مطالعه تجمع یونی در محلول آبی هیدروکسید کلسیم
دکتر حسن آقانی - علی ابراهیمی
گروه شیمی - دانشگاه علوم - دانشگاه تبریز معلم تهران

چکیده
محلول‌های آبی الکترولیت‌ها غالباً به دلیل بر همکنش‌های بین یون‌ها از حالت‌های آب آل دور هستند. از دید الکترودی و اختراع از حالت ایده آل در محلول‌های نسبتاً تری هیدروکسید کلسیم را می‌توان به‌طور آزمایشی فاکتور نیزیکی (ضریب فعالیت محاسبه شده براساس معادله توسه‌ی یافته‌باید - هوکل) و فاکتور شیمیایی (جمع بینی) نسبت داد. اثرهای فاکتور نیزیکی به وسیله قوانین گزارش یافته‌باید - هوکل برآورد می‌شوید. در مقابل فاکتور شیمیایی می‌توان از راه‌هایی که به تعیین فعالیت بیونه متوجه ومتمایزت نتایج حاصل از آنها با فعالیتی که از قانون توسه‌باید ارائه - هوکل به دست می‌آید به‌طور مطلوبی درآمده و در این کار با استفاده از حساس‌پرداز حل‌یافته ترکیب‌های الکترولیتی به‌طور کلی، فاکتور شیمیایی به‌طور هم‌ارجامیده می‌باشد. به‌طوری‌که، به کار گرفت قانون توسه‌ی یافته‌باید - هوکل و پیک‌ها به‌طور مشابه دیده شده اما ارائه‌ها فاکتور شیمیایی برآورد و قابلیت‌های آنها را به‌طور کامل نشان می‌دهد. در این مطالعه، برآورد طبق قوانین توسه‌ی یافته‌باید - هوکل و پیک‌ها به‌طور مشابه، ارائه‌ها فاکتور شیمیایی به‌طور کلی، فاکتور شیمیایی به‌طور هم‌ارجامیده می‌باشد. به‌طوری‌که، به کار گرفت قانون توسه‌ی یافته‌باید - هوکل و پیک‌ها به‌طور مشابه دیده شده اما ارائه‌ها فاکتور شیمیایی برآورد و قابلیت‌های آنها را به‌طور کامل نشان می‌دهد.

1 - مقدمه
در شیمی، مطالعه محلول‌های آبی الکترولیت‌ها از جاییکا، ریزتنا، برخورد است. دلیل آن هم حضور گستره‌ای آب در فرآیندهای شیمیایی کوارتز و سادگی ترکیب آل‌های برون‌دار است.
نظریه بیابی - هموک انحراف قابل توجهی دارد. این انحراف را می‌توان به اثرات شیمیایی که یون‌ها بر هم دارند نسبت داد. منظور از انحراف شیمیایی در این مقاله تأثیر متقابل یون‌ها بر هم از نوع آلدئید و تقییت پدیده و غیره است. که این به همکنش‌ها به فضای پروتئین کولنی ممکن است به تجمع یون‌های بیابی (1)

همسایه به حساب اوردن پیدایه تجمع یونی با یک مثال در شکل 1 نشان داده شده است. در این شکل، منحنی ضریب فعالیت متوسط یونی به شکل \(\frac{1}{a_i} \) و بر حسب غلظت برای یک الکترولیت (2) براساس مساحتی نسبت مولی \(\frac{1}{mol \cdot L^{-1}} \) و رسم شده است (4) (منحنی بالایی). منحنی پایینی نمودار متابولیک را که در آن تعداد شیمیایی مربوط به زوج شدن یون‌ها در نظر گرفته شده است می‌شود. از نظریه خود در منحنی برای غلظت حدی صفر، ضریب فعالیت متوسط یونی با 1/100 به دست می‌آید. در شکل همچنین ضریب فعالیت متوسط یونی تجربی به وسیله دایره‌های توبنداشته شده است. همانطور که دیده می‌شود، نظریه بیابی - هوکل، تنها در ویاند انحراف از حالت ایستاده آلمحلول الکترولیتهای در مولولویی بسیار رقیق را به خوبی پیشگویی کند. اما به حساب اوردن زوج شدن یون‌ها، و تعداد شیمیایی مربوط به آنها، باهت به هم نمیدیکه شدن نتایج تجربی و محاسبه ای‌یا می‌شود.

روش‌های متالیいた برای مطالعه پیش‌بینی تجمع یونی وجود دارد. یکی روش کلاسیکی انتقال واریش‌های الکتریکی محلول الکترولیت است (5) و (6). روش دیگر رسوب سنگی است (7). همچنین روشهای ترمودینامیکی متداول برای مطالعه این پدیده‌های تجربی استفاده می‌گردد (3). به طور قابل توجه، از پنالسیونترز و نورسنگی نیز استفاده می‌شود (4).

به‌طور کلی، این روش‌ها روش‌هایی می‌باشند که می‌تواند مطالعه انرژی های الکتریکی در میان یون‌های متغیر باشد. این روش‌ها به ترتیب تحقیقات و مطالعات ای در هر دو ابعاد یا در ابعاد 3D به‌طور کلی، جهت بررسی پدیده‌های الکتریکی در میان یون‌های متغیر استفاده می‌شود (12). اخیراً تکنیک‌های استکروسمکی و پوزیتیو قابلیت‌هایی در پیش دیده است که می‌تواند مطالعه قرار گیرد (13).

\[K_{sp} = 4S^3 \] (1)
نتایج و بحث

قابلیت حل شدن S

هیدروکسید کلسیم در محیط سیلی و آنرا

سنجش محلول سیر شده آن در 50°C به کمک استاد هیدروکسید کلسیم

10 مولار تهیه شده. از تطبیق مولکول محصول کارخانه مکرط طی شش

اندازه‌گیری مستقیم تعیین شد و با واحد آن مقصدار

1 mol L−1 (0.0001 ± 0.00001) به دست آمد. از سویی نیز

حاصضر خلاصی کلسیم هیدروکسید کلسیم در آب در

25 برای 26-30/5 است. [1] این که بتواند محصول سیر شده

هیدروکسید کلسیم را ایجاد آن فرصت کمی (ریسپتی) در محصول

نتیجه گیری کنیم که بعضی محلول‌های حاصر در اثر هیدروکسید

سیر شده که توانایی تعیین یک برای آن بر نیاز ماده (1) و با استفاده از قابلیت حل

شدن اندازه گیری شده به دست خواهد آمد. عبارت است از

K_{SP} = 4(0.0203 ± 0.0001)²

= 3.35 ± 0.05 × 10⁻⁶

این جواب با مقدار حاصضر خلاصی ترموژینامیکی ارزیابی می‌شود.

تلاش قابل ملاحظه‌ای دارد تا برای آن است. اگر گروه

اختلاف شیمیایی را تشخیص دهند از خطاهای تجزیه باید. بله، به طور خودمانی

ناشی از رنگ‌های غیر آبی، آل بیوندها از جنبه‌های مختلف در محلول

الکترولیت است. برای تشخیص این

آکناگ اگر نیز بر پهنه‌های کوکی بین بیوپلاستیک (عکس تیوبیک) را

عامل انحراف از حالت آب محلول سیر شده هیدروکسید کلسیم

بدانیم، می‌توانیم نشان دهیم چگونه با استفاده از میزان توزیع دقیقه دیابی -

دوکل (ўکلی) (2) تجاری بیان و سپس نتایج حاصضر خلاصی

هیدروکسید کلسیم را با استفاده از معادله (2) حساب کنیم. نتیجه

این محاسبه، به شرح زیر به دست آمد

K_{SP} = 4(0.0203 ± 0.0001)²

= 9.81 ± 0.02 × 10⁻⁶

همانطور که گفته، می‌شود، هنوز این مقدار با حاصضر خلاصی

ترموژینامیکی تفاوت قابل ملاحظه‌ای دارد تا تا در بررسی بیش از دو برابر

آن است. برای این هنوز نتایج می‌توانیم یکان‌ترین نیزیکی (برمکش

کوکی بین بیوپلاستیک) عامل انحراف از حالت آب آن نیست، یک باعث می‌تواند

S

ولتربین هیدروکسید کلسیم در محلول سیر شده آن را

به میزان. از این نتایج قابلیت حل شدن تجویز کمی در این

یک درصد با نتایج بر اساس تعیین محلول ترموژینامیکی هیدروکسید کلسیم

که از داده‌های ترموژینامیکی به دست آمده می‌آمده که هر میلیولایه و کمک به اشتاق

آن دو با معادله (1) سازگار نیست. یکار، در هنگام تغییر محلول سیر شده

هیدروکسید کلسیم در آب دارای حالت اوایل آن نیست.

یک مدل نسبتی دقیق و نتایج دقیق قابل قبول آل است که

انحراف از حالت آب آل در این محلول را به نیروهای کولنی تنها

که بررسی می‌شود توانایی به دیابی - حاصل کوال تسونومی است. نتیجه

داد. در این شرایط اگر نکست تئوری دیابی حاصل از هیدروکسید

کلسیم (ўکلی) (3) یا با استفاده از داده تئوری دیابی -

دوکل هاوکیم کمی و با استفاده از آنها رابطه دقیقی بیشتر را

میان

S

و K_{SP} به دست آمده

K_{SP} = 488² (ўکلی)

(2)

با هم دیده که هر دو بر داده‌ای نزدیک توانایی حل شدن

تجویز را با دقت قدرت بالا کنی و نتیجه می‌دهد که اثری

نیزیکی به دست آمده تئوری تجویز که اثری

می‌تواند به دست آمده تئوری این احراز از حالت ایجاد آل نسبت. نتیجه

الهای فیزیکی (زوج آب زنده) زنده در این انحراف سهم می‌سازند. با

استفاده از یک سری محاسبات دواری به راحتی می‌توان سهم مربوط به

زوج آب زنده را اعلام نمود. محاسبه ضریب تئوری

₁P = ₁ (ўکلی

بوده - دوکل بیون به کمک معادله تئوری دیابی -

₁P ضریب تئوری بیون و ₁P ضریب تئوری بیون محلول می‌باشد. نتیجه بیونی

محلول عبارت است از

₁ = \frac{1}{2} \sum m_i z_i^2

(4)

بی بیون و \(m_i \) و \(z_i \)
از حاضر صرب حلالیت تروموئنامیک هیدروکسید کلسیم، در توسعه بافت به نسبت - هواکن و بیکسیری محاسباتی دویی به را می‌تواند کسی از اختلاف به شرح بالا، را که به بدن، تجمع نسبت داده می‌شود حساب کرد (نشن‌های زوج‌های بیانی را در نظر می‌گیریم). نتایج به آمده از این محاسبات در جدول 1 داده است.

| کلی (mol L⁻¹) | [Ca²⁺·OH⁻] (mol L⁻¹) | γₗ (٪) | γ₀ (٪) | یکه | شماره دور
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>5.02</td>
<td>0.4593</td>
<td>0.7983</td>
<td>0.0609</td>
<td>1</td>
</tr>
<tr>
<td>11.1</td>
<td>5.67</td>
<td>0.4812</td>
<td>0.8107</td>
<td>0.0509</td>
<td>2</td>
</tr>
<tr>
<td>11.4</td>
<td>5.77</td>
<td>0.4843</td>
<td>0.8125</td>
<td>0.0496</td>
<td>3</td>
</tr>
<tr>
<td>11.4</td>
<td>5.78</td>
<td>0.4848</td>
<td>0.8127</td>
<td>0.0494</td>
<td>4</td>
</tr>
<tr>
<td>11.4</td>
<td>5.78</td>
<td>0.4848</td>
<td>0.8128</td>
<td>0.0493</td>
<td>5</td>
</tr>
</tbody>
</table>

جدول 2: نتایج به دست آمده از محاسبات دوری برای ضایعات فعالیت

<table>
<thead>
<tr>
<th>ضایعات</th>
<th>جدول 1</th>
<th>جدول 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>25</td>
<td>56</td>
</tr>
</tbody>
</table>

JK 5 - شماره‌های 1 و 2 - بهار و تابستان 92
نشره علوم دانشگاه تربیت معلم

یکی از آن را به فاکتور شیمیائی (جهت شدن بیانی) نسبت داد. به عبارت دیگر زوج شدن کاتیون‌های Ca²⁺ و آنیون‌های OH⁻ نیز در این اختلاف مهم هستند.

زوج شدن بیانی، باعث تغییر خنثی گونه‌های بیانی موجود در محلول می‌شود و به نظر می‌آید آن رفتار محلول منتفی از موادی که اگر زوج شدن بیانی در میان نباشد، با آن گردیده‌های محلولی زیکی از بین آمده‌اند زوج شدن بیانی با هم از این موضوع امکان بیکسیری محاسباتی دوری ضایعات فعالیت را فراهم می‌کند. با استفاده از تقابلیت حلال شدن هیدروکسید کلسیم در آب از بریستکت گونه‌گون بیانی در محلول حاصل می‌شود و 56٪ دیگر به به یک حلال می‌شود در جدول 1 (٪) آشکار می‌شود که 19٪ از کل بیانی به صورت زوج‌های بیانی می‌باشد. از محاسبات دیگر، آشکار می‌شود که 54٪.
نتیجه گیری

پدیده تجمیع بونی در محلول آبی الکترولیتهای قوی دارای اهمیت. زیان آن است هنگام مطالعه اینگونه محلول‌ها باشد به آن توجه نمود.

افزایش قیمت بین بونی در محلول الکترولیتهای صرفنظر شود (محلول آبی آل فلز شد) نتیجه گیری‌های نادری در مطالعات تجربی محلول آبی الکترولیتهای بین بونی می‌آید. به این‌ننی مال اگر حاصل‌ضرب بالاتری هیدروکسید کلسیم را با استفاده از تابیت حلال شدن آن، بدون توجه به پریمکنش‌های بین بونی محاسبه کنیم، نتیجه حاصل تفکیت قابل ملاحظه‌ای بنا حاصل‌ضرب حلالیت K_{sp} = 5.7 	imes 10^{-5} (ترومودینامیکی) و K_{sp} = 3.35 	imes 10^{-5} (محاسبه ای) همچنین اگر کلسیم با استفاده از حاصل‌ضرب بالاتری ترومودینامیکی، بدون توجه به پریمکنش‌های بین بونی محاسبه کنیم نتیجه حاصل تفکیت قابل ملاحظه‌ای بنا تابیت حلال شدن بینی تجربی دارد.

S = 0.2032 + 0.0001
S = 0.0113

کم در این کار سایر کرده‌ایم از راه pH متر تیپ پدیده تجمیع بونی در محلول الکترولیتهای قوی دارای اهمیت. با تغییر pH محلول و با استفاده از رابطه آن با فعالیت بین هیدروکسید به راحتی می‌توان فعالیت بین هیدروکسید در محلول را محاسبه نمود. از طرف دیگر، با تغییر تغییر فعالیت بین کلسیم و یا تغییر آن با استفاده از یک الکترود اندازه‌گیری می‌توان تابیت حاصل‌ضرب بالاتری ترومودینامیکی کلسیم مطالعه را حساب کرد.

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
</table>

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |

| a |
Ion association in saturated solution of calcium hydroxide at 25°C

H. Aghai, A. Ebrahimi

Department of chemistry, Tarbeyat Moallem University, Tehran, IRAN

Abstract

Since long, many of researchers have paid attention to the study of the electrolyte solution's behaviour. About 1887, while the electrolyte dissociation theory was developed, it was thought that the mentioned solutions behave as ideal gases. It soon became apparent that these solutions are far from ideal even at very low concentrations.

In 1923, the Debye - Hückel theory (That is based on the classical electrostatic laws) was formulated. This theory attributes deviation from ideality to long-range physical forces of interionic interactions.

Indeed, considered from an electrostatic viewpoint, the nonideal behavior of electrolyte solutions may be interpreted as due partly to physical and partly to chemical factors. Therefore, deviation from ideality is due to the combined effects of a physical factor (activity coefficients) and a chemical factor (ion pairing) and these factors do predict a concordant fit of experimental data.

Comparison of the thermodynamic solubility product of calcium hydroxide at 25°C and its observed solubility product showed a great difference which could not justified by Debye - Hückel theory. However, this difference was satisfactorily explained using a combination of Debye - Hückel and ion association theories.