Thermodynamic Views of the Principle of Le Chatelier

Aghai Hossein
Department of Chemistry, Faculty of Science, Teacher Training University, Tehran - IRAN.

Abstract

The effect of temperature change on a chemical equilibrium is discussed on the basis of both Le Chatelier's principle and thermodynamics. Furthermore, some misleading ideas that may arise from using the standard Gibbs free energy change, \(\Delta G^* \), to predict how the chemical equilibria are shifted by temperature are discussed.

Introduction

Some authors occasionally are not careful about the basic difference between free energy change, \(\Delta G \), of a reaction and the standard free energy change, \(\Delta G^* \), for the reaction under consideration, and they sometimes use \(\Delta G^* \) instead of \(\Delta G \) to predict the direction of spontaneous changes. It is obvious that, at constant temperature and pressure, the spontaneity of a given reaction could be determined by the sign of \(\Delta G \) only and not \(\Delta G^* \). Indeed, \(\Delta G^* \) values are only used to determine the values of thermodynamic equilibrium constants at constant temperature and pressure.

Furthermore, in order to predict how a chemical equilibrium is shifted when the temperature is increased we should use \(\Delta G^*/T \), not just \(\Delta G^* \), otherwise, incorrect results which are not in accordance with Le Chatelier's principle may be obtained.

In this paper, these points are discussed thermodynamically.

Discussion

Reviewing some general texts about chemical thermodynamics, it is seen that \(\Delta G^* \) is sometimes used instead of \(\Delta G \) in order to predict the reaction spontaneity \((1,2,3,4)\). It can be shown that using \(\Delta G^* \) in this way, may lead to misleading results. Indeed \(\Delta G \) which represents the Gibbs free energy change of a reaction at any concentration of
- \Delta G^* = RT \ln K_{th} \tag{2}

where K_{th} is called the thermodynamic equilibrium constant of the reaction,

$$K_{th} = \left(\frac{a_C^c \cdot a_D^d}{a_A^a \cdot a_B^b} \right)$$ \tag{3}

One may apparently conclude from equation (2) that both K_{th} and $- \Delta G^*$ change in the same direction; For example, any factor that could increase $- \Delta G^*$ would increase K_{th} also, or vice versa. This certainly leads to a misleading conclusion (6,7,8). In order to illustrate this statement, we consider a reaction with $\Delta H^* > 0$ and $\Delta S^* < 0$ which both are temperature independent. At these conditions, an increase in temperature will also increase the value of ΔG^* (or decrease the value of $- \Delta G^*$).

$$\left(\frac{\partial \Delta G^*}{\partial T} \right)_p = -\Delta S^*$$

Considering this result, one may apparently conclude that K_{th} should decrease as ΔG^* increases, but this conclusion is exactly a contradiction with Le Chatelier's principle. According to the Le Chatelier's principle, in the case of an endothermic reaction, the value of K_{th} will increase as temperature is raised. Certainly, the prediction which is based on the Le Chatelier's principle is correct, so to demonstrate this apparent contradiction we should carefully look at equation (2). As it can be seen, the variation of $- \Delta G^*$ is
related to the variation of both T and in $\ln K_{th}$. Therefore, a slight rearrangement of equation (2) gives

$$\frac{-\Delta G^*}{RT} = \ln K_{th} \quad (4)$$

or

$$\frac{-\Delta H^*}{RT} + \frac{\Delta S^*}{R} = \ln K_{th} \quad (5)$$

Equations (2-5) show clearly that if $\Delta H^* > 0$ and $\Delta S^* < 0$, then $-\frac{\Delta G^*}{T}$ will increase as temperature is raised and, therefore, $\ln K_{th}$ (and K_{th} thereby) also will increase with temperature.

Eventhough the value of $-\Delta G^*$ under these conditions is decreased as temperature is raised, but on the contrary, the value of $\frac{\Delta G^*}{T}$ is increased when temperature goes up, which implies that the value of equilibrium constant, K_{th}, increases by increasing temperature:

$$-\left(\frac{\partial (\Delta G^*/T)}{\partial T}\right)_p = \frac{\Delta H^*}{T^2}$$

Therefore, in order to predict how the chemical equilibria are shifted by temperature, we should use $-\frac{\Delta G^*}{T}$, not just $-\Delta G^*$ (9).

As an additional support to our comment, one can refer to the following equations (10).

$$\frac{-\Delta G^*}{T} = \Delta S^*_{total} \quad (6)$$

$$\frac{-\Delta G}{T} = \Delta S_{total}$$

(7)

Since, on the basis of the second law of thermodynamics which states the spontaneous processes occur in direction of increasing total entropy, the quantities $-\frac{\Delta G}{T}$ and $-\frac{\Delta G^*}{T}$ are appropriate to predict the spontaneous direction of the chemical reactions and how the chemical equilibria are shifted by temperature, respectively.

References

7- Berry, R.S.; Rice, S.A; Ross, J. Physical Chemistry; Wiley: New York P 650 (1980).

