دی فنیل - ۱۰۲ سیکلوبینتادین و مشتقات

استخلاصی آن در وضعیت ۴. فتواکسیداسیون

محمود شریفی مقدم

گروه سایه دانشگاه تربیت معلم

تهیه این ترکیبات با روش‌های مختلف بوسیله فتواکسیداسیون حساسیت دی‌هیدروکربون و استر متبیک اسید، فتواکسیدهای نویل‌پسی کننده قابل جداکردن هستند. انتخاب آن‌ها بوسیله واکنش‌های شیمیایی مشخص شده و اکتش‌های در محیط اسیدی و بی‌بازی، ایزووم برخی‌ها به دی‌ایکسید، نویل‌پسی و اسیدهای احیاکننده‌ها.

فتواکسیداسیون اسید مستقیماً یا دی‌ایکسید اسید، یک ستوح حلقوی بی‌بازی دی‌ایکسید

اینلیک تولید می‌کند. همانند اکسیدردهای سیکلوبینتادین مشتقات فنیل آن نیز می‌توانند جنین‌های ایزووم داشته باشند که این ایزوومها بوسیله پروتوتروپی‌پی‌ایکز دی‌گری‌ها وجود می‌یابند و باید ترکیب فنیل داری فقط یاک ایزووم که به شکل دی‌ایکسید اکتش‌های می‌باشد شناخته شده است.

دردنباله مطالعات قبلی این‌سری (۱.۰.۴۳۵ و ۱.۲۵۳) با توجه به بازی‌پری در این تهیه دی فنیل-۱۰۲ سیکلوبینتادین، ۱ (تنها مشتق فنیل‌دار سیکلوبینتادین‌شناخته شده) آزمایش‌های بی‌بازی متشکل از انجام شده بود (۴.۶.۴) مایع مطالعه این‌ماده علاقه‌مند شد.

فینیل‌سیکلوبینتادین (۹.۸) و دو ایزووم‌های دی فنیل‌های (۱۰.۷) تری فنیل‌های (۱۰.۴) و
ما نیز توافتیم دی فنیل- 1 و 2 سیکلوپنتادیین، 1 و 2 مشتق استخوانی
بوسیله یاِکِ گروه متیل، 2 یاِکِ گروه کربنیل، 3 تیره کننیم.
از طرف دیگر، در مورد فتوکسیداسیون سیکلوپنتادیینها کارهایی در آور
سیکلوپنتادیین (16) هیدرور کربنریز سیکلوپنتادیین مخصوصاً دی فنیل ی
تراافنیل- 1 و 6 و (6) پنتافنیل- 1 و 6.
20
هیک افتنه (18) تراافنیل- 1 و 6 سولفون (19، 22) پنتا آریل س
(18، 20، 23، 24) تراافنیل سیکلوپنتادیین (18، 20، 23، 24).

 فقط فتوکسید هیدرور کربنریز سیکلو پنتادیین 1 و 2 مشخص شده است، این فتوک
ویا مجاورت نور بادی ایواکسید تبدیل می‌شوند (18، 19، 21).

ما فتوکسیداسیون دی فنیل- 1 و 2 سیکلوپنتادیین، 1 و مشتق‌ها متیل‌های آن را بررسی کرده‌ایم، دو هیدرو کربنریز و همجین اسیر مامیلیک اسید، 3 تیره ک
تولید می‌کند در صورتی که اسید، فتوکسید نمی‌دهد. برخی نتایج از شیمی
مطالعه شده‌اند.

فقط نتایج بست‌آمده‌ای در بیان کنترل معیار شده‌است (26).

1- دی فنیل- 1 و 2 سیکلوپنتادیین

اینها کوشش کردم که از دی فنیل- 3 و 4 سیکلوپنتون- 2- نیک (28) تقطیر (18، 19) و بود ترکیب منیزیوم (18، 19) در تقیه متیل دی فنیل- 1 و 2 مشاهده خواهیم کرد) روي این الکل اثر نداشتند. سولفون مس ایده

مکمل الین ماده‌ها نابود می‌کند.

کوشش شدکه از کاربرد تبدیل پاراولوئن سولفون دی فنیل- 3 و 4 سیکلوپنتون- 1 و 2

بدوالفین (27، 28، 29) در مورد مشتقات دودی فنیل- 3 و 4 سیکلوپنتون- 1 و 2

72
توزیب هیدرازون‌های ۵ و ۶ در حالات جامد به‌رنگ سبزی یا بی‌رنگ می‌باشد و در ماده ۶ در مجاورت نور خورشید حالت خیلی ضعیف به‌سرعت زرد می‌شود، این ماده فتوکریم است زیرا در باحال شدن و تبخیر حلال درتاریکی به‌رنگ می‌شود. رنگین شدن سمی کار بازون این دوستون، در مجاورت نور تذکر داده شده است (۳۴). برعکس، سمی کار بازون، ۹ حاصل آزتوستول، ۸ فتوکریم نیست و نمی‌توان در توزیب هیدرازون‌ها کاملاً مشابه با کار بادوشت ناپایداری ولید می‌کند. به‌طور مکانیکی کلیه کردن آن مشکل است.

دی‌فنیل-۲ سیکوپنتادین، ۱ آز اجج‌کروستن، ۱۱ بوسیله حاصل LiAlH₄ می‌شود ماده اصلی این واکنش کلی، ۱۲ است. احیا این ماده و همچنین مواد مشابه آن در مقاله دیگری موجود بحث فیل خواهد گرفت.

مانند دی‌کروفین سیکلوپنتادین‌ها این گروه ترئی با ایزوئر همرنده نیست و این برخی ساختمان
مجاورت سولفات مس انبیدار از بین می‌رود (۶و۷).

حرارت دادن دی‌فنیل ۱ و دی‌سیکلوبنتادین درول به بسته و خلاء همکاری با ایجاد می‌کند که یکی از آنها به سختی جدا شده است. بر عکس، تقاطع این دو
دی‌فنیل ۱ و دی‌سیکلوبنتادین، ۱ تولید می‌کند.

طبق R.M.N. دی‌مره هیدزن انیلین مفعولی در کند بنا بر ایام ساخته‌نامه بانه از
و ۱۶ که از ستارگر دی‌فنیل ۱ و دی‌سیکلوبنتادین بعنوان دین و فیلوپین حاصل
قابل قبول نیستند.

احتمال ساختن ۱۷ از دو ساخته دی‌گر ۱۵ و ۱۶ بیشتر است. در
ستارگر دینک بین دی‌فنیل ۲ و دی‌سیکلوبنتادین، ۱۳ (دین) و دی‌فنیل ۱ و دی‌سیکلوبنتادین
(فیلوپین) تولید می‌شود.

از آن اسید پارا آنترورن بنزولیک بر دی‌مره ۱۷ یک مونویوکسید با ساخته
تشکیل می‌شود. انرژی‌انسانی اسید پارا آنترورن بنزولیک برای دی‌مره در اکسیدیکس دی-
که ساخته‌اند ۱۷ برای آن پیش‌نهاد می‌شود.

۷۲
فتوаксید‌سازی حساسیت ذرت در برابر پاتین (200) با تعدادی کم‌تر از اثر مخلوط پتاس درمینال برابر این فتواکسید (30) سنتر، 8 تولید می‌شود ساخته ماده 21 برای آن مشخص شده است.

اهمیت فتواکسید با سیال LiAlH4 سیس دیول 22 تولید می‌گردد که از این طریق آن شناخته شده است (74، 13). کلیه این واکنش‌ها دلایل شیمیایی برای ساخته کننده این فتوایکسید دی فنیل-21 سیکلوپنتادین 1 می‌باشد.

11- متیل- دی فنیل- 21 سیکلوپنتادین.

این هیدروکربون از اثر یکدیور متیل منیزیم بر استون 23 تولید می‌شود، اکل و اکسترا 24 در مهیج واکنش آب از دست می‌دهد.

این گروه نواپذیر و در حالت معمول بندریج به ماده متعادل رنکین تبدیل می‌شود.

فتواکسید‌سازی آن، فتواکسید 26 تولید می‌کند که در حالت معمول نسیم پایدار است ولی در حالت حددهای بروکسید 27 تبدیل می‌شود.

از احیاء فتواکسید سیس دیول 25 به وجود می‌آید. برای تهیه این دیول یا ایزومر ترانس آن در حال هلاکتیک مختلف به دود متیل منیزیم بر استون 8 اثر داده شده که در تامان آزمایش‌ها 26 تبدیل می‌گردد.

آب‌گیری از دیول 25 برای تهیه یاک مشتق فولونی مانند بدن تشکیل مخلوط انجام می‌شود.

25
III

این اسید بوییله آبکیری از دو دی‌هیدروکسی اسید سیس، ۲۸ و تراکم‌های بهره‌بردار بسیار کمی هیدروکسی لاکتون

(\(\text{CH}_3 - \text{COOH}\)) محلول در \(\text{H}_2\text{SO}_4\) بدست می‌آید.

32

دو دی‌هیدروکسی اسید ۳۲ و ۲۹ از احیاء اسید دی فناسیل استیک،

تشکیل می‌شوند، دراژن واکنش یک‌ماده فرعی خنثی به مقدار کم تولید می‌شود.

های آن نشان می‌دهندکه لاکتون ۳۲ است.

در شرایط آبکیری ملالیم تر، فقط دی‌هیدروکسی لاکتون ۳۰ تولید می‌کند که این لاکتون از حرارت دادن اسید ۳۱ تولید می‌شود.

�ای آبکیری اسید دی‌سیلپنتادینیک، ۳۰ تولید می‌کند. دی‌هیدروکسی اسید تر انس

محلول در اسید استیک اکسید شده و اسید دی فناسیل استیک، ۳۱ ایجاد می‌کند.
حرارت دادن اسید در محلول آبی کربنات سدیم (در ظرف بسته و خلاء، برای جلوگیری از اکسید اسید) دی فنیل-1 و سیکلوپنتانید تولید نمی‌گردد. بلکه مخلوطی از جند دیمر بوجود می‌آید که دی‌مر ۱۷ حاصل است.

فتواکسید اسید حساس‌شده اسید ۳ در هر شرایط (نهاه‌ای مختلف، حرات باین و در مجاورت احیاکننده) مخلوطی از اسید تولید می‌کند که عبارتند از: ستول ۸، دی اتیلن ۳۵ (که با حذف عامل کربوکسیلی تولید می‌شوند) و دی ایوکسی اسید ۳۶.

ساختمان از ستون ۲۵ که از بازاندن حلقه پنج عضو تشکیل می‌شود و همچنین آراشی سیسه‌ای بسیاری ستون شده جسم ۵۰ و تشکیل ستول ۸ مشخص شده است. طریقه تعمین ساختمان دی ایوکسی اسید ۳۷ دیا بود. خواهیم دید سه ماده اخیر ۸، ۳۵ و ۳۶ از فتواکسید ۳۷ که بسیاری با اسید وجود می‌آید.

تاریک‌الحرارت فتواکسید را می‌توان به حضور عامل کربوکسیل نسبت داد. (۳) این عامل قطب موجب کسیکسیکی هترولوئیک اتصال بین دو اکسیدن پراکسیدی می‌شود که کسیکسیکی می‌تواند در دور جهت صورت گیرد. حذف عامل کربوکسیل از فتواکسید ۳۷ به‌طوری انجم می‌شود، یکی به سرعت ۳۷a ستول می‌کند این طریقه مشابه تجزیه فتواکسید باک اسیدات است.
کسیخته‌ای هتروولیتیک اتصال O–O

با شکستن اتصال C–C و تشکیل یک عامل سنوی در موقعیت 4 و یک اتصال C–O در صورت می‌گردد. به‌الآخره، تجزیه اسید پراکسید α– کربوکسیلیک است.

دی‌پرآکسید 37 از کسیخته‌ای هتروولیتیک اتصال O–O تولید می‌شود و کشنده عامل کربوکسیل 37 تولید می‌شود.

گرچه کووش‌های فرواوان برای جدایی فنواکسید اسید، به نتیجه‌ای مطلق حاصل از استر متیلیک به سادگی جدا شد. به‌نتیجه این استر، بوسیله دیاکلرول فنولات میثیل برنمد اسید و یا استری شدن مستقیم، امکان پذیر نبود و لیتول کلرو اسید 38 تنها شد.

فنواکسیداسیون استر 39، در حرارت معمولی انجام می‌شود. لازم به ذکر است که، در بیش از 100 مورد و اکستنشن فنواکسید اسید نیاز به کسیخته‌ای هتروولیتیک و نداشته باشد. در این موارد، دلیل واکنش‌ها تا حدی بر اثر سرعت واکنشو...
قابل توجه است که ایزومرهای شدن فتواکسید ممکن می‌باشد. در فنیل-۲-سیکلوپنتانیون، ۲۷ خیلی کندتر از ایزومرهای شدن فتواکسید استر ۳۰ و مخصوصاً فتواکسید اسید ۲۷ می‌باشد.

صبوني شدن دی ایواکسی استر ۳۱، دی ایواکسی اسید پیل ۳۲، تولید می‌کند. ساخته‌نامه R.M.N نشان می‌دهد دارند و همچنین مشابه طیف R.M.N دی ایواکسید ممکن می‌باشد. ۴۱ دی فنیل-۲ و ۲ سیکلو پنتانیلون ۷۷ است. احیاء دی ایواکسی استر ۴۱ بوسیله ایواکسید دولول ۴۲ ایجاد می‌کند که این ماده تحت تأثیر پریدن به بی-۷۶ ایواکسی LiAlH₄ ستون ۳۳ تبدیل می‌شود.

ایواکسی ستون ۳۳ تحت تأثیر اسید یا بازویا بوسیله جذب روی سیلیس به سادگی ستول ۸ تولید می‌کند این واکنش در می‌توان با تشکیل انول ۴۴ یا انولات مربوطه تفسیر کرد. واکنش‌های ایزومرهای شدن مشابه، کمتر مشاهده شده است (۳۳).

برخی از خواص فتواکسید ۴۰ مطالعه شده. احیاء فتواکسید بوسیله CH₃COOH و KI دریدروکسی استر ۴۵ تولید می‌کند.

درصد برای احیاء این فتواکسید بوسیله LiAlH₄ در زمان کوتاهی تربول ۴۶ را به وجود می‌آورد. ماده اخیر توسط اسید بریدن به ستون ۸ تبدیل می‌شود.

٧٩
کمیلکس آلومینیوم الكل نوع اول 0، به فولوئن 0.5 (شناخته نشده) تبدیل و آین
ماده در دیتره به کور بورد نبودهٔ تبدیل می شود LiAlH₄.

آزمایش‌ها

طیف‌های IR مابین 1000 و 4000HA

دستگاه پرکین. المر 137 در اتانول U.V (سی CH)، RCDCl₃، 50 طیف‌های R.M.N
رها مورد استفاده در CHCl₃ و IR (مکر در مواردی که ذکر خواهد شد) است. مقادیر برحسب 5 بر حسب cm⁻¹ و n.m بر حسب λmax است.

واکنش‌های فتواکسیداسیون با کمک بی‌هیدروکسی لامی فیلیس (دولامی بک کیلوانی و دودیگر
50 کیلووات) بحلال محصول در 10/15 (43) انجام شده است. مقدار حساسیت به همکار اسکید شونده 1% می‌باشد.

C₁₂H₁₀N₂O₅S

توزیب هیدراتان دی فنیل 3 و 3 سیکلوپنتن 3 آل. 5

مخلوطی از 100 دی فنیل 4 سیکلوپنتن 3 آل (37) 100 مگ توزیب هیدراتاژای

mg

ماده متبولدار 21 0(B) بعد با آب CH₃CO₂H (هندوی) را آب را با آب

3 قطره

می شودیم، راندمان بسیار خوب است. خالص کردن جسم بوسیله اتانول در CHCl₃ و رابین Finst آن توسط پنتان صورت می گیرد 0.198

دادن آن توسط پنتان صورت می گیرد 10.1 198

نجیزه C₁₁H₁₁O₆ N₄S₄

محاسبه :

C₇1/81 H₅/51 N₄/96 S₇/87

نظیر:

11/12 0/17 17/51 51/59 0/11 11/31 31/07

بدست آمده:

[CH₃O(D)]R.M.N طیف

خط طیفی منفرد در 343 (3) یک جفت خط طیفی

71
فلیپس تیوزیل هیدرازون دو نمونه به مدت ۸ ساعت با کورنول‌کننده دو روز (در حضور ماده مختل) تهیه می‌شود. توزیع هیدرازون مزدوج

C₁₇H₂₁N₄O₃S
tوزیع هیدرازون در فیلیل، و ۲۰ سیکلوپنتن - ۲ ان. ۶ g / ۱۰ سیکلوپنتن را می‌تواند در حضور ماده مختل با کورنول‌کننده دو روز (در حضور ماده مختل) تهیه می‌شود. توزیع هیدرازون مزدوج

C₁₇H₂₁N₄O₃S
tوزیع هیدرازون در فیلیل، و ۲۰ سیکلوپنتن را می‌تواند در حضور ماده مختل با کورنول‌کننده دو روز (در حضور ماده مختل) تهیه می‌شود. توزیع هیدرازون مزدوج

C₁₇H₂₁N₄O₃S
tوزیع هیدرازون در فیلیل، و ۲۰ سیکلوپنتن را می‌تواند در حضور ماده مختل با کورنول‌کننده دو روز (در حضور ماده مختل) تهیه می‌شود. توزیع هیدرازون مزدوج

C₁₇H₂₁N₄O₃S
3- احیاء کلروآترین-3، فیشل-3، سیكلوپنتین-2 ای،

به مغذی از 4 گرم کلوستون 11 (می) در 190 سیلیکا گندم 5/1 گرم

اضافه نموده، دستاریکی، پس از ساعت و دو دقیقه، هیدروژن و در 200 روز سو

خشک می‌گردد. ماده نام را بسیار هکساز نشته از 2 (60%) دی 6

سیكلوپنتین-1 12 تولید می‌شود. محلول سیكلوکریزو زاروی سیلیس کروماتو

نموده (Rdt% 11) کربور 1 حاصل می‌شود.

4- حذف عامل کر بوسیل، اسید دی فنیل-3، سیكلوپنتادین کر بوسیلیا

در 300 mg

اسید 4 در دیک تصفیه کننده و خلا و بتندریج از 16 تا 1490 در

CR دی 25 mg

کرولانوکراتیفی روی فشرد کمی، ماده تصفیه شده (Rdt% 20) دی 35

سیكلوپنتاداتین (400) و 35 mg (15%) دی فنیل-3، سیكلوپنتین-1

می‌شدند. ماده‌ای است که از دی‌بی‌دی و در حراج معمولی، با‌یادار در

پذیرش و دردسرد است بسته‌بندی 6/5% اسید اسید فورمی به سرعت نابود می‌شود.

فیورسنس، فیورسنس، نیست، باخت کردن این کر بوسیل انحال در اثر

Finst 77-72

تجزیه

\[
\text{H} / 47, \quad \text{C} / 95.3, \quad \text{N} / 30, \quad \text{O} / 48.8, \quad \text{S} / 93/21-93/30, \quad \text{P} / 6/2-93/30, \quad \text{S} / 93/21-93/30
\]

\[
\text{λ}_{\text{max}} (\text{U.V.}) (/ 1850, / 300 \text{ nm})
\]

\[
\text{J (Ccl)}: \text{R.M.N.}
\]

\[
\text{J} / 46 \text{ Hz}, \quad \text{J} / 46 \text{ Hz}
\]

\[
\text{J} / 46 \text{ Hz}, \quad \text{J} / 46 \text{ Hz}
\]
جاذبه کروماتوپلاکت مخلوطی حاصل می‌شود و جسم که در مخلوط فوق‌کمتر بود در این مخلوط
 بشدت است که یکی از ایزومرها دی‌سری 17 ساید دی‌سری 17 یا 17 دی‌سری 17 یا 17

نجف عام‌الکروبیکسیل نام‌های اسید دی‌فاتیل 6 و سیکولو پنتادین کر بور کیلسیلاکت

در یک لوله کوچک شیشه‌ای نازک در آب 465 mg NaCO۳ و 150 mg Na۳CO۳ و

یک لوله ضخیم شیشه‌ای محصولی را تحت خلاء قرار داده، این لوله را در

لوله شیشه‌ای را در خلاء مسدود و لوله شیشه‌ای داخلی را مشاهده و در

120 مدت 15 ساعت حرارت از دهه، استخراج با اثر مخلوطی از سه ماده می‌دهدکه رودی کروماتوپلاکت به سختی از

(17 دی‌سری 17 ساید، 17 دی‌سری 17 ساید، 17 دی‌سری 17 ساید) از مخلوط جدایی‌سازی

بخار عصاره در فشار زیاد (فیلیپس SP ۵۰۰)، باک ماده‌که محلول تولید می‌کند. فتو اکسیداسیون

حاس شده‌اند (کلروفرم و بلودومتیل) یاک مخلوط ایجاد می‌کند.

تجزیه

C۹۳/۵۳

H۸/۵۷

Rast

جرم مولکولی (روش تری فنیل متان) : محاسبه شده ۴۴۳/۵. بسته آمد

\[\lambda_{\text{max}} (\text{U.V.}) = 616, 516 \text{ نانومتر} \]

\[Jaf \rightarrow Hz, Jab \rightarrow Hz, Hb \rightarrow Ha) \]

\[(Jch \rightarrow Hz, Jhc \rightarrow Hz, He \rightarrow Hz, Jbf \rightarrow Jbg \rightarrow Hz) \]

\[(Hb \rightarrow Hz, Jfe \rightarrow Jhe \rightarrow Hz, Hg \rightarrow Hf) \]

\[(Hh) \rightarrow Hz, Jhg \rightarrow Hz, Jh \rightarrow Hz, Hg \rightarrow Hf) \]

\[(Hc) \rightarrow Hz, Jf \rightarrow Hz, Jh \rightarrow Hz, Hg \rightarrow Hf) \]

75
فتوکسید دی-فنیل-۲-سیکلوپنتن‌آ ۲۱

C₁₇H₁₄O₄

به محلولی از ۳۰۰ mg کربن ۱ و ۱۰۰ mg تئوفیل در ۹۰ cc دی نفتیژن تیوفن در ۹۰° درجه سیelsius در حلال در سروتا نفتیژن می‌گردد. خالص کردن بوی‌های تولید نفتیژن به‌دست آمده می‌شود.

Finst ۱۰۲-۵۱-۷

تجزیه

H₅/۶۵

میزان % محاسبه:

۸۱/۲۶

% بدست آمده:

۴۶/۵۴

ناپایداری در حرارت معمول، ناپایداری در حرارت ۳۰۰°. از محلول

CH₃COOH

ایزوپریزین، شدن محالله غلیظی از فتوکسید ۳۱ در مولول با ۱۰% یا مدت ۴ ساعت در ۲۰° فرار می‌دهند، سطح ۸ تولید می‌شود.

C₁₇H₁₄O₄

فتوکسید حامل از فتوکسیداسیون ۱۰۰ mg کربن ۱ در اتربناک حل و

LiAlH۴

اضافه می‌شود، پس از دو دقیقه هیدرولیز (۷۱/۷ mg (Rdt٪۳۳ تولید می‌شود.

۱۵۶-۱۵۷° (پنزن) کم محالله دیترات و کر و فرم، قطعیت این دیترات و همانولواک

کمتر از ایزومتر دو نیش آن می‌باشد (۶و۱)

تجزیه

C₈/۶۰۶۹

H۸/۳۸

میزان % محاسبه:

۸۱/۷۵

% بدست آمده:

۶۰/۷۵

λmax ۲۵۲ (۶۰۰۰) U.V طبقه
میتل دی فنیل 1 و 3 سیکلوپنتانیدن،

1. دی فنیل 3 و 4 سیکلوپنتانیدن آن و CH2MgI-متونیت سیلیکات یافت و 18 g نیز دو هفته در محلول 420 سیگ بگذارید. آب در مورد 14 روز 75 g (Rdt% 62) کربور تولید می‌شود.

2. تبدیل مس قیمت 33 به کل 224 روز 30 دقیقه کامل است. لیکان کل میکلو

3. اسید استیک اسید استیک همراه با 5% H2SO4 329 در 4 4 تا 0.17 g است.

4. شده پس از یک ساعت و 30 دقیقه، هیدرولیز بوسیله H2SO4 168 g % 150 در 0.5 (بدین مقدار 74 89 F inst نیز کامل پس از هما)

تجزیه

% محاسبه

C: 93.65
H: 6.94

% 92.9

λmax (nm): 346 (9000)

U, V

مصرف

R: M

C6H5O

فتوافق میل دی فنیل 1 و 3 سیکلوپنتانیدن، 37

200 cc مدل یک کربور 5 g در 5.3 کل و

78
احیاء محلول فتوکسید در برومسائیل

$$\text{CH}_2\text{OOH} + \text{IK} \rightarrow \text{C}_8\text{H}_10\text{O}_5$$

به محلول از اکسید $$\text{LiAlH}_4$$ در مقدار $$100\text{mg}$$ اضافه می‌گردد. اکسید $$(\text{Rdt}%)$$ در مقدار $$127-138\text{mg}$$ به محلول اضافه می‌گردد. اکسید به شرح تهیه این دیلول، بر استورتول $$(\text{CH}_2\text{MgI})$$ اثرگذاری می‌کند و تولید $$(\text{CH}_2\text{MgI})$$ آزمایش های متعدد در این مورد بی‌نتیجه می‌ماند.

تجزیه:

$$\begin{align*}
\text{C}_8\text{H}_10\text{O}_5 & \rightarrow \text{H}_2\text{O} + \text{C}_8\text{H}_10 \rightarrow \text{HO}_2\text{C}_8\text{H}_10
\end{align*}$$

$$\begin{align*}
\lambda_{\text{max}} & = 249\text{nm} \\
\nu(\text{OH}) & = 3580 \text{ cm}^{-1} \\
\nu(\text{C=O}) & = 1641 \text{ cm}^{-1}
\end{align*}$$

$$\begin{align*}
\text{CH}_2\text{MgI} & \rightarrow \text{CH}_2\text{MgI} + \text{H}_2\text{O}
\end{align*}$$

تجزیه:

$$\begin{align*}
\text{C}_8\text{H}_10\text{O}_5 & \rightarrow \text{H}_2\text{O} + \text{C}_8\text{H}_10 \\
\lambda_{\text{max}} & = 249\text{nm} \\
\nu(\text{OH}) & = 3580 \text{ cm}^{-1} \\
\nu(\text{C=O}) & = 1641 \text{ cm}^{-1}
\end{align*}$$

$$\begin{align*}
\text{CH}_2\text{MgI} & \rightarrow \text{CH}_2\text{MgI} + \text{H}_2\text{O}
\end{align*}$$
تجزیه

% C 77/12
% H 6/75
% N 5/78

\lambda_{max} 255, 257, 258

\nu (OH) 3650, 3680
\nu (C=O) 1780: IR

طیف R.M.N

\nu (C=O) 1780: IR

طیف R.M.N

\nu (C=O) 1780: IR

لاکتون اسیدسیس دی فنیل - 304 سیكلوپنتان دیبول - 304 کربوکسیلیک 0.2

100 mg

Rdt \% 50

Na, Co

\nu (OH) 3650, 3680
\nu (C=O) 1780: IR

\lambda_{max} 255, 257, 258

\nu (OH) 3650, 3680
\nu (C=O) 1780: IR

\lambda_{max} 255, 257, 258

\nu (OH) 3650, 3680
\nu (C=O) 1780: IR
هیدروکسی متیل-2-فنیل-2-سیکلوپنتان-دیول - 123

LiAlH₄: 70 mg

به مقدار از 100 mg هیدروکسی لاکتون 3 در 100 cc تهیه شده است. این تهیه‌سازی در 2 ساعت، هیدرولیز، استخراج با اتر (Rdt% 88) 11 mg ماده 33 حاصل می‌شود.

Finst 127°

تجزیه

C₇₆/76 : H 7/76

λmax : 252 - 259

U.V

HO (HO (benzilic) 320 325 320 660 320 325

IR

طیف

R.M.N

طیف

(2) بنزیلیک یک خط طیفی به 177/7 (CH₃OH) یک خط طیفی به 15/7 (Ar) با هیدروکسی تک

C₇₆H₁₄O₃: 315

اسید دی فناسیل استیک 31 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg هیدروکسی آسیدترات 39 در 100 cc معلق آز 100 mg H₁₄O₃

Finst 127°
امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰ً۰|| عادت بیماران از این سازمان کد می‌شود و شاخص بیماران در بهبود این بیماران از قبیل ثابت ۰|| است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰|| ۲۰۰|| تولید می‌شود.

امیدوارم محتوای دریافتی در ۶ دقیقه در حدود ۲۰۰% است. همچنین، ثابت می‌شود که هر یک از این بیماران به‌طور مستقیم از ۶۰| |
تجزیه

\[\text{C} 88/58 \quad \text{H} 6/24 \quad \text{O} 12/78 \]

برای حلقه‌ی ودان دیون 30\% کاشف است مدت 20 دقیقه‌ی آن را مخلوط پتاس 10\% در مخلوط حیات دهنده‌ی درنتیجه‌ی ستول 8 تولید می‌شود.

اسید دی-اپوکسی - 1 2 3 4 5 دی فنیل - 4 5 سیکلوپنتان کربوکسریلیک - 3، 4

\[\text{C}_{11}\text{H}_{14}\text{O}_7 \]

(اتانول) Finst 235-277 معمولی

تجزیه

\[\text{C} 73/48 \quad \text{H} 8/20 \quad \text{O} 21/75 \]

فتوکسیداسیون نمک اسید، 3

\[\text{NaHCO}_3 150 \text{mg} \quad \text{به محلول} \quad 1 \text{mg} \quad \text{اسید، 3} \quad \text{بلوودتانین در 100 cc منانول} \]

اضافه شده‌ی 15 دقیقه‌ی در مخلوط نورد فرار می‌دهیم 9\% (Rdt\%)

1 mg نتیجه‌ی تولید می‌شود.
تجزیه

\[\lambda_{\text{max}} \approx 245 \times 10^{-3} \mu \text{m} \]

\[\nu (c=0) \approx 1700 \text{ cm}^{-1} \]

\[\nu (C=O) \approx 1760 \text{ cm}^{-1} \]

\[\text{فتوواکسید استر} \]

\[C_{16}H_{10}O_2 \]

\[\text{محلول} 200 \text{mg} \text{ در} 180 \text{ cc} \]

\[\text{فتوواکسید} \]

\[\text{امضای ایزومری به شکل معمولی} \]

\[F \text{inst} \]

\[138 \pm 1 \]

\[\text{تجزیه} \]

\[\lambda_{\text{max}} \approx 255 \text{ (ایز)} \]

\[\nu (c=0) \approx 1760 \text{ cm}^{-1} \]

\[\nu (C=O) \approx 1760 \text{ cm}^{-1} \]

\[\text{چاه‌های خط طیفی متغیر در} \]

\[260 \text{ cm}^{-1} \]
دی هیدرو کسی - دی فنیل - سیکلوپنتن - کربو کسیلات

\[\text{C}_9 \text{H}_{18} \text{O}_3 \]

متعلق

\[\text{MgI}_2, \text{MgBr} \] مخلوط

که محتوی دیو است تولید می‌کند.

\[100 \text{ mg} \] به محلولی از

\[1 \text{ اتر} \] در

\[4 \text{ آب} \]

\[4 \text{cc} \] KI

\[100 \text{ mg} \] فتوکسید

\[100 \text{ mg} \] دی هیدرو کسی استر

\[\text{LiAlH}_4 \] (گزینن) محلول در متانول و آتانول نیاز است

\[\text{Finst} 118-116 \text{-} 120 \text{ C} \]

ایا و تربول ۳۶ تولید می‌شود:

\[\text{C}, \text{H}, \text{O} \]

\[73/53 \text{ % مخلوطی} \]

\[73/59 \text{ % یست آهشید} \]

\[73/59 \text{ % یست آهشید} \]

\[\lambda_{\text{max}} 253 \text{ nm} \]

\[\nu (\text{O}H) 3570 \text{ cm}^{-1} \]

\[\nu (\text{C} = \text{O}) 1730 \text{ IR} \]

\[\frac{1}{2} \text{ (CH}_3/\text{OH} \]

\[\text{LiAlH}_4 \]

\[200 \text{ mg} \] به محلولی از

\[100 \text{ mg} \] فتوکسید

\[100 \text{ mg} \] دی هیدرو کسی استر

\[\text{Finst} 132-133 \]

\[\text{C}_{18} \text{H}_{18} \text{O}_3 \]
کربنات سدیم اضافه می‌کنیم، تبخیر متانول، استخراج با آب ۱۴۷mg تولید می‌شود، چنانچه زمان و اکتش اضافه شود یک اسید غیرمتبلور ایجاد می‌شود. درمان بوسیله انحلال در اثر و تبخیر آن صورت می‌گیرد. ۱۳۳۰-۱۳۳۱{
	extit{تجزیه}}

\[
\text{C}^\text{\%} = 76.5
\]

\[
\text{H}^\text{\%} = 9.6
\]

\[
\text{\lambda}_{\text{max}} = 285 \text{ U. V.
}

\[
\nu(C = C) = 1530 \text{ , IR}
\]

\[
\nu(C-H) = 3230 , \nu(OH) = 3500
\]

\[
\text{R.M.N: } \text{پیچ خط طیفی در } 2 / 3 \text{ (CH)}(\text{H}, \text{xوک خط طیفی در } 2 / 7 \text{ (Co,CH)}(\text{H, اتیلن
}

\[
\text{OH}\text{پیچ خط طیفی در } 9 / 15 \text{ (HO)}(\text{H100 آروماتیک}, \text{پیچ خط طیفی در } 3 / 8 \text{ (OH)}(\text{C11H15O2 48
}

\text{متونکسی-۲ دی فنیل-۲ و سیکلوپنتن-۲ کربوکسی
}

\text{C18H14O2 48
}

\text{mg به ۲۸۸mg مخلوط به } 100\% \text{ دیان
}

\section{88}
طیف

\[v(C = O) \] \(1490 \) \(v(H) \) \(2840 \) \((OCH_3) \) \((C - H) \) \(\text{IR} \)

طیف

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)

\[\text{چهار ختم طیفی متغیر در} \ 85/2 \ \text{(CH)} \] \(\text{J1} \ \text{HzCH} \)_3 \(\text{C} \) \(\text{N} \) \(\text{R} \)

\[v(C = O) \] \(1730 \) \((CH) \) \(\text{CH} \)
ابوکسی-2 هدی فنیل-۳۰۰ سیكلوبیتانون

$\text{C}_{17}\text{H}_{14}\text{O}_4\cdot\text{H}_2\text{O}$

۱۰۰۰ mg ایبوکسی دیو ۲۲ mg اسید پریدیک، ۲ هئانول و cece ایبوکسی

کرده پس از ۱۵ دقیقه، بخار هئانول، استخراج باتر.

(Rdt %) ایبوکسی

بدست می‌آید.

$\text{Finst} \times 10^{-6}$

λ_{max} UV
$\nu(\text{C=O})$ IR
$\nu(\text{OH})$
$\nu(\text{C-O})$

$\text{H}_2\text{C}_2\text{H}_5$

R.M.N

$\text{H}_2\text{C}_2\text{H}_5$ در مجاورت با ۱۷ mg آروماتیک.

لهج به

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

λ_{max} UV
$\nu(\text{C=O})$ IR
$\nu(\text{OH})$
$\nu(\text{C-O})$

$\text{H}_2\text{C}_2\text{H}_5$

R.M.N

$\text{H}_2\text{C}_2\text{H}_5$ در مجاورت با ۱۷ mg آروماتیک.

لهج به

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

λ_{max} UV
$\nu(\text{C=O})$ IR
$\nu(\text{OH})$
$\nu(\text{C-O})$

$\text{H}_2\text{C}_2\text{H}_5$

R.M.N

$\text{H}_2\text{C}_2\text{H}_5$ در مجاورت با ۱۷ mg آروماتیک.

نهج به

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

λ_{max} UV
$\nu(\text{C=O})$ IR
$\nu(\text{OH})$
$\nu(\text{C-O})$

$\text{H}_2\text{C}_2\text{H}_5$

R.M.N

$\text{H}_2\text{C}_2\text{H}_5$ در مجاورت با ۱۷ mg آروماتیک.

لهج به

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

λ_{max} UV
$\nu(\text{C=O})$ IR
$\nu(\text{OH})$
$\nu(\text{C-O})$

$\text{H}_2\text{C}_2\text{H}_5$

R.M.N

$\text{H}_2\text{C}_2\text{H}_5$ در مجاورت با ۱۷ mg آروماتیک.

لهج به

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

λ_{max} UV
$\nu(\text{C=O})$ IR
$\nu(\text{OH})$
$\nu(\text{C-O})$

$\text{H}_2\text{C}_2\text{H}_5$

R.M.N

$\text{H}_2\text{C}_2\text{H}_5$ در مجاورت با ۱۷ mg آروماتیک.

لهج به

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

% C ۸۱/۵۸
H ۶/۴۴
O ۱۷/۷۸

λ_{max} UV
$\nu(\text{C=O})$ IR
$\nu(\text{OH})$
$\nu(\text{C-O})$
1. A. Pusch, Berichte, 1895, 28, 2102.