The origin of stylolites in the Ilam Formation (Lorestan Province) SE Iran
Parsi S.

Depr. of Geology / Faculty of Sciences Teachers Training University
Tehran IRAN

I. Summary

The stylolites of the Ilam Formation in the Lorestan Province have been investigated. The aim of the study is to distinguish diagenetic stylolites from tectonic ones in this formation. Field observation clearly shows two kinks of stylolite. The interpretation of the constructed diagrams indicated orientationally two groups of stylolite. The first group lies parallel to the strike of the bedding plane with different dip directions, which is nearly horizontal is the diagenetic one.

II. General Setting

The Ilam Formation is part of the Upper Cretaceous carbonate sequence deposited on the northern and southern and southern and part of the study area (Zagros Basin) (Fig.1). Basin subsidence and sediment accumulation began during the Lias.

III. Aim of study

Because of abundance of stylolites in the rocks of the study area, this investigation was conducted to distinguish symmetrical relationship between macroscopic dominant structures and the above

Fig. 1. 1) Caspian Sea, 2) Tehran, 3) Persian Gulf
4) Ahvaz, 5) Mashad, 6) Study area.
The origin of stylolites ... WINTER 1992

The mentioned stylolites. In other words, the aim of study is to differentiate the tectonic stylolites from the diagenetic one.

IV. General Concept

Stylolites are very irregular discontinuities that show alternating peaks and hollows that correspond to each other on the two surfaces (Fig. 1). In cross section their appearance

![Diagram of stylolites](image)

2. Examples of stylolites. (a) Symmetrical stylolites. (b) Asymmetrical stylolites, which can lead to a fracture supplementary (c).

Stylolites are similar to the curves produced by some recording instruments (e.g. seismographs). Despite this, conical and cylindrical stylolites can be distinguished by their appearance. The lateral dimension of conical stylolites range from a few millimeters to few centimeters, while the columns of cylindrical stylolites range from few millimeters or centimeters up to several centimeters.

Stylolites are therefore, extremely irregular and non-planar. In some places, the irregular joint surfaces can be coated with a thin film of clay or a light coating of clay residues or insoluble iron oxides. Stylolites are often found in carbonate rocks and occasionally in sandstones.

Stylolites form in rocks, under the influence of compressive stress that force together rocks on either sides of a discontinuity. The two sides interpenetrate as a result of dissolution of the rock matrix near the boundary between them.

Shaubs's theories (1939, 1949, 1955), which suggested that stylolites form before rock consolidation, are no longer regarded as valid. Nevertheless, numerous authors (Blake and Roy, 1949; Dunnington, 1945; Park and Schot, 1968 a and b; Rigby, 1953; Stockdale, 1945) considered that stylolites form after lithification but during diagenesis.

More recently, stylolites, whose origin is certainly tectonic, have been described (Arthaued and Mattaure, 1969; Beiersdorf, 1969; Jarozewski, 1969; Wagner 1967). Moreover, Arthaued and Mattaure (1972), studying some stylolites parallel to stratification, showed clearly that they were formed during a stage of tectonic activity.

Sylindrical stylolites could be diagenetic in origin, while tectonic stylolites seem more likely to be conical type (Fig. 3).

In stylolites, the peaks and columns are always parallel to the shortening direction. The joints with symmetrical and asymmetrical stylolites are
perpendicular and oblique to the shortening direction, respectively. For this reason, on a given surface, symmetrical stylolites involve greater dissolution of the rock than asymmetrical stylolites. Depending on spatial arrangement of pre-existing discontinuities or fissures, every kind of stylolites is possible, from symmetrical to asymmetrical.

V. Observations and analysis

As already mentioned, one of the most important rock unit in the study area is the Ilam Formation. Stratigraphically the Formation lies between Sarvak and Gurpi formations (Upper Cretaceous). Lithologically it consists of well bedded gray argilaceous limestone with a thickness of about 190 m.

Field observations clearly show two kinds of stylolites. Some of them are parallel in orientation to the bedding planes of the Ilam Formation (Fig. 4) and the others are oblique
According to a structural and geometrical analysis of the rocks in the study area, numerous stylolites and meso folds of the Ilam Formation, in the area were constructed and stereograms were drawn (S. Parsi 1989). A correlation between stereogram of Fig. 7 with Fig. 8 shows that the first group of stylolites are parallel to the bedding planes with different dip directions (60°-80°). These are tectonic stylolites in symmetry, because they are perpendicular to the A-axis, which represents the greatest principal stress direction. That means that the shortening is occurred in the NE-SW direction.

The existence of extension fractures perpendicular to B-axis of the folds in the area confirmed the tectonic character of the mentioned stylolites.

The polepoint of the second group, which lies in the middle part of the stereogram means that
Fig. 6. Stylolite to the bedding planes.

Fig. 7. Point diagram of all stylolite surfaces in the Ilam Formation.

they are nearly horizontal and could be categorized as diagenetic stylolites.

According to the results of the stereogram analysis it appears that both tectonic and diagenetic stylolites are present in the Ilam Formation.
The origin of stylolites ... WINTER 1992

ACKNOWLEDGEMENT

Thanks to my dear colleagues Dr. Y. LASEMI and Dr. S. AMINI for their critical review of the script and constructive remarks.

REFERENCES CITED

