متالعه تجمع بونی در محلول سیر شده فلوئورید منزیم در ۲۵°C

دکتر حسین آقایی - دکتری بیات
گروه شیمی - دانشکده علوم - دانشگاه تربیت معلم

چکیده:
در این پژوهش با استفاده از دو روش، یکی تجربه حجم‌های معلولی از محلول مسیر شده و نیاز به نمک بار جای گرفته و دیگری نورسنجی در گستره UV - Vis، موضوع تبلیغات حل شدنی فلوروتید منزیم در آب در ۲۵°C مورد ارزیابی قرار گرفته است. از مقایسه تبلیغات حل شدنی تغییر و بیماری پاکی به رای آن، از تاثیر حاصل بر حل شدنی‌های ترموپتیکی قابل تخمین است. این اثرات قدامی تغییر در محلول سیر شده و چنان چه در تغییر در محلول سیر شده را که با نماد x معرفی شده است، MgF²⁺ و F⁻ در محلول سیر شده آن در ۲۵°C می‌باشد. در این رابطه بیشترین مقدار تحقیق در محلول سیر شده آن در ۲۵°C می‌باشد. در این رابطه بیشترین مقدار T لاگر فاکتور با نماد x معرفی شده است.

METATHESIS OF BONDIING IN SOFT MEDIUM SOLUTIONS OF FLUORIDE AND MANGANESE IN 25°C

Dr. Hossein Aghaei - Ph.D.
Metal Chemistry Group - Faculty of Science - Tarbiat Modarres University

Abstract:
In this study, two methods were used. One was an experimental method and the other was a photometric method in the UV-Vis range. The solutions of fluoride and manganese were prepared and their solubility was measured in 25°C water. It was found that the solubility of fluoride and manganese changed significantly in the solution. The solubility of fluoride and manganese was measured using the equation:

\[\log Z = - \frac{0.509 Z^2 V^2}{1+0.328a V} \]

The results show that the solubility of fluoride and manganese decreases with increasing temperature. The results were consistent with previous studies.
داشتهای آن، روز صفر تنظیم شده.

در شرایط یکسانی، یک عدد نمونه‌های 100 م‌محلول سیره فلورورید منزیم در حضور

یک بیومرک بلاک T (Merck) و به دیده نگاه می‌گردد.

سیره خواص شد و در جزئیات آنها با استفاده از کالیبراسیون به دست آمده تعیین گردید.

سیره مولکول سیره آزمایش و آزمایش تهیه 10/1 در ارتقاء بی‌بی تهیه موفقیت آوری کرده مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره

در سیره شد و با درجه خلاصه

 sewer بالای

کلید آماده و امکان کرایه تهیه‌ای بافر/1 در ارتقاء بی‌بی تهیه موفقیت آوری کرده مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره

در سیره شد و با درجه خلاصه

 sewer بالا.

دستگاه مورد استفاده:

از دستگاه UV-Vis مدل A 160 شیمیا دوز در این پژوهش استفاده شده است. دقیقاً برای این پژوهش مناسب است.

روش:

برای تعیین قابلیت حل شدن فلورورید منزیم در 0.25 M

محلول سیره شد و به مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره

که با 5 معرفی می‌شود، با استفاده از میکرو گاف (1) و (2) عبارت است

\[\frac{1}{2} \times 10^{-3} \text{ mol L}^{-1} \]

همگاه زیادی کننده فنی در محصول سیره و

ضرفظ شود (محصول ایده آل فری در کمک مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره مولکول سیره

ظرفیت باید حساس شدن آن، از روی حساسیت

کالیبراسیون خلاصه

\[\sqrt{K_{sp}/4} \]

\[S_D = \frac{3}{16} \times 10^{-3} M \]

سیلکس منزیم - از بیومرک بلاک T در حوالی 0.5 nm ماکسیمم است.

(1) کالیبراسیون (شکل 2) منزیم - از بیومرک بلاک T با غلظت‌های 2/0/30/0/2/0/5 ppm

نسبت به یون منزیم از محلول

\[\text{ppm/UV} \]

استاندارد 1 سولفات منزیم در حضور پدیده معرف تهیه و

بیار آنها به سیلکس دستگاه UV-Vis

کالیبراسیون (شکل 2) از نتایج آنها نتیجه گیری می‌گردد.

(2) از خواندن جذب نمونه‌های مورد آزمایش، با اجرای داده‌های یک توانه
گیبس استاندارد وابسته به آن را محاسبه نمود. از این راه مقدار

\[\Delta G^\circ = -RT \ln K_p \]

به دست می‌آید. با توجه به آن

\[\Delta G^\circ = -8 \times 7314 JK^{-1} mol^{-1} \times 298K \times \ln(719/4) \]

= -14/952 kJ mol^{-1} \]

به شکل برای محلول سیرهای مایع مقدار \\سیکس کیک به دو سطحی
\باید چنین حاصل از دور چهارم این محاسبه دوی نیک
کمک دهنده کامپیوتری و مقدار \\سیکس کیک به دو
دور بر اساس همان برای کامپیوتری، می‌توان فعالیت
می‌تواند در آن

\[\text{مورد توجه است و برای مطالعه آن از تکنیک‌های مختلی استفاده} \]

\[\text{می‌شود (۱۷).} \]

جدول ۱: داده‌های ترمودینامیکی لازم در C ۵ در برابر حساسیت سایر حاضرش پرندormی فلورورید کارتری (10)\]

<table>
<thead>
<tr>
<th>(\Delta G^\circ / kJ mol^{-1})</th>
<th>(S / JK^{-1} mol^{-1})</th>
<th>(\Delta H^\circ / kJ mol^{-1})</th>
<th>(\text{گروه})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-554/8 (^1)</td>
<td>-138/1 (^2)</td>
<td>-496/85 (^1)</td>
<td>(\text{Mg}^{2+}(aq))</td>
</tr>
<tr>
<td>-278/79 (^1)</td>
<td>-138 (^2)</td>
<td>-232/63 (^2)</td>
<td>(\text{F}^{-}(aq))</td>
</tr>
<tr>
<td>-1048/0 (^2)</td>
<td>-58/2 (^2)</td>
<td>-1102/0 (^2)</td>
<td>(\text{MgF}_2(s))</td>
</tr>
</tbody>
</table>

جدول ۲: قابلیت حل شدن فلورورید کارتری در C ۵ به روش بی‌خخر محلول سیر شده.

<table>
<thead>
<tr>
<th>قابلیت حل شدن بر حسب گرم بر</th>
<th>شماره دور</th>
<th>لیتر محلول سیر شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/142 (^1)</td>
<td>1 (^1)</td>
<td></td>
</tr>
<tr>
<td>0/142 (^2)</td>
<td>2 (^2)</td>
<td></td>
</tr>
<tr>
<td>0/141 (^2)</td>
<td>3 (^2)</td>
<td></td>
</tr>
<tr>
<td>0/140 (^2)</td>
<td>4 (^2)</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{نتیجه هر دور جهاد میانگین سه آزمایش مستقل است. میانگین به دست آمده با مقادیر گزارش شده در منابع دیگر سازگاری خوبی دارد (17).} \]

\[.0/0.0142 + 0/0.0142 = 0/0.0142 \]

\[.0/0.0142 + 0/0.0142 = 0/0.0142 \]
جدول ۲: نتایج حاصل از روش ورنستیل در مورد محلول سیر شده فلوئورید مسیزیم در ۲۵°C.

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>میانگین جدید</th>
<th>مورد آزمایش</th>
<th>خوانده شده</th>
<th>غلظت نمونه</th>
<th>غلظت ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۳/۰۹۹</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۰۹۴</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۳</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۰۹۳</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۴</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۰۹۶</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۵</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۰۹۲</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
<tr>
<td>۶</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
<td>۱/۰۹۰</td>
<td>۱/۱۸۷</td>
<td>۱/۱۸۷</td>
</tr>
</tbody>
</table>

\(132/15 \pm 0/2 \text{mgL}^{-1}\)

جواب حاصل با مقادیر گزارش شده در مراجع دیگر سازگاری خوبی دارد.

جدول ۴: نتایج ۴ دور محاسبه برای تخمین روز شدن پودر \(\text{MgF}_2\) در محلول سیر شده فلوئورید مسیزیم در

<table>
<thead>
<tr>
<th>دور محاسبه</th>
<th>(\gamma)</th>
<th>(\gamma^+)</th>
<th>(10^2 \times \gamma)</th>
<th>قابل حساب (\text{F}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۱۰۲۸۸</td>
<td>۰/۱۲۸۴</td>
<td>۰/۱۳۸۵</td>
<td>۰/۶۰۷۸۳</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۱۱۸۰</td>
<td>۰/۱۲۸۸</td>
<td>۰/۱۲۸۴</td>
<td>۰/۶۰۷۸۵</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۱۱۸۸</td>
<td>۰/۱۲۸۸</td>
<td>۰/۱۲۸۴</td>
<td>۰/۶۰۷۸۵</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۱۱۹۰</td>
<td>۰/۱۲۸۸</td>
<td>۰/۱۲۸۴</td>
<td>۰/۶۰۷۸۵</td>
</tr>
</tbody>
</table>

\(\text{F}^2\) در محاسبه \(\text{F}^2\) روز، این کمک، توان تسرع یافته دیابی - هولن.\(\text{MgF}_2\) و \(\text{F}^2\) \(\text{KF}^2\) به ترتیب برای پودر پودر \(\text{F}^2\) به عنوان پارامتر اندام به دست آمده.

\((11)\)
شکل 1: تعیین تجهیزه \(\lambda_{\text{max}} \) برای کمپلکس "منیزیم-اریپروم بیلارک" توسط روش \(y = k \cdot x + b \)

\[k = 1.3137 \quad b = -0.9441 \]
References:
1. Delbye, P. and E. Huckel; Phys. z. 1932, 24, 305.
7. H. Aghaie and Z. Bayat; unpublished data.
10. CRC Handbook of Chemistry and Physics; 72nd, ed. David, R. Lide; 1991, T.