The Existence of a Topolinear Isomorphism on an infinite dimensional Hilbert Space H Corresponding to a Homeomorphism on it’s Projective Space $P(H)$

Ebrahim Esrafilian

Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran-16, Iran

Abstract

In this paper we prove a theorem which states the relationship between the topolinear isomorphisms on an infinite dimensional Hilbert Space H and the Homeomorphisms on projective Space $P(H)$. This theorem is proved by E.Artin in the finite dimensional case.

Key words: Topolinear Isomorphism, Hilbert Space, Homeomorphism, Projective.
Introduction

The following \(H \) is an infinite dimensional separable Hilbert Space and \(P(H) \) is its projection space which is given a smooth structure as in [2]. We mean by \([x] \in P(H) \) the \(k \)-dimensional vector subspace of \(H \) generated by \(x \in H = H - 0 \).

\([x] + [y]\) means the two dimensional subspace generated by \(x, y \in H \). in fact \([z] \subseteq [x] + [y] \) implies that there exists \(a, b \in \mathbb{R} \) such that \(z = ax + by \) and if \([z] \neq [x] \), There exists a unique \(\frac{a}{b} \) such that \([z] = [x + dy] \). We quote some necessary statements from [2].

Theorem 1.1 Let \(S \) be a unit sphere in a normed linear space \(B \) and \(T : B \rightarrow B \) a linear bijective transformation, and \(\tilde{T} \) be the induced bijective transformation

\[\tilde{T} : S \rightarrow S \]

defined by \(\tilde{T}(u) = \frac{T(u)}{||T(u)||} \) for \(u \in S \subseteq B \).

If \(\tilde{T} \) is homeomorphism then \(T \) is also homeomorphism.

Now we are ready to state the theorem which is the goal of this paper.

Theorem 1.2 Let \(f : P(H) \rightarrow P(H) \) be a homeomorphism such that

\[[x] \subseteq [y] + [z] \rightarrow f[x] \subseteq f[y] + f[z]. \]

Then there exists a topological isomorphism \(T : P(H) \rightarrow H \) such that the induced transformation \(T \cdot P(H) \rightarrow P(H) \) agrees with \(f \).

Proof. the hypothesis implies that if \([x] \subseteq [y] + [z] \) then \(f^{-1}[x] \subseteq f^{-1}[y] + f^{-1}[z] \) and by induction on \(k \), we get that if \([z] \subseteq [z_1] + \ldots + [z_k] \) then \(f[z] \subseteq f[z_1] + \ldots + f[z_k] \) and \(f^{-1}[z] \subseteq f^{-1}[z_1] + \ldots + f^{-1}[z_k] \).

Let \(\{x_i\} \) be a Hamel basis for \(H \) where \(i \) is an arbitrary element of a set \(A \). It is clear that if \(f[x_i] = [y_i] \) then \(\{y_i\} \) is also a Hamel basis for \(H \).

Now we choose an element of \(A \) call it 1, then for any \(i \neq 1 \) the line

\[L_i = [x_1 + x_i] \subseteq [x_1] + [x_i] \]

where \(L_i \) is not coincide with \([x_i] \) or \([x_1] \), consequently

\[fL_i \subseteq [y_1] + [y_i] \]

and \(fL_i \) is not coincide with \([y_i] \) or \([y_1] \). Then, for some unique \(d_i \in \mathbb{R} \) we have

\[fL_i = [y_1 + d_i y_i]. \]

by choosing a suitable \(y_i \) we may assume that \(d_i = 1 \). Then

\[f[x_i] = [y_i] \quad (1) \]

and for \(i \neq 1 \), \(f[x_1 + x_i] = [y_1 + y_i] \). Then for another index from \(A \), call it 2. Then for \(a \in \mathbb{R} \)

\[L = [x_1 + ax_2] \subseteq [x_1] + [x_2] \quad \text{where} \quad L \neq [x_2] \]

Therefore

\[fL \subseteq [y_1] + [y_2], \quad \text{where} \quad fL \neq [y_2]. \]

Then for a unique \(a' \in \mathbb{R} \) we have

\[fL = [y_1 + a'y_2]. \]
Introduction

The following H is an infinite dimensional separable Hilbert Space and $P(H)$ is its positive cone space which is given a smooth structure as in [2]. We mean by $[x] \in P(H)$ the one dimensional vector subspace of H generated by $x \in H = H - 0$.

$[x]+[y]$ means the two dimensional subspace generated by $x, y \in H$. In fact $[z] \subseteq [x]+[y]$ means that there exists $a, b \in \mathbb{R}$ such that $z = ax + by$, and if $[z] \neq [x]$, there exists a unique $\beta \in \mathbb{R}$ such that $[z] = [x + \beta y]$. We quote some necessary statements from [2].

Theorem 1.1 Let S be a unit sphere in a normed linear space B and $T : B \rightarrow B$ a linear bijective transformation, and \hat{T} be the induced bijective transformation

$$\hat{T} : S \rightarrow S$$

defined by $\hat{T}(u) = \frac{T(u)}{|T(u)|}$ for $u \in S \subseteq B$. If \hat{T} is homeomorphism then T is also homeomorphism.

Now we are ready to state the theorem which is the goal of this paper.

Theorem 1.2 Let $f : P(H) \rightarrow P(H)$ be a homeomorphism such that

$$[x] \subset [y]+[z] \rightarrow f([x]) \subset f([y])+f([z]).$$

Then there exists a topological isomorphism $T : P(H) \rightarrow H$ such that the induced transformation $T : P(H) \rightarrow P(H)$ agrees with f.

Proof. The hypothesis implies that if $[x] \subset [y]+[z]$ then $f^{-1}[x] \subset f^{-1}[y]+f^{-1}[z]$ and by induction on k, we get that if $[z] \subset [z_1]+\ldots+[z_k]$ then $f([z]) \subset f([z_1]+\ldots+[z_k])$, and $f^{-1}[z] \subset f^{-1}[z_1]+\ldots+f^{-1}[z_k]$.

Let $\{x_i\}$ be a Hamel basis for H where i is an arbitrary element of a set A. It is clear that if $f(x_i) = [y_i]$ then $\{y_i\}$ is also a Hamel basis for H.

Now we choose an element of A call it 1, then for any $i \neq 1$ the line

$$L_i = [x_1 + x_i] \subset [x_1] + [x_i]$$

where L_i is not coincide with $[x_i]$ or $[x_1]$, consequently

$$fL_i \subset [y_1] + [y_i]$$

and fL_i is not coincide with $[y_i]$ or $[y_1]$. Then, for some unique $d_i \in \mathbb{R}$ we have

$$fL_i = [y_1 + d_i y_i].$$

by choosing a suitable y_i we may assume that $d_i = 1$. Then

$$f[x_i] = [y_i] \quad (1)$$

and for $i \neq 1$, $f[x_1 + x_i] = [y_1 + y_i]$.

Now we choose another index from A, call it 2. Then for $a \in \mathbb{R}$

$$L = [x_1 + ax_2] \subset [x_1] + [x_2] \text{ where } L \neq [x_2]$$

Therefore

$$fL \subset [y_1] + [y_2], \text{ where } fL \neq [y_2].$$

Then for a unique $a' \in \mathbb{R}$ we have

$$fL = [y_1 + a' y_2].$$
Now we define
\[\mu : R \to R\]
by \(\mu(a) = a'\) and we will show that \(\mu\) is the identity function on \(R\). Since
\[\begin{align*}
[x_1 + ax_2] &\neq [x_1 + bx_2] \text{ if } a \neq b
\end{align*}\]
it follows that \(a' \neq b'\), then \(\mu\) is injective. We have also from (1) that
\[0' = 0 \text{ and } 1' = 1. \tag{2}\]
Now, we will show that for any \(i \in \mathcal{A}\)
\[f[x_1 + ax_i] = [y_1 + a'y_i]\]
For any fixed \(i \neq 1, 2\) in \(\mathcal{A}\) we have
\[f[x_1 + ax_i] = [y_1 + by_i].\]
On the other hand \(L = [ax_2 - ax_1] \subset [x_2] + [x_i]\)
with \(L \neq [x_i]\), and so \(fL \subset [y_2] + [y_i]\) with
\[fL \neq [y_i].\]
Consequently, \(fL = [y_2 + dy_i]\) for some unique \(d\). On the other hand,
\[L \subset [x_1 + ax_2] + [x_1 + ax_i]\text{ with } L \neq [x_1 + ax_i].\]
Then as before \(fL = ([y_1 + a'y_2] + d'(y_1 + by_i)]\)
and it follows that \(d = -\frac{b'}{a'}\). But
\[L \subset [x_1 + x_2] + [x_1 + x_i]\text{ with } L \neq [x_1 + x_i]\]
and by (1)
\[fL \subset [y_1 + y_2] + [y_1 + y_i]\text{ with } fL \neq [y_1 + y_i].\]
Then for some unique \(h\) we have \(fL = [y_1 + y_2 +
\[h(y_1 + y_i)]\), consequently \(d = -1\) and \(b = a'\),
then for all \(i \in \mathcal{A}\) and \(a \in R\) we have
\[f[x_1 + ax_i] = [y_1 + a'y_i]. \tag{3}\]
Now we are going to prove that \(\mu\) is surjective. Choose a finite number of \(n\) vectors of \(\mathcal{A}\) including \(x_1\) and \(x_2\) say \(x_1, x_2, \ldots, x_n\). Then
\[f[x_1 + ax_2 + \cdots + a_n x_n] = [y_1 + a'_2 y_2 + \cdots + a'_n y_n]\]
and it follows that
\[f[a_2 x_2 + \cdots + a_n x_n] = [a'_2 y_2 + \cdots + a'_n y_n]. \tag{4}\]
Let \(L = [y_1 + by_2]\) be a point of \(P(H)\), since \(\mu\) is bijective, then there exists some \(v \in H\) such that \(L = f[v]\), then \(v\) can be written as a linear combination of \(x_j\) including \(x_1, x_2\). For this purpose we can use the above set \(x_1, x_2, \ldots, x_n\), then
\[v = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n.\]
By (5) we have \(\alpha_1 \neq 0\) and consequently,
\[L = f[x_1 + \beta_2 x_2 + \cdots + \beta_n x_n]\text{ with } \beta_j = \frac{\alpha_j}{\alpha_1}.\]
Then by (4) \(\beta_2' = b\) and consequently \(\mu\) is surjective.

To show that \(\mu(a + b) = \mu(a) + \mu(b)\) we consider the line \(L = [x_1 + (a + b)x_2 + x_3]\). Then
by (2) and (3) we have
\[fL = [y_1 + (a + b)' y_2 + y_3]\]
but
\[L \subset [x_1 + ax_2] + [bx_2 + x_3]\text{ and } L \neq [bx_2 + x_3].\]
By (4) and (5)
\[fL \subset [y_1 + a'y_2 + y_3] + [y_2 + y_3]\text{ with } fL \neq [y_2 + y_3].\]
and so \(fL = [(y_1 + a'y_2) + \lambda(b'y_2 + y_3)] \) for some \(\lambda \). It follows that \(\lambda = 1 \) and so

\[
\mu(a + b) = (a + b)' = a' + b' = \mu(a) + \mu(b).
\]

Similarly by considering a line \([x_1 + (ab)x_2 + x_3] \), we get

\[
\mu(ab) = \mu(a) \mu(b)
\]

Thus \(\mu \) is a bijective mapping satisfying (2), (6) and (7) and therefore it is the identity mapping \(I \). Consequently

\[
f[x_1 + \cdots + a_k x_k] = [a_1 y_1 + \cdots + a_k y_k].
\]

The equation (8) has been derived by fixing \(x \) from the Hamel basis \(\{x_i\} \). Since it still holds for \(a_1, a_2 \) zeros, it follows that (8) is true for any finite combination of vectors in \(\{x_i\} \).

If \(x \in H \), then \(x = \sum a_i x_i \) (a finite sum).

Hence we define a linear map

\[
T : H \rightarrow H \quad \text{by} \quad T(x) = \sum a_i y_i
\]

The map \(T \) is also a bijection and it induces a map

\[
\overline{T} : P(H) \rightarrow P(H)
\]

\[
\overline{T}[x] = [T(x)] = [\sum a_i y_i] = f[x]
\]

Consequently, \(\overline{T} \) agrees with \(f \).

The bijection \(\overline{T} : S \rightarrow S \) defined by \(T \) as in theorem 1.1 is a homeomorphism. This follows from the commutative diagram

\[
P(H) \xrightarrow{f} P(H)
\]

\[
\phi \uparrow \quad \uparrow \phi
\]

\[
S \xrightarrow{T} S
\]

because \(f \) is supposed a homeomorphism and \(\phi \) is the local diffeomorphism between \(S \) and \((P(H), \phi) \). It follows from Theorem 1.1 that \(T \) is a homeomorphism.