چکیده

ریزجلیک‌ها از جمله سیانوبیکتری‌ها، از موجودات زنده‌ی مهم جایی هستند و مولد معدنی عامل محدودکننده رشد این موجودات در زننگ‌های حاضر، ضمن جداسازی و شناسایی گونه‌های سیانوبیکتری در هکک به بررسی تاثیر محیط‌های کشت مختلف بر رشد گونه‌های سیانوبیکتری پرداخته است. در نتیجه، دو گونه نهادی از سیانوبیکتری‌های منتقل به خانواده اسپلیتروپاسنا از استان تهران برای اولین بار جداسازی و گزارش گردیده‌اند. در همه راستا نمونه‌برداری از هکک در سطح استان تهران در نوبت سال 1387 صورت گرفت و در بررسی تأثیر مواد غذایی محیط‌های کشت بر رشد ریزجلیک‌ها نمونه‌ها با استفاده از محیط‌های کشت بی‌پروان به این 8 کشت شدید.

جذابیت با استفاده از پاس‌های متعدد صورت گرفت. شناسایی مورفولوژیک با استفاده از کلید‌های شناسایی معتبر و شناسایی مولکولی با استفاده از تعيین توالی زننگ 16S rRNA انجام شد. در نتیجه، این تحقیق دو گونه لیپوپنتگیان اس 19 و 20 و لیپوپنتگیان اس پی 25 و برای اولین بار از استان تهران گزارش شده است. نمونه‌های هکک کشت شده از نظر فیزیکی و شیمیایی نیز بررسی شدند. نتایج حاصل نشان می‌دهد جداسازی با استفاده از محیط کشت این نوع با توجه به فقر نسبی این دو نمونه هکک، دو گونه سیانوبیکتری‌های، گونه‌های مقرون در برای نامه‌سازی بودن شرایط محیطی هستند.

مقدمه

تکсонومی سیانوبیکتری‌ها در سال‌های اخیر موضوع اختلاف نظر در میان جلبک‌شناسان بوده است [۱]. به همین دلیل تحقیقات زیادی به نتیجه بر روی شاخه‌های مورفولوژیکی، بکه در ارتباط با خصوصیات فیزیولوژیکی به منظور سیانوبیکتری‌ها بهتر و دقیق تر این جلبک‌ها انجام شده است [۲]. همچنین تکنیک‌های مولکولی

واژه‌های کلیدی: خاک، سیانوبیکتری‌ها، سیانوبیکتری‌ها، عامل فیزیوکمین، محیط کشت.
۱. Oscillatoriaeae
۲. Leptolyngbya sp. ISC 40
۳. Leptolyngbya sp. ISC 25

۱۹
جداواری و شناسایی مورفولوژیک و مولکولی گونه‌های جدید سیانوبکتری... ندا سلطانی و همکاران

را می‌توان به این ایزوله‌ها برای شناسایی دقت‌گرجهٔ جلبک‌ها افزوده، که در آن از مارک‌های مختلف برای بررسی توالی زنون استفاده می‌شود. رایج‌ترین مارک تاکروترومبیک RNA 16S است [3]. خوانده اوپیاتوریاسه استادی از سیانوبکتری‌ها هستند که تحقیقات می‌تواند بر روی آن‌ها صورت گرفته و کماکان مرکز بررسی‌های گسترشده استند [4]. گونه‌های خانواده اسپیلتوریاسه در همه‌های جهان پراکنده‌اند [5]. یکی از زیست‌گاه‌های این سیانوبکتری‌ها در سطح و با زیست سطح خاک است. بسیاری از جمعیت‌های سیانوبکتری‌های متعلق به خانواده اوپیاتوریاسه تغییرات مورفولوژیک چشمگیری را از خود نشان می‌دهند [6]. با وجود نیاز به بررسی‌های تکمیلی، مانند روش‌های شیمیوتکنولوژی، مولکولی و دیگر روش‌های برای شناسایی دقیق این دسته از سیانوبکتری‌ها بهره‌مندی از تکنیک‌های مجازی و مولکولی می‌باشد. شناسایی گونه‌های این خانواده با دلیل شیب‌های که بی‌مورد بین جنس‌های اسپیلتوریاسه، لینگلیگی و پورتالویدیوم وجود دارد و نیز تنویع و تعداد زیاد اندازه‌شمار است. این مشکل به دلیل تنویع مورفولوژیک و میزان پلی‌مورفیسم و تغییرات جغرافیایی در این جنس‌های است. بر همین اساس، کلیه‌ها شناسایی و در نیز گونه‌های که از این دسته از این خانواده، نیاز به بازنگری‌های اساسی دارد [7]. درون‌نشی و همکاران، ۲۰۰۳، لینگلیگی را می‌تواند برای شناسایی جنس‌های سیانوبکتری‌های ایرانی دقیق‌تر بوده و نیاز کاملی به بازنویسی و روشن‌سازی آن وجود دارد.

تاکنون، گزارش‌های مربوط به سیانوبکتری‌های ایرانی بیشتر مربوط به نمونه‌های آبی‌زی بوده است. از طرف دیگر، نمونه‌های گزارش بکر که شناسایی شده و نیز متعلق به خاک شالیزارها هستند [21]. لذا اغلب جلبک‌های شناسایی‌شده مربوط به سایر دسته‌های سیانوبکتری‌های مانند راسته نوپوشانی است. تجربیات شخصی مؤلفین حاکی از آن است که استفاده از کلیه‌های میانه‌بندی برای شناسایی جنس‌های سیانوبکتری‌های ایرانی دقیق‌تر بوده و

نیاز به بازنویسی و روشن‌سازی آن وجود دارد.

از سوی دیگر بررسی‌های اکولوژیکی در پارک سیانوبکتری‌های مانند سایر جانداران نشان‌دهنده تأثیر عوامل فیزیکی‌شیمیایی بر روی این جمعیت‌های اثر دارد. از همین روی در این تحقیق می‌تواند شکست مختلین برای جداسازی سیانوبکتری‌ها استفاده گردید تا تأثیر آن بر بلوغ محلی اریب‌های شود. زیرا پژوهش‌ها از این دست کربن مورد توجه گرفته است [7]. به همین منظور، خاک‌های کشت شده که منجر به جداسازی این دست گونه جدید از استان تهران شد، برای ارزیابی بیشتر آنالیز عناصر ماکرو و میکرو شده‌اند.

مواد و روش‌ها

نمونه‌هایی که در این مقاله به جداسازی و شناسایی، و تأثیر محیط‌های کشت مختلین بر آن‌ها پرداخته شده‌اند، از خاک منطقه‌های از جاده فیروزکوه سمنان (شرک استان تهران) با موقعیت جغرافیایی "۹۱/۱۱۲" و "۷۳/۳۵" گرفته شده‌اند.
ندا سلطانی و همکاران

جذابیتی و شناسایی مورفولوژیک و مولکولی گونه‌های جدید سیانوبکتری... iculture... (Licor LI-1000 Datalogger)

انجام پذیرفت. پس از جذابیتی این دو گونه و نظر به تغییرات مورفولوژیک و سوه در محیط‌های مایع و جامد مایع این مایع سوزار می‌گردد. به هنگام نمونه‌برداری واجد، کشت مایع به

صوت جراح و در ارتفاع ۳۰۰ میلی‌بلت صوت پذیرفت. این ارتفاع به مساحت گسترش شد. کشت‌ها بدون هواضیمه یا هبزدن گرم‌سازگاری شدند. بررسی‌های مورفولوژیک در کشت‌های مایع و جامد -هر دو-

انجام پذیرفت. ردش تال، ساختار ریه و اطلاعات بوتومیک می‌گزارند شد. تشکیل کلیه و شکل سلول‌ها با

استرومیکروسکوب و میکروسکوپ نوری در تناوب‌های زمانی بررسی شد.

برای شناسایی مولکولی ابتدای DNA نمونه‌ها به روش سالگی- مارف و همکاران استخراج شدند [12]. پس از افزودن ۳۰۰ میکرو لتر ایزوپروپانول به DNA استخراج شده، نمونه به ۲ دقیقه در فریزر نگهداری شد و پس از خارج کردن محلول روابی باتانوال ۷۰٪ بشدت شد و پس از ۵ دقیقه محلول روابی مجدداً خارج و در استخراج DNA ۷۰۰ مس دچار خسک شد. در مرحله بعد ۵ میکروی لتر آب بر روی رسوپ ریخته شد و محلول استخراج DNA شده برای مراحل بعد نگهداری شد. در این‌رو به کار گرفته شده دارای این توالی بودند:

106F ۵'-CGACGCTTACTAACCGGTAAGTGTA
Rb ۵'-GACCTAGGATCTTACCTCCCTT

برای نمونه‌های PCR استخراج از ۱ میکروی لتر از پرایمر رفت و برگشت بطور جدایی، هر کدام با غلظت نهایی

PCR ۱۰ استفاده شد. سپس محلول پایه PCR به میزان ۵/۵ میکروی لتر، با فرم MgCl۲ به میزان ۵ میکروی لتر، با فرم ۱۰ استفاده شد. سپس محلول پایه PCR به میزان ۵/۵ میکروی لتر، با فرم MgCl۲ به میزان ۵ میکروی لتر، با فرم ۱۰ استفاده شد. سپس محلول پایه PCR به میزان ۵/۵ میکروی لتر، با فرم MgCl۲ به میزان ۵ میکروی لتر، با فرم

میکروی لتر رساندند [7]. به هم کدام از محلول‌های واکنش ۲ میکروی لتر از استخراج شده افزوده گردید.

۳۷۱
جنساتی و شناسایی مورفولوژیک و مولکولی گونه‌های جدید سیانوبکتری... ندا سلطانی و همکاران

سپس مخلوط واکنش برای انجام PCR به داخل ترموسایلر با این برنامه منتقل شد. سیکل اول شامل 5 دقیقه در 94 درجه، 1 دقیقه در 80 درجه، سیکل دوم شامل 1 دقیقه در 94 درجه و 1 دقیقه در 72 درجه و سیکل سوم شامل 12 دقیقه در 72 درجه و 5 دقیقه در 14 درجه. برای شناسایی DNA محصول PCR 8 میکرولتر از این محصول در زل اگاز/5% حاوی زنگ الکتروفورز گردید [13] و نتیجه الکتروفورزی با استفاده از دستگاه زل-داک آکسیبرداری شد. به منظور تمیز کردن محصول از کیت پاکسازی استفاده شد و محصول باقیمانده در انتهای ستون برای تعیین توالی به شرکت زن فن اوران ارسال شد. عناصر شیمیایی (میکرو و ماکرو) و فیزیکی در حاکمیت تهیه‌کننده PCR انجام گردید. شوری با روش عصاره اشباع، استدیت با روش گل اشباع، کربن آلی با روش والکی بک، نیترژن کل به روش جکسون، فسفور روش اولسن، پتانسیال روش فیات، اهن، روس مس و منگنز به روش اتمیک، بر به روش آزمون‌های H و بافت حاکم به روش هیدرومتروی سنجدیه شدند. شکل ۱. محل تهیه‌کننده با فاش مشخص شده است.

نتایج

۲۲۲
تصویر میکروسکوپی مربوط به گونه لیتولینگیا اس پی. 40 (پایین) و لیتولینگیا اس پی. 25 (پایین) X 480

توصیف گونه لیتولینگیا اس پی. 40

مترادف:فورمیبوس اس پی.

اجتماعات متقارن، سیز روشن، غلاف خیلی نازک، غیرقابل تشخیص، سلول‌ها کم و بیش چهارگوش، به‌دیا به اندام طول، انتهای سلول بدون کلاه یا سربوش، کم و بیش گرد، دیواره عرضی فشرده، پهن اند. (شکل ۲).

توصیف گونه لیتولینگیا اس پی. 25

مترادف:فورمیبوس اس پی.

اجتماعات پوسته‌ای، رنگ سیز روشن، توری شکل، تراکوم‌ها کامل، ملاما، غلاف تراکوم‌ها مشخص نیست.
شکل ۳. تصاویر زل الکتروفورز و توالي مربوط به DNA استخراج شده از نمونه‌های لیپولینگیا اس بی ۴۰ و لیپولینگیا اس بی ۴۱

بررسی‌های مولکولی بر روی ناحیه حفظ شده ۱۶س rRNA بر اساس آن با استفاده از برنامه‌های اختصاصی سیانوباکتری صورت پذیرفت. در این ناحیه از سیانوباکتری و جنس دارد که تشخیص مولکولی جنس Ra به دقت امکان‌پذیر می‌باشد. نتایج حاصل از سکانس‌سنج توایلی‌های rRNA ۱۴۶ دارای ۶۸٪ همبومری با سوی لیپولینگیا اس بی ۱B. L.sp. ISC ۴۰ بوده و گونه لیپولینگیا اس بی ۲۵ دارای ۹۹٪ همبومری با گونه لیپولینگیا اس بی ۱B توانسته گونه‌های نمونه برداری شده تجزیه مواد شیمیایی و فیزیکی شدند. نتایج حاصل از این آنالیز در جدول ۱ آمده است.

جدول ۱. آنالیز فیزیکی و شیمیایی خاک کشت داده شده

<table>
<thead>
<tr>
<th>B (ppm)</th>
<th>Mn (ppm)</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Fe (ppm)</th>
<th>K (ppm)</th>
<th>P (ppm)</th>
<th>Total N %</th>
<th>O.C %</th>
<th>pH</th>
<th>Ec</th>
<th>Ds/m</th>
</tr>
</thead>
</table>

نتایج آنالیز خاک‌ها حاکی از میانگین متوسط با بایان شوری است. اسیدیت خاک (جدول ۱) در محدوده قابلی است و با طبیعت پراکنش سیانوباکتری‌ها در چنین محیط‌های هم‌هانگی دارد [۱۴]. از نظر آهک خاک ۱ میزان آهک زیاد است (۳۰٪). میزان فسفر در هر دو خاک نسبتاً کم بوده ولی خاک ۱ از این نظر غنی‌تر است.
جذابیت وشناسایی مورفولوژیک و مولکولی گونه‌های جدید سیلانوتکتری... ندا سلطانی و همکاران

میزان پتاسیم در خاک آبی زای تاست و از نظر پتاسیم تنشی به جلبک وارد نماید است. بررسی میزان آهن نشان می‌دهد، با وجود تغییر رنگ خاک‌ها به سمت قرمز و آبی، میزان آهن در هر دو نمونه گونه‌ها روند و منگنز در سطح مرزی قرار دارند و لیل مقدار مس اندک است.

بررسی کلینیکال نشان می‌دهد که خاک ۲ به مراتب دیپتریز از خاک ۱ آثار کلینیکی را بر روی خود نشان داد. (حدود ۲ ماه پس از استفاده) خاک ۱ زودتر سبز شد، ولی تعداد کلیه‌های رشد یافته به روز خاک ۱ بسیار انگیزت بود (شکل ۴). این در حالی است که خاک ۲ بعد از نشان دادن کلیه‌های سیزرنگ به روز خود بترزیک کاملاً آزاده گشت به طوری که چنانکه در شکل ۳ نشان داده شده است، پس از مدیت وساحُنی کاملاً از کلینی پوشیده شده بود.

نکته جالب توجه دیگر آنکه تمام کلینی‌های رشد یافته به روز خاک ۲ از یک گونه تشکیل شده بودند. (L. sp. ISC ۴۰) بنابراین این می‌توان گفت که کلینی‌های تشکیل شده به روز این خاک، خالص (نکلیژیک) بووند. این در حالی است که بر روی خاک ۱ دو نوع کلینی رشد کرده بود که به شکل تقیب‌های مخلوط و وجود داشتند.

گونه ۲۵ L. sp. ISC گونه نهان در یک جلبک سبز از رده کورفیسی بود.

همچنین چنانکه در بخش مواد و روش‌ها گفته شد، برای کشت این دو خاک، از دو نوع محیط کشت استفاده شد. نتایج حاصل از استفاده از محیط‌های مختلف خاکی از آن بود که هنگام استفاده از محیط کشت N8 هنگام بر روی خاک‌ها رشد نکرد (حتی پس از ۲ ماه) و کلینی‌های رشد یافته فقط در هنگام کشت با محیط کشت پی‌دار شدند. در مراحل بعد این گونه‌ها جذابیتی شده و به محیط کشت جامد BBM حلال حاضر به شکل خالص در پژوهشکده علوم پایه کاربردی وجود دارند.

بحث و نتیجه‌گیری

تحقیقات بر روی سیلانوتکتریها در استان تهران به طور اخیر و در ایران به طور اعم، بسیار اندک است. در همین راستا نشان داده شد که مورفولوژیک زیادی که در محیط‌های مختلف کشت اتفاق می‌افتد، کنترل مورد توجه قرار گرفته است [۱۵]. البته با اشکاره کرده که تاکنون نشان ویژوال‌هایی در خصوص برخی از اعضای استیگوماناساسا صورت پذیرفته است [۱۶] ولی این تحقیقات در حوزه اعضای اسیلانوتکتریا اندک است. مقاله حاضر بخشی از نتایج پژوهشی را در بر می‌گیرد که در آن به جذابیت سیلانوتکتریهای استان تهران پرداخته شده است. نتایج این تحقیق نشان دستگاهی اندکی از موقعیت ناکانونومیک و نیز مورفولوژی دوگونه از اعتیاد اسیلانوتکتریس به دست دهد. این نتایج با کم شناسایی مولکولی که انجام شد (16S rRNA) نیاز خود را پیش می‌آورد.
تأثیری که انواع محیط کشت میتواند بر روی شکل سول و ریسه و میزان و نحوه آراشی رنگ‌یاری و حتی برخی صفات دیگر در جلبک‌ها بگذارد، از دو نوع محیط کشت استفاده شد. شکل ریسه در محیط کشت N8 و BBM با این محیط‌های کشت N8 و BBM انتخاب شد. چنین که در بخش نتایج گفته شد، محیط کشت N8 Nتوانست منجر به کلینیزاسیون شود، و هم‌اکنون مشاهده مربوط به رشد جلبک‌ها مربوط به محیط BBM بود. این می‌تواند به غافل بی‌خیز محیط کشت N8 Nسبت به محیط کشت BBM داد. این مشاهدات با نتایج مشابه هم‌اکنون دارد [17].

شکل ۶. خاک شماره ۱ (قرمز رنگ) سمت چپ و خاک شماره ۲ (آبی رنگ) سمت راست. در قسمت پایین وضعیت رشد كلکنی‌ها بر روی پلی‌پهپاس از دو ماه نشان داده شده است.

همیت محیط کشت هندگاهی بی‌خیز مشخص می‌شود که به بررسی آنالیز خاک‌های مورد کشت توجه می‌نماییم.

توجه فزیکی و شیمیایی این خاک‌ها نشان می‌دهد که روزه هم رفته، این خاک‌ها غنی‌های زیادی دارند. با برا ان نقش محیط کشت در برطرف کردن این فقر غنایی پررنگ‌تر می‌شود. همین فقر غنایی باعث شده است ضعیف این خاک‌ها شده است. ضمن آن که بررسی گونه‌های شناسایی شده نیز حاکی از این دارد که گونه‌های حساس قادر به رسید در این محیط نیستند. گونه‌های خانواده اوسیلاتوریاسه از جمله جنس فورمیدیوم (فلورولیفیبا) از

۳۲۶

