \)

Therefore

\[fL \subset [y_1] + [y_2], \] where \(fL \neq [y_2] \).

Then for a unique \(a' \in R \) we have

\[fL = [y_1 + a'y_2] \]
Introduction

The following H is an infinite dimensional separable Hilbert Space and $P(H)$ is its positive cone, which is given a smooth structure as in [2]. We mean by $[x] \in P(H)$ the one dimensional vector subspace of H generated by x.

$[x] + [y]$ means the two dimensional subspace generated by $x, y \in \hat{H}$. In fact $z \in [x] + [y]$ means there exists $a, b \in \hat{H}$ such that $z = ax + by$, and if $[z] \neq [x]$, there exists a unique $y \in [y]$ such that $[z] = [x + dy]$. We quote some necessary statements from [2].

Theorem 1.1 Let S be a unit sphere in a normed vector space B and $T : B \rightarrow B$ a linear bijection, and \hat{T} be the induced bijection transformation

$$\hat{T} : S \rightarrow S$$

defined by $\hat{T}(u) = \frac{T(u)}{||T(u)||}$ for $u \in S \subset B$. If T is homeomorphism then T is also homeomorphism.

We are ready to state the theorem which is the goal of this paper.

Theorem 1.2 Let $f : P(H) \rightarrow P(H)$ be a homeomorphism such that

$$[x] \subset [y] + [z] \rightarrow f[x] \subset f[y] + f[z].$$

Then there exists a topolinear isomorphism $T : P(H) \rightarrow H$ such that the induced transformation $f : P(H) \rightarrow P(H)$ agrees with f.

Proof. The hypothesis implies that if $[x] \subset [y] + [z]$ then $f^{-1}[x] \subset f^{-1}[y] + f^{-1}[z]$ and by induction on k, we get that if $[z] \subset [z_1] + \cdots + [z_k]$ then $f[z] \subset f[z_1] + \cdots + f[z_k]$, and $f^{-1}[z] \subset f^{-1}[z_1] + \cdots + f^{-1}[z_k]$.

Let $\{x_i\}$ be a Hamel basis for H where i is an arbitrary element of a set A. It is clear that if $f[x_i] = [y_i]$ then $\{y_i\}$ is also a Hamel basis for H.

Now we choose an element of A call it 1, then for any $i \neq 1$ the line

$$L_i = [x_1 + x_i] \subset [x_1] + [x_i]$$

where L_i is not coincide with $[x_i]$ or $[x_1]$, consequently

$$fL_i \subset [y_1] + [y_i]$$

and fL_i is not coincide with $[y_i]$ or $[y_1]$. Then, for some unique $d_i \in R$ we have

$$fL_i = [y_1 + d_i y_i].$$

by choosing a suitable y_i we may assume that $d_i = 1$. Then

for $i \in A$, $f[x_i] = [y_i]$ \hspace{1cm} (1)

and for $i \neq 1$, $f[x_1 + x_i] = [y_1 + y_i]$.

Now we choose another index from A, call it 2. Then for $a \in R$

$$L = [x_1 + ax_2] \subset [x_1] + [x_2] \text{ where } L \neq [x_2]$$

Therefore

$$fL \subset [y_1] + [y_2], \text{ where } fL \neq [y_2].$$

Then for a unique $a' \in R$ we have

$$fL = [y_1 + a'y_i].$$
Now we define

\[\mu : R \rightarrow R \]

by \(\mu(a) = a' \) and we will show that \(\mu \) is the identity function on \(R \). Since

\[[x_1 + ax_2] \neq [x_1 + bx_2] \quad \text{if} \quad a \neq b \]

it follows that \(a' \neq b' \), then \(\mu \) is injective. We have also from (1) that

\[0' = 0 \quad \text{and} \quad 1' = 1. \quad (2) \]

Now, we will show that for any \(i \in A \)

\[f[x_1 + ax_i] = [y_1 + a'y_i] \]

For any fixed \(i \neq 1, 2 \) in \(A \) we have

\[f[x_1 + ax_i] = [y_1 + by_i]. \]

On the other hand, \(L = [ax_2 - ax_i] \subset [x_2] + [x_i] \)

with \(L \neq [x_i] \), and so \(fL \subset [y_2] + [y_i] \)

with \(fL \neq [y_i] \). Consequently, \(fL = [y_2 + dy_i] \) for some unique \(d \). On the other hand,

\[L \subset [x_1 + ax_2] + [x_1 + ax_i] \quad \text{with} \quad L \neq [x_1 + ax_i]. \]

Then as before \(fL = ([y_1 + a'y_2] + d'(y_1 + by_i]) \)

and it follows that \(d' = -\frac{b}{a'} \). But

\[L \subset [x_1 + x_2] + [x_1 + x_i] \quad \text{with} \quad L \neq [x_1 + x_i] \]

and by (1)

\[fL \subset [y_1 + y_2] + [y_1 + y_i] \quad \text{with} \quad fL \neq [y_1 + y_i]. \]

Then for some unique \(h \) we have \(fL = [y_1 + y_2 + h(y_1 + y_i)] \), consequently \(d = -1 \) and \(b = a' \),

then for all \(i \in A \) and \(a \in R \) we have

\[f[x_1 + ax_i] = [y_1 + a'y_i]. \quad (3) \]

Now we are going to prove that \(\mu \) is surjective. Choose a finite number of \(n \) vectors of \(A \)

including \(x_1 \) and \(x_2 \) say \(x_1, x_2, \ldots, x_n \). Then

\[f[x_1 + a_1x_2 + \cdots + a_nx_n] = [y_1 + a'_1y_2 + \cdots + a'_ny_n] \quad (4) \]

and it follows that

\[f[a_1x_2 + \cdots + a_nx_n] = [a'_1y_2 + \cdots + a'_ny_n]. \quad (5) \]

Let \(L = [y_1 + by_2] \) be a point of \(P(H) \), since

is bijective, then there exists some \(v \in H \) such that \(L = f[v] \), then \(v \) can be written as a linear combination of \(x_j \) including \(x_1, x_2 \). For this purpose we can use the above set \(x_1, x_2, \ldots, x_n \), then

\[v = \alpha_1x_1 + \alpha_2x_2 + \cdots + \alpha_nx_n. \]

By (5) we have \(\alpha_1 \neq 0 \) and consequently,

\[L = f[x_1 + \beta_2x_2 + \cdots + \beta_nx_n] \quad \text{with} \quad \beta_j = \frac{\alpha_j}{\alpha_1}. \]

Then by (4) \(\beta'_2 = b \) and consequently, \(\mu \) is surjective.

To show that \(\mu(a + b) = \mu(a) + \mu(b) \) we consider the line \(L = [x_1 + (a + b)x_2 + x_3] \). Then

by (2) and (3) we have

\[fL = [y_1 + (a + b)'y_2 + y_3] \]

but

\[L \subset [x_1 + ax_2] + [bx_2 + x_3] \quad \text{and} \quad L \neq [bx_2 + x_3]. \]

By (4) and (5)

\[fL \subset [y_1 + a'y_2 + h(y_1 + y_i)] \quad \text{with} \quad h \text{ arbitrary}. \]
and so \(fL = [(y_1 + a'y_2) + \lambda(b'y_2 + y_3)] \) for some \(\lambda \).

It follows that \(\lambda = 1 \) and so

\[
\mu(a + b) = (a + b)' = a' + b' = \mu(a) + \mu(b). \tag{6}
\]

Similarly by considering a line \([x_1 + (ab)x_2 + x_3]\), we get

\[
\mu(ab) = \mu(a) \mu(b) \tag{7}
\]

thus \(\mu \) is a bijective mapping satisfying (2), (6) and (7) and therefore it is the identity mapping on \(H \). Consequently

\[
f[x_1 + \cdots + a_kx_k] = [a_{1}y_1 + \cdots + a_ky_k]. \tag{8}
\]

The equation (8) has been derived by fixing \(x \), \(a \) and \(f \) from the Hamel basis \(\{x_i\} \). Since it still holds for \(a_1, a_2 \) zeros, it follows that (8) is true for any finite combination of vectors in \(\{x_i\} \).

If \(x \in H \), then \(\bar{x} = \sum a_i x_i \) (a finite sum) and so we define a linear map

\[
T : H \rightarrow H \text{ by } T(x) = \sum a_i y_i.
\]

The \(T \) is also a bijection and it induces a map

\[
\bar{T} : P(H) \rightarrow P(H)
\]

\[
\bar{T}[x] = [T(x)] = [\sum a_i y_i] = f[x]
\]

consequently, \(\bar{T} \) agrees with \(f \).

The bijection \(\bar{T} : S \rightarrow S \) defined by \(T \) as in Theorem 1.1 is a homeomorphism. This follows from the commutative diagram

\[
P(H) \xrightarrow{f} P(H) \]
\[
\phi \uparrow \quad \uparrow \phi
\]
\[
S \xrightarrow{T} S
\]

because \(f \) is supposed a homeomorphism and \(\phi \) is the local diffeomorphism between \(S \) and \(P(H) \). It follows from Theorem 1.1 that \(T \) is a

References

