کنش‌های N کلروامین

قبل از اینکه بر روی تهیه مولکول‌های پاکروبازایی چنین است که اشاره‌ای بدنوع کنش‌های N کلروامین‌های اشباع و غیر اشباع به‌شمار می‌رود. هر یک از کنش‌های N کلروامین‌ها می‌توانند در شرایط نسبت به الگوی کشنده‌تر یا کشنده‌تر باشند. برای اینکه بتوانند دو کام‌های افزوده شونده هم‌جهنی (Hofmann–Loeffler–Freytag) (1) معروف می‌باشند. اگر آن‌ها باشد به‌دست بدهند. اگر واکنش‌های اشباعی را خیلی بهبود دهند و بیش از همیشه و اگر واکنش‌ها در سر ویکنگ‌ها ناگهان از نظری‌شناختی و مشترک و ولی و دو از بوده، می‌توانند بر خیلی از بی‌نیازی قابل‌کوشش باشند. از این اشتباهات، مقدار و روند آنها عبارتند از:

این نوع نیترینی:

$\text{N} \quad \text{N}$

رادیکال‌های اصلی:

NH_2 کمپلکس

NH_2 پروتونه (امینوم)

Cl یون کلروامین

برای واکنش‌های N کلروامین همان متنوعی می‌باشد و مقاله‌های زیادی در این مورد اشاره‌ای بلافاصله (Gassman–Kovacic) (2) را ذکر کرد.

(Hofmann–Loeffler–Freytag) H.L.F کنش‌های رادیکالی – واکنش‌های قدمی ترین و شاید معرف نتبین واکنش‌های N کلروامین‌ها که برای سنتور در کیل و وسیلیت از آن‌ها به‌دست آمده و واکنش‌های همی‌باشد H.L.F مکانیسم آن جزئی‌است.

25
با استفاده از این واکنش، تعداد زیادی از ترکیبات هترووسیکلیک از آن تهیه می‌شود.

بعضی از مثال‌های شناسایی آزمایشگاهی سیکلو[۲ و 1] اکتان (۴) را نام برده در اینجا ذکر شده است.

تاثیر اشعه ماده محوراً بنفش از کربونیل‌ها در حضور سید دستورالعمل تهیه گردیده است.

فزائیت رادیکال‌های آزاد و استabil می‌شود که در واکنش‌های نکلوژ در برابر دوگانه Neale (۵) Minisci (۶) Surzur در این واکنش‌ها با دنیو کردن شرایط آزمایشگاهی وجود سه نوع رادیکال آزاد امر است.

یافته‌های سه‌گانه است که عبارتند از: ۱) رادیکال امینو، ۲) ۲) رادیکال امینو، ۳) ۲) Aminium شاهد یا امینیوم و ۴) کمیکس رادیکال امینیوم با فاز M همراه مانند آهن و بی‌کس (۷) نیکل و غیره می‌باشد.

\[\text{N-Cl} \xrightarrow{h_\nu} \text{N}^+ \xrightarrow{H^+} \text{N}^+=H \xrightarrow{\text{Fe}^{3+}(h_\nu)} \text{N}^{...M} \]

\[M^{n+} + M^{(n+1)+} \xrightarrow{M} \text{N}^{...M} \]
وجود رادیکال‌های امینه با یا امید و یا کنش آفوانت آکسی گروه N کاروامین، روی بند و دوگانه کربن

بن در محیط ویر و مولی به‌شکل شده است. این نوع واکنش در حالتی که بند دوگانه و

کاروامین در یک مولکول در یک موقعیت های مناسب (N) نسبت به بند و دوگانه در موقعیت 8

قرار گرفته نشانه‌گذاری می‌باشد. اما دراین شرایط N کاروامین یک مولکول برای دوگانه مولکول دیگر

و دوم نمی‌گردد. مثل ذیل یک نمونه از این واکنش‌ها یکی باشد که به وسیله و

کاراکتر انجام شده است. این واکنش تشکیل رادیکال امیده در حالات واسط به واسطه می‌رساند.

تشکیل کمیلکس رادیکال آمینه در حالات واسط، در جریان واکنش های N کاروامین،

ضروری به نمک احیا کننده (و در مجاورت مقدار جنگلی از کالی‌توضور نمک اکسید کننده)

نیازه و همکاری‌ها تصور گردیده است بی‌دو معنی که در کمیلکس فوق رادیکال آمینه

سیرت کمیلکس شده، با یون فلز، بر روی و دوگانه افزوده می‌شود.

\[
R_2N-\text{Cl} + \text{Cu}^+ \rightarrow R_2N^+ + (\text{CuCl})^\text{3+}
\]

\[
R_2N^+ + \text{C} : \text{C} \rightarrow R_2N - \text{C} - \text{C}
\]

\[
R_2N - \text{C} - \text{C}^+ + (\text{CuCl})^3+ \rightarrow R_2N - \text{C} - \text{C} - \text{Cl} + \text{Cu}^+
\]
(٧) Surzur

وهمگرایی‌شان نیز در جریان واکنش‌های افزونی N کلروامین بر پنود

کانه ارزاباتی در حضور آسید محصولی بدست آوردن داشته می‌باشد که در کلروامین

که با تایپ حاصل از واکنش‌های (١١) در برابر واکنش‌های افزونی درون اجزای N کلروامین

دان دوگانه اثر اندازه ن نکرومات در نکرومات استیک (مکانیسم الکتروفیلی کلروامین)

دان دوگانه تطابق می‌کند.
(شکل ۱۳)

واکنش‌های یون واسط نیترنیوم

(Nitrenium-ion)

نوع دیگر، واکنش‌های N-کلروامین (به عقیده Fox و Gassman) (۱۶)، با دخالت یون نیترنیوم واسط انجم بیدر می‌باشد، نوآورانی (Rearrangement) از نوع (Solvolysse) برخی از N-کلروامین Wagner-Meerwein می‌شود.

های بین سیکلیک در حضور نمک نقره مشاهده شده است، در زیر نمونه‌ای از تبدیل N-کلروامین به جرم ۹ دیده می‌شود:

(شکل ۱۴)

کاسمن وفوکس مکانیسم عمل بالا را به صورت زیر پیشنهاد کرده‌اند:

(شکل ۱۴)
(شکل 15)

پایدارگی که واکنش افزونی N-کلری این ورودی به فوراً فوقالذکر کاملاً از نوع واکنش ویژه می‌باشد و در نتیجه محصول آن با بک افزونی می‌تواند مطابقت می‌کند (Stereospecific) به این امر ازت.

(شکل 16)

اما برخی از پژوهشگران به ویژه هر یک N-کلری این بر فردا و دوگانه، در درجه حرارت های بالا و در حضور Ag⁺، پیک مکانیزم یک‌کلی بیش‌ساختار من کنند. در عمق نتایج بالا و به منظور مشخص ساختار مکانیزم واکنش خیال وجود وین پورق برای سیستم‌های آزادی سیکلیک و واکنش‌های N-کلری این ۱۲ را دارد.
<table>
<thead>
<tr>
<th>Solvant</th>
<th>Catalyseur</th>
<th>Température de réaction</th>
<th>Durée de réaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCl₃</td>
<td>AgNO₃</td>
<td>60-70°</td>
<td>16 h</td>
</tr>
<tr>
<td>CH₂COOH</td>
<td>ZnCl₂</td>
<td>24-72°</td>
<td>16 h</td>
</tr>
<tr>
<td>H₂O</td>
<td>H₂SO₄</td>
<td>18,8°</td>
<td>16 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proportion relatives des produits obtenus

Rf : 0.14
نمودار بالا نشان می‌دهد که سرعت واکنش ابتدا خیلی کند است.

میزان سرعت واکنش به‌صورت ییبیدا می‌کند، این پدیده مشخص کننده یک‌واکنش رادیکالی است.

نمودار وجود دارد بالا نظریه Hobson Edwards و همکارانش در مورد رادیکال‌بودن این واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروамین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزای N کاروامین بردنه دوگانه در حضور Ag نیز واکنش افروزی درون اجزاء
وهمگکارانش در جریان سولولیز ن Gassman
اما این نوع مکانیسم با تناقضی که کار و امین های سیرشده که در ابتدا مشابه مشاهده کرده‌اند و قبل از پر و داده شده می‌باشد متفاوت دارد. در این مورد نیز نتایج کارهای مربوط به تکنیک کارهای Edwards تطیف دارد بنی آکسید رادیکال از زیرنویسی تشکیل شود که در مولکول‌ها به سیرنشده و وجود دارد و آن را باشد. داده‌های امینو واکنش‌های یون نیتریک انجام می‌شود.

\[
\begin{align*}
R & \xrightarrow{\text{Ag}_0} \text{R}^- \text{N} - \text{Cl}^- \\
\text{Ag}^+ & \xrightarrow{\text{R}} \text{R}^- \text{N} + \text{Ag}_0
\end{align*}
\]

نتیجه:
در این پروتئین فعالیت N کار و امین ها نشسته و به این دلیل نشان می‌دهد:
اثر انحلال بروز بررسی اگرکفته و دو قسمت قابل توجه در آن می‌باشد.
روش تجربی

طیف IR مولکول‌های مورد به دارک‌رما بوشیله دستگاه پرگن کمر مرحله 25 بی‌صورت در انتهای کال‌ریک گنجایش دامنه 380 تا 200 nm و طیف‌های اولیه با کاربردن دامنه 600 تا 3000 cm\(^{-1}\) به چشم‌انداز محاسبه گردیده است.

طبیعتی دستگاه و ارتباط 600 تا 3000 cm\(^{-1}\) با تغییرات علامت‌های 8 تا 6 و این ارتباط در فازگازی بوشیله دستگاه و ایرانی (700 ev) MAT – CH – 920 P و (Fr) REICHERT (Fk) KOFFLER با پیامدهای کمک‌رسکی

تهیه N کلر اورامین

در یک باند 5 میلی‌لیتری که بوشیله کاغذ آب‌هیپونیوی و بوشیله دستگاه محلولی از بیک م (5 میلی‌مول) امین مربوطه در 4 میلی‌لیتر کلرور متقین و 16 میلی‌لیتر هیپونیوی کاریت (1 M) وارد می‌کنند مخلوط کرده و درجه حرارت معمولی بهم زده می‌شود. در یک از آب چشمه دیگر قرار داده‌ای به آب با بوشیله کلرور متقین جدا و فازهای آهی را پس شستشو با آب روی سولفات‌نیتریز خشک می‌کنند. بعد م محلول را صاف کرده و کاروتروپین آن را
حلال کافت 8 کلوژوامین 6 دراسید تری فلورو استیک

دریک بالین 1000 ملیلیتری فلزی کدامیک لنترس تیتر فلور استیک خالص وارد می‌کنند و نا
صرف در جریانی می‌نمایند سپس قطر فلور به آن 1 گرم کلوژوامین ع می‌افزایند. از ساعت
اسید راده فشار کم تقطیر می‌کنند. جسم باقیمانده را در 1000 میلیلیتر ملانیون حل کرده و با کردن
بتانسیم قلیایی می‌کنند (PH = 10) مخلوط را یک ساعت و چهار تا ساعت متانول حرارت می‌دهند.
پس از ستاد متانول را بخیر کرده جسم باقیمانده را در مقدار کمی آب حل می‌نمایند مخلوط
دا بوسیله کارود و فروم از محلول آبی جدا نموده روى سولفات ممنیزیم خشک می‌کنند پس از حدف
حلال فشار کم 800 میلی‌گرم مانیع زرد رنگ بی‌سیاه با رنگه شده 50 درصد استون A و 200
درصد اترانول B می‌باشد. (% بهره)

A مشخصات فیزیکی جسم

\[M = 155 \ \text{g.mol}^{-1} \text{pik de base } m/e = 96 \]

IR (CCl4) : 1767 cm\(^{-1}\) (C=O)

RMS (CCl4) : ppm 1,5-1,0 (m,12H) avec un singulet larggi à 1,95 ;
2,18 (s,12H).

Picolate : point de fusion F\(_p\) 212°C - 214°C (litt. 218-219°C)

B مشخصات فیزیکی جسم

\[M = 167 \ \text{g.mol}^{-1} \text{pik de base } m/e = 110 \]

IR (CCl4) : 1660 (C=O); 1210 (0-CH3) cm\(^{-1}\)

RMS (CCl4) : ppm 1,10-2,64 (m,12H) ; 2,11 (s,12H) ; 2,35 (t,large,1H) ;
3,43 (s,12H) ; 4,70 (t,large,1H).
مشخصات فیزیکی ۱

\(M^+ = 171 \text{ at } 173. \) (C\(_{9}\)H\(_{14}\)NCl), pic de base m/e 94

IR\((\text{CHCl}_3)\) : 2950 cm\(^{-1}\) v max (C-H)

طیف nmr در صفحه ۱۱

مشخصات فیزیکی ۱۱

\(M^+ = 167 \) (C\(_{10}\)H\(_{12}\)NO), pic de base m/e 152

IR\((\text{CHCl}_3)\) : 1090 cm\(^{-1}\) v(C-O)

KM\(_N\) (CDC\(_3\)) : ppm = 0.86 (d de t, 1H), H\(_3\) endo J=12Hz et 2Hz
1.35 (d de m, 1H), J=10Hz ;
1.5-1.98 (m, 2H) ;
2.24 (m, 2H) ;
2.53 (s, 3H), S-CH\(_3\) ;
2.13-2.4 (m, 1H) ;
2.53 (d, 1H), H\(_8b\) ; 3\(_{H8b}\)H\(_8a\) = 10Hz ;
2.87 (m, 2H) avec un quadruplet (H\(_8a\)) et un doublet (H\(_8b\)) ;
3.18 (s large, 1H), H\(_5\) ;
3.32 (s, 3H), O-CH\(_3\) ;

۳۷
<table>
<thead>
<tr>
<th>3.22</th>
<th>1 H</th>
<th>Doublet</th>
<th>H₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.92</td>
<td>1 H</td>
<td>Quadruplet</td>
<td>H₈a</td>
</tr>
<tr>
<td>2.65</td>
<td>1 H</td>
<td>Triplet (élargi)</td>
<td>H₁</td>
</tr>
<tr>
<td>2.58</td>
<td>1 H</td>
<td>Doublet</td>
<td>H₈b</td>
</tr>
<tr>
<td>2.52</td>
<td>3 H</td>
<td>Singulet</td>
<td>-CH₃</td>
</tr>
<tr>
<td>2.30</td>
<td>2 H</td>
<td>Multiplet</td>
<td>H₂⁺H₂</td>
</tr>
<tr>
<td>1.98</td>
<td>2 H</td>
<td>Multiplet</td>
<td>H₉a⁺H₃exo</td>
</tr>
<tr>
<td>1.47</td>
<td>1 H</td>
<td>Doublet (élargi)</td>
<td>H₉b</td>
</tr>
<tr>
<td>1.06</td>
<td>1 H</td>
<td>Doublet (de triplets)</td>
<td>H₁₀</td>
</tr>
</tbody>
</table>

Note: The table contains information about chemical shifts and multiplets for various hydrogen atoms in a molecule.
3 کیلوگرم آی دارویی از N کلر اومینه 12 را در 80 میلی لیتر میانوال حل کرده مخلوط دا در بیک بالین بس دوکونده وارد می کنند (در دزیر آمیزی‌زدایت) 1 تا 2 کیلوگرم اکسید نقره به آن اضافه می‌کنند و مخلوط را با مخلوط دا در بیک بالین بس دوکونده وارد می‌کنند. مخلوط دا در بیک بالین بس دوکونده وارد می‌کنند تا تهیه حلال میانوال حل شود. میانوال دا در بیک بالین بس دوکونده وارد می‌کنند ترتیب اجزاء گرم میانوال بسته ذمردکه شامل جسم 10 و جسم 11 (84 دصد) و جسم 12 (بهره عمل 48 دصد) آورده دانسته که آخر در آزمایش بالا خواست دادند مخلوط دا 10 ساعت ادامه دهند فقط 11 با بهره 80 تا 18 دصد بسته ذمردکه آید.

لیکن الف: KCl 13 در کلروفورم در حضور اکسید نقره در بیک بالین س دهانه موجب به سر دوکونده زیر آمیزی‌زدایت مخلوط دا 2 کیلوگرم N کلروفورم و آمین می‌سوزد مخلوط در 70 میلی لیتر کلروفورم و سه گرم اکسید نقره وارد نموده مدت 5 ساعت تا مخلوط 12 روزی فلوترزیل، صاف کرد که با فلوترزیل را در بیک بالین بس دوکونده وارد می‌کنند تا تهیه حلال میانوال حل کرده پس از تبیخ حلال در بیک بالین دا در بیک بالین بس دوکونده وارد می‌کنند (بهره عمل 75 دصد)

لیکن الف: KCl 13 در کلروفورم در حضور اکسید نقره 50 میلی گرم از N کلروفورم 12 را در 40 میلی لیتر میانوال حل کنند و در دزیر آمیزی‌زدایت به آن 200 گرم پودر نقره از افزاینده مخلوط را 1 تا 2 ساعت تا نقطه جوش حرارت می‌دهند که در بیک بالین D، مخلوط به آن PH = 10 کرن پتاس می‌آیند دوباره مخلوط را بعد ساعت تا حرارت جوش گرم می‌کنند. سپس از سرد شدن مخلوط را صاف و مخلوط زیر را در بیک بالین بس دوکونده وارد می‌کنند. باقیمانده دارمکدهی آب حل کرده و مخلوط را بوسیله آب را در بیک بالین بس دوکونده وارد می‌کنند پس از اضافه کردن محلول آناری و حذف حلال در بیک بالین دا در بیک بالین بس دوکونده وارد می‌کنند (بهره عمل 89.99 دصد)

لیکن الف: KCl 13 در کلروفورم در حضور نیرات نقره 800 میلی گرم از N کلروفورم 12 را در 80 میلی لیتر میانوال حل می‌کنند و به
حلال کافی ۸ کلووامین ۱۲ درمان‌ان در حضور پراکسید بنزونیل

محلول ۵۰۰ میلی‌گرم ن کلووامین ۲۰ میلی‌لیتر محتوی را در زیر تعیین آرت قرار داده به آن ۱۰ میلی‌گرم پراکسید بنزونیل مافزاینده مخلوط را در حلال هم زدن ۳ ساعت تا جوش حرارت میدهدن، پس از مرداندن مخلوط را صاف نموده و محلول زیر مصرفی رادر ذخیره کمی کنند و محلول آب حل کرده و بوسیله انتها میادی الی از آب جدا می‌کنند محلول آری را پس از خشکشدن تبخیری کنند بدين ترتیب ۲۰۰ میلی‌گرم محلول بسته مست از آورندگه شاخ در زیر می‌باشد: جسم ۱۰ (۰ درصد) جسم ۱۱ (۱۰ درصد) میباشد
- P.G. Gassman - Acc. chem. Research 1970 3 26
- P.G. Gassman B.L. Fox - J. org chem. 1967 32 3679
- F. Minisci - R. Galli - chem Ind (Milan) 1963 45 1400
- L. Stella - These Marseille 1972 n° CNRS A.O. 6273
- R.S. Neale - Synthesis 1971 1
- P. Tordo - These Marseille 1971
- P.G. Gassman B.L. Fox - chem. comm. 1966 153
- P.G. Gassman B.L. Fox - J. Amer. chem. Soc. 1967 89 33
- J.W. Bastable J.D. Hobson and W.D. Riddell - J. chem Soc 1972 2205
- R. Tadayoni - These Marseille