مطالعه اثر مزاحمت طیفی 28 عنصر بر روز خرطوم طیفی
به کمک اسپکتروسکوپی نشیری بالاسمای جفت شده الغایی (ICP- Es)
دکتر مرضیه چالوسی
گروه آموزشی شیمی – دانشکده علوم – دانشگاه تربیت معلم

چکیده:
مزاحمه‌های طیفی عنصر Cu, Mo, Zr, Fe, Ti, Cr, Pb, Al, U, Ti, Mg, Ta, Y, W, Be, Sn, K, B, Ag, V, Sr, Se, Na, Co, Ca, Ba, Hg, Cd, در طول موج‌های 330.259 نانو متر و 511 نانو متر مورد مطالعه را در نظر گرفت و از اسپکتروسکوپی نشیری بالاسمای جفت شده الغایی استفاده شد.

مقدمه:
در حال حاضر یکی از مهندسین عوامل موثری که مانع بکارگیری و سعی اسپکتروسکوپی نشیری بالاسمای جفت شده الغایی (ICP-Es) می‌شود، مزاحمه‌های طیفی قابل تغییر و قابلیت تغییر بهبود آن دمای آزمایشگاه (SNR) است. این موانع در دانشگاه و اندونزی کانادا به‌سیبی از آزمایشگاه‌های بالاسمای جفت شده الغایی، پیشرفت‌هایی در کاربرد و اسپکتروسکوپی نشیری بالاسمای جفت شده الغایی (ICP-Es) داشته‌اند.

روش و ابزار:
در سال 1995 مورد استفاده قرار گرفت و به‌عنوان مودال های بالاسمای گاز مورد بررسی قرار گرفت.

Squares (PLS) and Kalman Filtering methods.
جدول 1- شرایط عمل دستگاه

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance Liberty 100</td>
<td></td>
</tr>
<tr>
<td>Forward power</td>
<td>1.08 kW</td>
</tr>
<tr>
<td>Plasma gas (Ar)</td>
<td>15.0 L/min</td>
</tr>
<tr>
<td>Auxiliary</td>
<td>1.5 L/min</td>
</tr>
<tr>
<td>Nebulizer pressure</td>
<td>200.0 kPa</td>
</tr>
<tr>
<td>Viewing height</td>
<td>15.0 mm ALC</td>
</tr>
<tr>
<td>Pump speed</td>
<td>25.0 rpm</td>
</tr>
<tr>
<td>Stabilization time</td>
<td>15.0 sec</td>
</tr>
<tr>
<td>Sample delay</td>
<td>30.0 sec</td>
</tr>
<tr>
<td>Search window</td>
<td>0.08 nm</td>
</tr>
<tr>
<td>Integration time</td>
<td>1.0 sec</td>
</tr>
<tr>
<td>Number of repeats</td>
<td>3</td>
</tr>
</tbody>
</table>

مراجع:
- طیف عناصر در Zr در این طول موج مراحل طیفی داشته و عنصر Zr در این طول موج مراحل طیفی شدیدتری دارد. نتایج در جدول 2 در جدول 2 در Zr, U, Na, Ti, Mo, Y
- شده است، طیف مربوط به عنصر Zr در (شکل 1) آمده است.
- در طول موج 1158/166 نانومتر از 28 عنصر مورد بررسی عناصر Cu, Mo, Zr, Fe, Ti, Cr, پرسته عناصر طیفی نشان داده. عنصر Cu با فاصله زاویه ای در این طول موج مراحل نسبتاً شدیدی نشان می‌دهد. نتایج در (جدول 2) Zn, Zr, Cu, Fe, در جدول این مراحل در (شکل 1) آمده است.
- Cr, Mo, Al, Cu, Mn, Mg, Ta, W, V, Ti, در طول موج 1200/2400 نانومتر عناصر U, Cu, Mn, Mg, Ta, W, V, Ti, دانش‌مند مختصاً عنصر و اندازه‌دهنده اثرات اثرات طیفی (hot line) نشان می‌دهد. نتایج در Zn, Mg, Cu, Cr, U, در طول موج 1250/1550 نانومتر مراحل طیفی 28 عنصر مورد بررسی قرار گرفت و طیف عناصر، Mo, Mn, Mg, Ta, W, Y, Zr, Co, Fe, Ti, Mg, بیش عناصر مراحل طیفی چندانی نشان نداده و عنصر

جهت و بحث:

- مراحل طیفی حاصل از عناصر Cu, Mo, Zr, Fe, Ti, Cr, Al, Pb, U, Ti, Mg, Ta, Y, W, B, K, B, Ag, V, Sr, Se, Na, Co, Ca, Ba, Hg, In, Zr, و فقط عنصر Zr, U, Mo, Ta, Y, Na, Cr, Ti.
دستگاه از قبیل اندازه‌گیری چند عنصر، دارا بودن دامنه ظرفیت و سیستم سازگار با دستگاه هستند. بنابراین برای اینکه بتوان عنصر در حد مقادیر کم رادر نمونه‌های با مترين‌های پیچیده نظیر نمونه‌های زنوسیمیاپی و بیولوژی اندازه‌گیری نمود، لازم است مراحل‌های طیفی بزرگ تر شود.

به همراه مراحل طیفی شدید و عنصر تنها مراحل طیفی کمتری نسبت به Mg از حد نشان‌زایی دیده. نتایج در Zn، Cr، U، Zr، Mo از نظر مشابه به اندکی ممکن است تشریح گردد.

با توجه به جدول ۷ مشاهده می‌شود که حد تشریح

| عنصر | فناوری
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVS_{(a)}</td>
</tr>
<tr>
<td></td>
<td>(ppb)</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>

(a) Anodic Stripping Voltammetry

نتیجه‌گیری:

از نتایج‌های فوق، مشاهده می‌شود که عنصر Zn در طول موج‌های مختلف مشاهده شده و با پیک‌های مختلف مقارن با عنصر دیگران مشاهده شده است. جدول ۷ عناصری که در نمایش مقادیر کم عنصر Zn ابزار مراحل‌های می‌کنند.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>طول موج (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>330.259, 213.859, 206.200, 202.551</td>
</tr>
</tbody>
</table>

U، Mo، Ta، Zr، Na
Cu، Fe، Cr
U، Mo، Mg، Ta، W، V
Cr، U، Ta، W، V

* - Limit of Detection.
شکل ۱. تغییرات توان پلاسما بر حسب کیلولات بر روی شدت نشان محلول ۱ ppmZn

شکل ۲. تغییرات توان پلاسما بر حسب کیلولات بر روی شدت نشان محلول ۵ ppmZn + ۲۰۰ ppmNa
Spectral Scan 5ppmZn+ 200ppmNa in different powwrs (kW)

\[\text{1 ppmZn} + 400 \text{ ppmNa} \]

Shape 3 - 2 alters in the raw data shows the results of measurements.

Spectral Scan
Zn
Wavelength 330.259
Spectral Scan
Zn
Wavelength
202.551

Intensity

Mo
Zn
U
Cr
Zr

Zn در طول موج 202.551 نانومتر عنصر

Zn, Cr, U, Zr در طول موج Mo عنصر

شکل ۷- ذیل نشانه‌های عنصر
جدول ۳- شدت نشان اعضا مراحل در اندازه‌گیری عنصر

<table>
<thead>
<tr>
<th>عنصر</th>
<th>طول موج (nm)</th>
<th>شدت طیفی عنصر</th>
<th>غلظت عنصر</th>
<th>طول موج خط طیفی عنصر</th>
<th>شدت طیفی عنصر مراحلی</th>
<th>حجم عنصر مراحلی (ng/ml)</th>
<th>تصویری گزارش شده توسط شرکت وارین</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn (I)</td>
<td>214.856</td>
<td>1742</td>
<td>Blank Solution (BG)</td>
<td>213/251</td>
<td>75/69</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>1ppm</td>
<td>214.856</td>
<td>1742</td>
<td>1 ppm Zn (BG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>214.856</td>
<td>1742</td>
<td>100 ppm Cu</td>
<td>213/252</td>
<td>1915</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>214.856</td>
<td>1742</td>
<td>100 ppm Mo</td>
<td>213/254</td>
<td>588/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>214.856</td>
<td>1742</td>
<td>100 ppm Zr</td>
<td>213/255</td>
<td>188/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>214.856</td>
<td>1742</td>
<td>100 ppm Fe</td>
<td>213/257</td>
<td>488/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>214.856</td>
<td>1742</td>
<td>100 ppm Ti</td>
<td>213/255</td>
<td>244/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>214.856</td>
<td>1742</td>
<td>100 ppm Cr</td>
<td>213/255</td>
<td>173/5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| نام و غلظت عنصر اصلی | طول موج (nm) | شدت طیف عنصر مراجعه | غلظت عنصر مراجعه | طول موج خط طیفی (nm) | شدت طیفی طیفی بینایی تشخیص ng.ml⁻¹ | حجمsg | مراحل طیفی گزارش شده توسط شرکت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn II 1 ppm</td>
<td>352/6</td>
<td>Blank Solution(BG)</td>
<td>453/6</td>
<td>202/023/50</td>
<td>333/4</td>
<td>25</td>
<td>ppm Zn</td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Cu</td>
<td>363/8</td>
<td>202/023/9</td>
<td>73/4</td>
<td></td>
<td>BG</td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Cr</td>
<td>501/1</td>
<td>202/023/1</td>
<td>508/2</td>
<td></td>
<td>10 ppm Cu</td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm U</td>
<td>298/4</td>
<td>202/023/6</td>
<td>196/1</td>
<td></td>
<td>100 ppm Cr</td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Mo</td>
<td>298/4</td>
<td>202/023/5</td>
<td>110/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Mn</td>
<td>298/4</td>
<td>202/023/2</td>
<td>87/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Mg</td>
<td>298/4</td>
<td>202/023/3</td>
<td>298/4</td>
<td></td>
<td>10 ppm Zn</td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm W</td>
<td>298/4</td>
<td>202/023/1</td>
<td>196/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Y</td>
<td>298/4</td>
<td>202/023/1</td>
<td>21/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Zr</td>
<td>298/4</td>
<td>202/023/5</td>
<td>298/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Co</td>
<td>298/4</td>
<td>202/023/2</td>
<td>298/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Fe</td>
<td>298/4</td>
<td>202/023/4</td>
<td>298/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>354/6</td>
<td>100 ppm Ti</td>
<td>298/4</td>
<td>202/023/6</td>
<td>298/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES:

