مطالعه تجمع بونی در محلول سیر شده فلوئورید منیزیم در 25° C

دکتر حسین آقایی - ذکیه یابات

گروه شیمی - دانشگاه علوم - دانشگاه تربیت معلم

چکیده:

مانند توضیح داده شده در پیامدهای ذکر شده و موارد مربوطه، توجه داشته باشید که

MgF_2(s) \rightarrow Mg^{2+}(aq) + 2F^-(aq) \quad \text{(1)}

در 25°C (جدول 1)، می‌توان ثابت حاصل‌ضرب‌های

ترموذینامیکی، فلوئورید منیزیم از دمای داده شده را

جدول 1.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.509</td>
<td>0.328</td>
</tr>
</tbody>
</table>

پنجمین زده شده است.
مواد به کار رفته:
فلورورید منیزیم: از محصول کارخانه Riedel - Dehnen درجه خلصه 959/.
سولفات منیزیم: از محصول کارخانه Merck
پسیار بالا.
کلرید آمونیاک و نیترات تهیه و از بیانی پالاک T
می‌باشد.
درجه خلصه نسبتاً بالا.

دستگاه مورد استفاده:
از دستگاه UV- Vis مدل A 1600 شیمیا دزو در این پژوهش استفاده شده است. دقت آن برای این پژوهش مناسب است.

روش:
برای تعیین قابلیت حل شدن فلورورید منیزیم در C، در دو روش استفاده کرده‌ایم. یکی انجام تمرین هایی از محلول سیر در شده با جامعه‌ای م‌نای شده را به شیره خاص و نسبتاً طولانی با ممکن تکمیل دنده و نمک بر جای مانده را توزین کرده‌ایم.

جدول (۲) دیگری اینکه بهره‌وری مورد یافته در هر مول بازیکن T به شکل کمپلکس در اورده و از روش سنتی برای میزان جذب آن در nm، با اندازه‌گیری کلیراسیون بررسی شده و در شرایط یکسان، به تعداد ۸ عددی منیزیم در محلول پرداخته آن جدول (۳) براساس تجربه مستقل تعیین نموده‌ایم که جذب کمپلکس منیزیم - از بیانی پالاک T در حوالی nm ۸۲/۵ مکسیمم است.

شکل (۱) کمپلکس منیزیم - از بیانی پالاک T به شکل عادی می‌باشد.

جدول (۴) نسبت به پنجمین منیزیم از محلول به مقدار ۰/۷ ppm در ۰/۴، ۰/۵ و ۰/۶ ممکن است.

جدول (۵) سرعتی می‌باشد و به شکل عادی می‌باشد.

وب جذب آن به سیستم است. (دستگاه پیش از جریان جذب نمونه‌های و در آزمایش با قرار دادن یک تهویه

نتیجه گیری و برآورده می‌گردد:
محلول سیر شده فلورورید منیزیم در C، .۵ مولار فلورورید منیزیم در محلول سیر L
که با ۴ مکسیمم شده با استفاده از مولکول‌ها حاصل از جنگلی (۲) و عبارت است ۱/۸ mol L^-1.

همگر دهه از مکسیم کننده یون‌های در محلول سیر همگر دهه از فرآیند فرآیند قابلیت حل شدن آن از روش قابلیت حل شدن آن از روش قابلیت حل شدن آن از روش

کمبودینامیک حساب شود

\[
\begin{align*}
S_{25} &= \frac{1}{2} \sqrt{\frac{K_{sp}}{4}} \\
S_{25} &= 0.80 \text{ درصد بیان می‌تواند به نحوه یافتن یون‌های یون‌های}
\end{align*}
\]
گویا استاندارد وابسته به آن را آماره‌بندی نمودار این راه‌های مقدار

\[\Delta G^\circ = -RT \ln K \]

\[\Delta G^\circ = -8.314 \frac{JK^{-1}mol^{-1}}{298K} \ln (219/4) \]

\[= -14.962 kJmol^{-1} \]

قابل ذکر است که پدیده تجمع یون‌های کوتناگوئی مورد توجه است و برای مطالعه آن از تکنیک‌های مختلفی استفاده می‌شود (۱۷۱).

جدول ۱: داده‌های ترمودینامیکی لازم در ۲۵ درجه سانتی‌گراد که تابع حساسیت ترمودینامیکی فلورورید منیزیم (۹۰)

<table>
<thead>
<tr>
<th>(\Delta G^\circ /kJmol^{-1})</th>
<th>(S/JK^{-1}mol^{-1})</th>
<th>(\Delta H^\circ /kJmol^{-1})</th>
<th>گونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>-۵۵۴/8</td>
<td>۱۳۸/۱</td>
<td>-۲۹۹/۸۰</td>
<td>(Mg^{2+} \text{(aq)})</td>
</tr>
<tr>
<td>-۵۷۸/۹۹</td>
<td>-۱۳۸/۱</td>
<td>-۳۳۲/۸۳</td>
<td>(F^{-} \text{(aq)})</td>
</tr>
<tr>
<td>-۱۰۴۹/۰</td>
<td>+۵۷/۲</td>
<td>-۱۱۰۲/۰</td>
<td>(MgF_{2}(s))</td>
</tr>
</tbody>
</table>

جدول ۲: قابلیت حل شدن فلورورید منیزیم در ۲۵ درجه سانتی‌گراد به روش تبخر محلول سیر شده

قابلیت حل شدن بر حسب گرم بر لیتر محلول سیر شده

<table>
<thead>
<tr>
<th>شماره دور</th>
<th>لیتر محلول سیر شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۱۴۲</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۱۴۲</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۱۴۱</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۱۴۰</td>
</tr>
</tbody>
</table>

نتیجه‌های حوزه میانگین، سه آزمایش مستقل است. میانگین به دست آمده با تبدیل‌گذاری شده در منابع دیگر سازگاری خوبی دارد (۱۰، ۱۷).
<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>میانگین چند خوادن شده</th>
<th>مورد آزمایش</th>
<th>غلظت نمونه ppm</th>
<th>غلظت ترویج ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>مورد 98</td>
<td>0/9098</td>
<td>1/187</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>مورد 78</td>
<td>0/9949</td>
<td>1/187</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>مورد 9</td>
<td>0/6903</td>
<td>1/187</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>مورد 92</td>
<td>0/5996</td>
<td>1/187</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>مورد 88</td>
<td>0/6629</td>
<td>1/187</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>مورد 72</td>
<td>0/6629</td>
<td>1/189</td>
</tr>
</tbody>
</table>

تایپ جداول ۱۲: نتایج حاصل از روش ورسنجه در مورد محلول سیروشده فلوتورد مذیم در ۹۵ درجه سانتی‌گراد.

*جواب حاصل با مقداری گزارش شده در مراجعِ دیگر سازگاری خوبی دارد (7).\(10\)

<table>
<thead>
<tr>
<th>دور محاسبه</th>
<th>(\gamma)</th>
<th>(\gamma^+)</th>
<th>(10^2\times I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/8188</td>
<td>0/32095</td>
<td>0/5759</td>
</tr>
<tr>
<td>2</td>
<td>0/11190</td>
<td>0/33222</td>
<td>0/7024</td>
</tr>
<tr>
<td>3</td>
<td>0/11388</td>
<td>0/3490</td>
<td>0/8082</td>
</tr>
<tr>
<td>4</td>
<td>0/11298</td>
<td>0/34613</td>
<td>0/7540</td>
</tr>
</tbody>
</table>

در محاسبه \(\gamma\) و \(\gamma^+\) کمک توانایی توان عیانه و هر چهار \(\gamma, \gamma^+\) به ترتیب به روش پیشنهادی به عنوان پارامتر بیان شده با \(F^2\) به کار می‌رود (11).
جدول 5- سم‌های مصرفی کننده در قابلیت حل شدن تجزیه فلوئورید منیزیم در ۲۵°C

<table>
<thead>
<tr>
<th>شرایط</th>
<th>C (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/191</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>1/176</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>1/130</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>1/252</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>1/610</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>1/984</td>
<td>10^{-10}</td>
</tr>
</tbody>
</table>

قابلیت حل شدن تجزیه (S_M):
قابلیت حل شدن به فرض اینه آل برونز مخلوط (S_B):
قابلیت حل شدن به فرض جامع برونز قانون

توسعه یافته دبای- هوکر (Sn, H):
(Sn, H) به دست آمده از محاسبه دو گروه زوج‌های
Mg^{2+}/F
گلن‌دهی تجزیه (X):

*در منابعی چندبرای Ksp فلوئورید منیزیم در ۲۵°C مقداری متغیر است از 4×۱۰^{-10} تا 4×۱۰^{-12} که جانشین
از آنها در محاسبات ذیل استفاده شد. به مقادیر سیال ریزگری برای میزان زوج شدن برونز تدوین
در نظر گرفته شد.***

در محلول سیلور شده فلوئورید منیزیم، تناقا گرشهای
Mg^{2+}/F
در نظر گرفته شده است.
شکل 1: تعیین ثابتی \(\lambda_{\text{max}} \) برای کمپلکس "مانیزم-اریوکرم بلاک".

\[\lambda = KA + B \]

\[K = 1.3137 \quad B = -0.9901 \]

شکل 2: منحنی کالیبراسیون دستگاه UV-Vis مدل A-160 برای اندازه‌گیری قیمت کمپلکس "مانیزم-اریوکرم بلاک".

\[A = 0.1400/\text{DIV.} \quad A = 0.7000 \]
References:

1- Debye, P. and E. Huckel; Phys. z. 1932, 24, 305.
7- H. Agha and Z. Bayat; unpublished data.
10- CRC Handbook of Chemistry and Physics; 72nd ed. David, R. Lide; 1981, T.
12- Masterton/ Hurley; Chemistry; 1989, P. 533.