CORPUSCLES of STANNIUS

عدد

در مارماهی (EEL)

شهمانو عربان

میوه علوم طبیعی دانشگاه سپاهان اقلیم ایران

در طول حیات یک نوع مارماهی (EEL) و گونه اروپایی آن (Anguilla anguilla L) مهاجرت مهمی رخ می‌دهد. تخم‌گذاری این حیوان‌های در دریای سارگاسو (Sargasso sea) در غرب اقیانوس اطلس انجام می‌گیرد. لاروها سپس مهاجرت اقیانوسی خود را به طرف سواحل اروپا و غرب آفریقا آغاز می‌کنند. آنها در این نواحی مرحله دگرپی (Metamorphosis) خود را انجام می‌دهند و به صورت مارماهی بالغ به نام مارماهی زرد (Yellow eel) در دریای آمریکا ماهی‌ها زرد به تدریج به آب‌های نازده و صورتی رودخانه‌ها و دریاچه‌ها وارد شده و حتی بعضی مواقع مسافتهای کوتاهی نیز می‌کنند، پس از آن در طی یک دوره تقاضا ۵ ساله این ماهی‌ها در آب‌های ساحلی حیاتی و با ورود خاصی تغذیه می‌کنند و به حالت حیوان مسن و کاملاً بالغ به نام مارماهی نقره‌ای (Silver eel) در می‌آیند. این حیوانات از نوع یورو هالین (Euryhaline) بوده و به راحتی می‌توانند خود را به محیط آب شیرین و ساختار مارماهی زرد می‌کنند.

مرحله بعدی زندگی آنها مهاجرت به طرف دریای سانتیاگو است. در این مرحله از زندگی آنها دست

از تغذیه مداوم بردشته و مهاجرت ۵۰۰ مایل خود را دوباره به طرف دریای سارگاسو آغاز

۳۳
دانستن حیات آورن مهاجرت ماراماهی‌ها همراه با مشخصات آنها و اینکه Euryhaline این حیات به مدت طولانی در خارج از آب زندگی کنند همواره مورد توجه فيژیولوژیستها و تاریخ طبیعی دانه‌ها بوده است. با تحقیقات و سیع در این مورد بایستی نتیجه‌ی رسمی‌سازی که خاصیت Adaptation به سیستم عضلانی Endocrine System آنها دارد. مطالعه عضلانی داخلی Endocrine glands (اعضا از ماهیان از این ماهیان در واقع اسرار نهفته‌ای از آن‌ها بر ماهی‌سازد. آزمایشات جراحی مختلف که روی عدد داخلی این Osmoregulation Corpuscles of Stannius Suprarenal glands ماهی‌های از تیلی و فوق‌کلاهی و هم‌چنین عدد پیوستی این حیات نشان می‌دهد که برداشتن این عدد به نه تنها براحتی انجام می‌گیرد بلکه باعث مرگ حیوان نیز نمی‌گردد. در سال 1839 استانیوس Stannius برای اولین بار یک جفت اجسام گرد کوچک مشابه بزرگ‌تر دارد که در محل
در مارامه‌های آب شوری، تنظیم الکتروولیته‌ها از طریق دو روش، افزایش‌کننده و سایر، توسط منیزیم و کلسیم انجام می‌شود. در افزایش‌کننده، مقدار الکتروولیته‌ها باعث افزایش مقدار کلسیم و منیزیم در سلول‌ها می‌شود. در سایر روش‌ها، مقدار الکتروولیته‌ها به مقدار مراقبه باقی می‌ماند.

در مارامه‌های آب شوری، تنظیم الکتروولیته‌ها از طریق دو روش، افزایش‌کننده و سایر، توسط منیزیم و کلسیم انجام می‌شود. در افزایش‌کننده، مقدار الکتروولیته‌ها باعث افزایش مقدار کلسیم و منیزیم در سلول‌ها می‌شود. در سایر روش‌ها، مقدار الکتروولیته‌ها به مقدار مراقبه باقی می‌ماند.

در مارامه‌های آب شوری، تنظیم الکتروولیته‌ها از طریق دو روش، افزایش‌کننده و سایر، توسط منیزیم و کلسیم انجام می‌شود. در افزایش‌کننده، مقدار الکتروولیته‌ها باعث افزایش مقدار کلسیم و منیزیم در سلول‌ها می‌شود. در سایر روش‌ها، مقدار الکتروولیته‌ها به مقدار مراقبه باقی می‌ماند.
<table>
<thead>
<tr>
<th></th>
<th>Sodium</th>
<th>Potassium</th>
<th>Chloride</th>
<th>Calcium</th>
<th>Magnesium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>milliequivalents per litre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>148.8 ± 0.39</td>
<td>2.3 ± 0.12</td>
<td>102.8 ± 2.43</td>
<td>2.6 ± 0.31</td>
<td>3.4 ± 0.12</td>
</tr>
<tr>
<td>Sham-operation for removal of corpuscles of Stannius</td>
<td>111.4 ± 2.61</td>
<td>2.6 ± 0.11</td>
<td>98.4 ± 2.06</td>
<td>2.2 ± 0.25</td>
<td>3.5 ± 0.10</td>
</tr>
<tr>
<td>Corpuscles of Stannius removed</td>
<td>123.5 ± 2.25*</td>
<td>3.5 ± 0.23*</td>
<td>99.0 ± 3.20</td>
<td>4.7 ± 0.53</td>
<td>3.0 ± 0.12</td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact (bladder catheterized)</td>
<td>16.7 ± 1.72</td>
<td>0.45 ± 0.10</td>
<td>1.85 ± 1.10</td>
<td>0.66 ± 0.11</td>
<td>0.27 ± 0.09</td>
</tr>
<tr>
<td>Sham-operation for removal of corpuscles of Stannius</td>
<td>17.5 ± 1.79</td>
<td>0.42 ± 0.08</td>
<td>3.63 ± 1.33</td>
<td>0.74 ± 0.07</td>
<td>0.35 ± 0.06</td>
</tr>
<tr>
<td>Corpuscles of Stannius removed</td>
<td>9.9 ± 1.19*</td>
<td>0.59 ± 0.21</td>
<td>1.5 ± 0.68*</td>
<td>3.7 ± 0.86*</td>
<td>0.40 ± 0.06*</td>
</tr>
</tbody>
</table>

کلرولیتیهای خون و ادرار در مارماهیهای آب شیرین باداشته نشد. سپس از عمل جراحی غددی C.S
<table>
<thead>
<tr>
<th></th>
<th>Sodium</th>
<th>Potassium</th>
<th>Chloride</th>
<th>Calcium</th>
<th>Magnesium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>170.0±3.0</td>
<td>3.5±0.24</td>
<td>152.4±4.0</td>
<td>3.73±0.26</td>
<td>5.2±0.2</td>
</tr>
<tr>
<td>Sham-operation for removal of corpuscles of Stannius</td>
<td>170.0±2.92</td>
<td>3.5±0.24</td>
<td>153.6±3.80</td>
<td>3.8±0.69</td>
<td>5.7±0.3</td>
</tr>
<tr>
<td>Corpuscles of Stannius removed</td>
<td>192.3±2.55</td>
<td>5.6±0.7</td>
<td>178.7±3.32</td>
<td>5.3±0.73</td>
<td>5.63±0.3</td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact (bladder catheterized)</td>
<td>65.6±3.32</td>
<td>1.62±0.32</td>
<td>122.9±4.44</td>
<td>9.3±0.63</td>
<td>29.5±2.9</td>
</tr>
<tr>
<td>Sham-operation for removal of corpuscles of Stannius</td>
<td>68.4±2.55</td>
<td>1.50±0.11</td>
<td>170.8±5.72</td>
<td>7.4±0.59</td>
<td>22.0±1.9</td>
</tr>
<tr>
<td>Corpuscles of Stannius removed</td>
<td>74.3±2.29</td>
<td>2.25±0.52</td>
<td>172.0±3.55</td>
<td>12.3±2.22</td>
<td>30.2±2.0</td>
</tr>
</tbody>
</table>

الکترولیت‌های خون و افزایش در مارماهی‌های آب شور با داشتن عدد C.S و پس از عمل جراحی عدد...
لولهای که به شریان وصل بودند تزریق شدند. در هر آزمایش یک ساعت پس از تزریق کلور سدیم

\[\text{SODIUM LOAD} \]

رو به راه گرفت و سپس در مدت زمان 10 ساعت به سرعت کاهش یافت. تغییرات غلظت پتاسیم، سدیم و کلسیم باعث افزایش ذخیره‌‌سازان در جلوگیری از این تغییرات شد.

\[\text{SODIUM and chloride (mEq/L)} \]

\[\text{Time (hours)} \]

\[\text{Potassium (mEq/L)} \]

(شکل 1) - منحنی تغییرات غلظت پتاسیم، سدیم و کلسیم باعث افزایش ذخیره‌‌سازان در حیوانات

C.S S بدون عدد

47
شکل ۲: منحنی تغییرات غلظت سدیم، کلسیم و نیترات در حیوانات کم‌سیال.
تغییرات کل در ادرار حیوانات فاقد C.S، و حیوانات شاهد نیز تقریباً از همان قاعده سدیم، پروتئین و کردن. اینطور که بنظر می‌رسد، در حیوانات با نگذشتن غده عکس عمل ترشحی آن‌ها نسبت به‌کل کلرور سدیم تزیین شده با کندی بسیار زیادتری از حیوانات شاهد انجام می‌یابد. از این‌رو با غلظت اضافی (B_A) کلرور سدیم از دست به‌دهد و نتوانند خود را با محیط جدید سازش بدهند. شکل ۲ نیز ۱/۵ ml/kg و بی‌مقدار ۱mEq/kg با غلظت آزمایشات فوق در مورد کلرور پتاسیم با غلظت انجام گرفت. در چهار گروه بدون غدد C.S یک تزیین کلرور پتاسیم کاهش فویالعاده و سریع در مقدار پتاسیم پلاسمای آن‌ها مشاهده شد (شکل A). درحالی که در حیوانات شاهد این تزیین باعث افزایش فوقالعاده پتاسیم در خون آن‌ها شد (شکل B).

تغییرات که در نتیجه داری‌ها در حیوانات مشاهده شده‌اند از دیدگاه (افزایش Hypokalaemic پتاسیم در ادرار) در این حیوانات مشاهده شده‌که تا مدت‌ها زیادی این حالات وجود داشت، درحالی که در حیوانات شاهد این عکس عمل بمراتب کنترل و کوانتوم‌های بود. نتیجه‌ای این آزمایش را به‌ین قطع توجه کرده تزیین کلرور پتاسیم به ماهیه‌ای فاقد غدد C.S که در حال عادی دارای ترشحات فرآیند از بین پتاسیم در ادرار خود بودند (Hyrokalaemic) باعث .

(B_A) تحریک افزایش ترشح پتاسیم در ادرار گردید (شکل ۲) آزمایشات نیز مظهر انجم شده که معلوم شود تزیینات داخل وریدی کلرور پتاسیم و کلرور سدیم در حیوانات بدون غدد C.S، عکس عمل به‌دست نیز کلرور یا کلرور بودند. به‌عبارت می‌گردد روش شده ناشی از (اگر نقش دارند) در نگهداری و یا ترشح الکترولیتهای ادرار نیز به‌هیچ‌mast است. تغییراتی که در غلظت پلاسمای مارماهی‌های آب‌شیرین و شور با برداشت غدد در C.S نیز این آزمایشات ملاحظه شد مؤید نتیجه آزمایشات قبلی دیگران بود (Butler 1969, 49).
شکل ۳- دیاکرام نشان‌دهنده تغییرات سه‌ی‌تعداد در حیوانات‌فائر عدد C. S وحیوانات شاهد
شکل ۴- دیاگرام نشان دهنده تغییرات کلر ادرار در حیوانات فاقد عدد C.S و حیوانات شاهد.
Potassium excretion rate

Time (hours)

Potassium excretion rate (% of control)

Time (hours)

B

Potassium Load

شکل 5 - منحنی تغییرات غلظت بناسم پلاسمابه حسب زمان در حیوانات فاقد عدد 8 و حیوانات شاهد.
عمده این عمل در مدت بیش از یک سه‌ماهه، کاهش الکترولیتهای مترشته از کلیده‌هاست و با دلیل آن‌ها یا به دلیل در متابولیسم استخوان و کلسیم م وجود در آن جستجوکرد. از طرفی دیگر برای توجیه عمل عدد C.S تصور کردن دادند بین و عدد C.S رابطه‌ای وجود دارد، Ultimobranchial bodies مترشته از C.S که در بودن عدد hypercalcaemic رخ (Chan, 1970) می‌دهد، ممکن است منتهی به تعیین‌ها و سعی در بازبینی فیزیولوژیکی عدد فوق گردد. در این صورت نشانه‌های بی‌رویتی نیز دخالت مستقیم خواهد داشت.

اینطوری انتظار می‌رود که با برداشت عدد C.S کلیه‌ها قادر به پرشج نوعی Ca+2 و Mg+2 نیستند که کلیه‌ها قادر به پرشج نوعی Ca+2 و Mg+2 N

منابع:

(Chon, 1970)

Pang et al, 1974

بعضی از دانشمندان، با آزمایشات متعدد توسط هورمون‌ها، به این نتیجه رسیده‌اند که عدد C.S مستقیماً در سنتر آلدوسترون (هورمونی که در خون این ماهیها وجود ندارد) دخالت دارد. زیرا ناهنجاری‌هایی که در پلاسمای الکترولیتهای خون در اثر فقدان این عدد به وجود می‌آید می‌توانند با تریک هورمون آلدوسترون و همچنین مواد استری‌رئید نگهدارنده S (Sodium - retaining steroid) دخالت دارند. این آزمایشات مبتینی بر این هستند که عدد C.S مواد استری‌رئید نگهدارنده

Zona - Adrenocortical hormones

در سنتز استروئیدها همیشه مورد تأیید متأسفن‌های آزمایشات مبتینی بر دخالت عدد C.S در سنتز استروئیدها همیشه مورد تأیید
نیکلی ایمن از این نظر به خواهانه وظایف این عددها را دارد. این عددها به ویژه در حالت‌هایی که جریان خون دارد موجب افزایش گل‌های C.S S به شکل مایع می‌شود (Renin-like hormones) (Sokabe et al, 1970) با توجه به این که در حالت‌هایی که جریان خون دارد موجب افزایش گل‌های C.S S به شکل مایع می‌شود (Renin-like hormones) (Sokabe et al, 1970)

با توجه به این که در حالت‌هایی که جریان خون دارد موجب افزایش گل‌های C.S S به شکل مایع می‌شود (Renin-like hormones) (Sokabe et al, 1970)

با توجه به این که در حالت‌هایی که جریان خون دارد موجب افزایش گل‌های C.S S به شکل مایع می‌شود (Renin-like hormones) (Sokabe et al, 1970)

با توجه به این که در حالت‌هایی که جریان خون دارد موجب افزایش گل‌های C.S S به شکل مایع می‌شود (Renin-like hormones) (Sokabe et al, 1970)
and the corpuscles of stannius of the rain bow trout. Gen.Comp.
Endo. 12, 99-109
29, 639-653.
3. CHAN.K.P.V(1970). Water and electrolyte balance in the
Japanese eel, Anguilla Japonica, with special reference to the
role of the corpuscles of stannius and the ultimobranchial
bodies M.Sc. thesis, university of Hong Kong.
4. DESMET,D (1962). Consideration of the stannius corpus-
cles and the interrenal tissue of bony fishes especially based
on researches into Amia calva, Acta. Zool.Stockh. 43, 201-219
5. NANDI, J(1967) Comparative endocrinology of steroid
hormones in Vertebrates. Amer.Zool, 7, 115-133
Anguilla-rostrata versus European eels Anguilla anguilla. Expe-
rientia 29, 891.
7. PANG et al . (1974) Environmental calcium and the
sensitivity of Killifish in bioassays for the hypocalemic response
to C.S from Cod and Killifish. Endocrinology 94, 548-550
8. Schmidt , J (1906). Contribution to the life history of
corpuscles of stannius of the teleost. Gen. Comp. Endocrinol, 14
510-516.
10. STANNUST.T(1839) The suprarenals in vertebrate, Fish.
11. TUCKER, D.W(1956) Anew solution to the Atlantic eel
12. VINCENT, S (1898) Contributions to the comparative
anatomy and physiology of the Suprarenal capsules. The
suprarenal bodies in fishes and their relation to the so-called