مطالعه تجمع بونی در محلول سیر شده فلوئورید منیزیم در \(25^\circ C\)

دکتر حسین آقایی - دکتری بیات

گروه شیمی - دانشکده علوم - دانشگاه تربیت معلم

چکیده:
در این پژوهش با استفاده از دو روشن، یکی ترکیب حجم‌های معلومی از محلول سیر شده و ترکیبی نرمک بر جای مانده و دیگری نورسنجی در گسترده‌ای UV-VIS، موضوع تحقیق حل شدن فلوئورید منیزیم در آب در \(25^\circ C\) مورد بررسی قرار گرفته است. از مقایسه تابع حل شدن تجزیه و پیداکردن را که برای آن از تابع حاصل ضرب حل‌نگارکننده ترلغوئورید منیزیمی قابل تخمین است اثبات شد که اختلاف آن در فاصله بین هریک برای توضیح و در این حال، فلش تابع به‌دست آمده. همکاری دیگری برای توضیح حل‌نگار غیر از محلول سیر شده مورد تحقیق قرار گرفته از مطالعه کارآمدی لازم است. این روی دیگر، این نتیجه خاص شد که نظر به باید شده به همراه ترکیب بین در محلول سیر شده آن در \(25^\circ C\) می‌رود. ضرایب فعالیت بین‌های مشتی و منفی و \(\sqrt{V_1} / \sqrt{V_2}\) در محلول سیر‌شده به کمک معادله تنویعه‌یافته دیابی-مورلوک

\[
\text{log} \gamma_i = \frac{-0.509Z_i^2 \sqrt{V_1}}{1+0.328a_i \sqrt{V_1}} + \text{تهیه تاریخ}
\]

درمحله تهیه تاریخ: یکی از نظریه‌های تربیت

مقدمه:
مقدمه تهیه تاریخ: یکی از نظریه‌های تربیت

جدل/ شماره‌های ۳ و ۴/ پایه و زمین‌تربیت
برای مثال، اگر تابعی مثل $f(x) = x^2$ را داشته باشیم، شاخص‌های معنی‌داری مانند میانگین انتظار و واریانس را می‌توانیم بیابیم.

(1)

از طرفی، مشخصات آماری می‌توانند به عنوان توصیف‌گری برای داده‌های بزرگ باشند.

(2)

در اینجا، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(3)

در صورتی که داده‌ها به‌صورت صحیح و آسان قابل دریافت و پردازش باشند، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(4)

در اینجا، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(5)

در صورتی که داده‌ها به‌صورت صحیح و آسان قابل دریافت و پردازش باشند، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(6)

در اینجا، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(7)

در صورتی که داده‌ها به‌صورت صحیح و آسان قابل دریافت و پردازش باشند، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(8)

در اینجا، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(9)

در صورتی که داده‌ها به‌صورت صحیح و آسان قابل دریافت و پردازش باشند، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(10)

در اینجا، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(11)

در صورتی که داده‌ها به‌صورت صحیح و آسان قابل دریافت و پردازش باشند، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(12)

در اینجا، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.

(13)

در صورتی که داده‌ها به‌صورت صحیح و آسان قابل دریافت و پردازش باشند، نتایج حاصل از نظریه آماری و اکستراتیو بی‌توجهی است که می‌تواند به عنوان یک آماری نتایج قابل قبولی داشته باشد.
گیبس استاندارد وابسته به آن را محاسبه نمود. از این راه مقدار

\[\Delta G^\circ = -RT \ln K_p \]

\[= \frac{V}{39.14} \text{JK}^{-1} \text{mol}^{-1} \times 298 \text{K} \times \ln(219/4) \]

\[= -8/314 \text{kJ mol}^{-1} \]

به دست می‌آید. با توجه به آن

هم در محلول سیلیکات نسبت داده شده (2-14). در جدول (5)

سه‌همای شرکت کننده در قابلیت حل شدن تجزیه برارورد

گردیده است.

با توجه به مقدار X حاصل از دور چهارم محاسبه دویور به

کمک یک برنامه کامپیوتری و مقدار خلاصه شده در آن

دور بر اساس همان برنامه کامپیوتری، می‌توان فعاالیت مرکز از

گونه‌های در Mg\(^{2+}\) و Zn\(^{2+}\) و F\(^{-}\) در شرکت کننده در

Mg\(^{2+}\) F\(^{-}\) و Mg\(^{2+}\) F\(^{-}\) (aq) Mg\(^{2+}\) (aq) + F\(^{-}\) (aq) تغییر

سایت ثابت تعادل، K\(_p\) برای آن را تخمین زد و تغییر انرژی آزاد

جدول 1: داده‌های ترمودینامیکی لازم در 25\(^{\circ}\)C برای حساب کردن ثابت حاضر در

ترمودینامیکی فلوتوئورد میزیم (10).

<table>
<thead>
<tr>
<th>(\Delta G^\circ/\text{kJmol}^{-1})</th>
<th>(S/\text{JK}^{-1}\text{mol}^{-1})</th>
<th>(\Delta H^\circ/\text{kJmol}^{-1})</th>
<th>گونه‌ی</th>
</tr>
</thead>
<tbody>
<tr>
<td>-52/8</td>
<td>128/1</td>
<td>469/80</td>
<td>Mg(^{2+}) (aq)</td>
</tr>
<tr>
<td>178/79</td>
<td>-138/8</td>
<td>336/82</td>
<td>F(^{-}) (aq)</td>
</tr>
<tr>
<td>-104/0</td>
<td>57/2</td>
<td>-1102/0</td>
<td>MgF(_2)</td>
</tr>
</tbody>
</table>

جدول 2: قابلیت حل شدن فلوتوئورد میزیم در 25\(^{\circ}\)C به روش تی‌چک محلول سیلیکات

<table>
<thead>
<tr>
<th>تعداد محلول سیلیکات لیتر</th>
<th>شماره دور</th>
<th>شماره دور</th>
<th>شماره دور</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/142</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0/143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌های حیود میانگین همه آزمایش‌های مطلق است. میانگین به دست آمده با مقدار گزارش شده در منابع دیگر سازگاری خوبی دارد (7).

\(\text{میانگین} = \frac{0/141 + 0/142}{2} = 0/141 \)
جدول ۱: نتایج حاصل از روش ورزسنجی در مورد محلول سیروشده فلوئورید نیزیم در C۱۵ °C.

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>میانگین جدید</th>
<th>مورد آزمایش</th>
<th>خوانده شده</th>
<th>غلظت نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۳</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۴</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۵</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
</tbody>
</table>

جهاب حاصل با مقدار گزارش شده در مراجع دیگر سازگاری خوبی دارد.

جدول ۴: نتایج ۴ دور محاسبه برای تخمین وزن شده بیوهای +Mg۲+ در محلول سیروشده فلوئورید نیزیم در C۱۵ °C.

<table>
<thead>
<tr>
<th>×10 مول/L</th>
<th>۲</th>
<th>۲ +</th>
<th>۱۰۲×۱</th>
<th>دور محاسبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۱۰۸۸</td>
<td>۰/۱۱۱۹۸</td>
<td>۰/۱۱۲۸۸</td>
<td>۰/۱۱۲۹۸</td>
<td>۰/۱۱۲۹۸</td>
</tr>
<tr>
<td>۰/۱۱۱۹۸</td>
<td>۰/۱۱۲۸۸</td>
<td>۰/۱۱۰۸۸</td>
<td>۰/۱۱۲۹۸</td>
<td>۰/۱۱۲۹۸</td>
</tr>
<tr>
<td>۰/۱۱۲۸۸</td>
<td>۰/۱۱۲۹۸</td>
<td>۰/۱۱۰۸۸</td>
<td>۰/۱۱۱۹۸</td>
<td>۰/۱۱۲۹۸</td>
</tr>
<tr>
<td>۰/۱۱۲۹۸</td>
<td>۰/۱۱۰۸۸</td>
<td>۰/۱۱۱۹۸</td>
<td>۰/۱۱۲۸۸</td>
<td>۰/۱۱۲۹۸</td>
</tr>
</tbody>
</table>

در محاسبه +Mg۲+ از طریق کمکی نمونه توزیع یافته دبای - هورکل، مقدار A۸/۸۸۸ به دنبال برای بیوهای F⁻ به عنوان پارامتر اندامه بیون باید کاربرد داشته باشد (۱۱).
جدول 5: سهمه‌های شرکت کننده در قابلیت حل شدن تجاری فلورورید منزیم در \(25^\circ C \)

<table>
<thead>
<tr>
<th>شماره</th>
<th>قابلیت حل شدن تجاری ((%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/191</td>
<td>(\times 10^{-3})M</td>
</tr>
<tr>
<td>1/176</td>
<td>(\times 10^{-7})M</td>
</tr>
<tr>
<td>1/376</td>
<td>(\times 10^{-5})M</td>
</tr>
<tr>
<td>1/120</td>
<td>(\times 10^{-7})M</td>
</tr>
<tr>
<td>2/53</td>
<td>(\times 10^{-7})M</td>
</tr>
<tr>
<td>1/531</td>
<td>(\times 10^{-7})M</td>
</tr>
<tr>
<td>1/66</td>
<td>(\times 10^{-6})</td>
</tr>
</tbody>
</table>

قابلیت حل شدن به فریض ایجاد آل بردن محلول (E:\(\% \)):

توسعه یافته دبای - هواکل (Sn, H):

غلاظت روجهای \(F^- \) به دست آمده از محاسبه دویِ:

\[\text{غلاظت یونهای F}^{-} \text{آزاد در محلول سیرشده:} \]

\[\text{غلاظت یونهای Mg}^{2+} \text{آزاد در محلول سیرشده:} \]

\[\text{ثابت از نتایج محاسبه دوی:} \]

\[\text{درصد روجهای یونی در محلول سیرشده:} \]

\[\text{درصد یونهای F}^{-} \text{آزاد در محلول سیرشده:} \]

\[\text{درصد یونهای Mg}^{2+} \text{آزاد در محلول سیرشده:} \]

\[\text{سهم این در حل شدن تجاری:} \]

\[\text{شهم ضرایب فعالیت دبای - هواکل در حل شدن تجاری:} \]

\[\text{سهم زوج شدن یونهای در حل شدن تجاری:} \]

در منابعی چندبرای \(K\text{sp} \) فلورورید منزیم در \(25^\circ C \) مقداری متفاوت از \(10^{-9.2} \) داده شده است (12). به چنانچه از آنها در محاسبات دوی استفاده شد. به مقداری، سیبیر بزرگتری، برای میزان زوج شدن یونهای می‌رسیم. \(\text{Mg}^{2+}F^- \) و \(\text{Mg}^{2+}F^- \) در محلول سیرشده فلورورید منزیم، نه گرنه‌هایی.
References:

1- Debye, P. and E. Huckel; Phys. z. 1932, 24, 305.
2- Steven, O. Russo; George, I. H. Hanania; J. Chem. Educ.
1966, 43(12), 667- 672.
4- H. Aghaie and M. Aghai; J. Sci. University for Teacher
Education. 1993, 5(1.2), 87- 92.
6- K. Chowdoyrao; Messubha & S. Brahmanjrao; Ind. J.
7- H. Aghaie and Z. Bayat; unpublished data.
9- E. Pleft; M. Salamon; S. Siane; M. Uchuyama; J. Sola.
Chem. 1986, 15(8), 663- 673.
10- CRC Handbook of Chemistry and Physics; 72nd, ed.
David, R. Lide; 1991, T.
11- Lange's Handbook of Chemistry; 14th. ed. John A.
Dean; Mc Graw- Hill, inc. 1992; T. 5- 5, 5-6.
12- Masterton/ Hurley; Chemistry; 1989, P. 533.
13- Muang, L. Z.; Conzemius, R. J.; Junk G. A.; Houk, R. S.
14- S. Koda; K. Matsumoto; R. Nishimura & H. Nimura; J.
15- Schoer, S. K.; Houk, R.S.; Conzemius, R.S.; Schrader,