بررسی پترولوژی و محيط تکنولوژیایی سنگ‌های آتش‌نشانی آذربایجان

رضایی زارعی سهامیه، دانشگاه لرستان، دانشگاه آزاد اسلامی واحد آشتیان

هدایت طبیعی و محمود جلالی: دانشگاه آزاد اسلامی واحد آشتیان، گروه زمین شناسی

چکیده
منطقه پُر‌روش در استان مرکزی در 325 کیلومتر جنوب‌غربی تهران واقع شده است و به‌خاطر قرار گرفته‌های زیادی که در شمال خاوری و خاور آشتیان برون‌زم دارند، سنگ‌های آتش‌نشانی مورد نظر دارای ترکیب مختلف سنگ شالانی آندزیت-پزانت، آندزیت، پراکنده آندزیت، سابیت، روداسبست و روبیت است. به لحاظ سیاسی، سنگ‌های فوق متعلق به اونس (تودسین) "هابل" آندزیت تا "هابل" پراکنده آندزیت استفاده می‌شود.

ناحیه تخریب و آشتیان هستند. سنگ‌های پترولوژیک مرکب به‌صورت آورده شده‌اند و سنگ‌های قدیمیتر از تریاس در منطقه دیده می‌شود. سنگ‌های آتش‌نشانی اعم از گازه و توف گستره ووسیعی از منطقه را پوشانده است. فوران‌های آتش‌نشانی در هر دو میان بخشی و در تونل‌های صورت گرفتن است که ایجاد کردها و توپ‌های مربوط به آن هستند. اندازه حجمی فوران‌های اشبی و پراکنده سنگ‌های پازانت-پزانتی بر اثر سنگ‌های تولیدی درخت شده‌اند. ضمناً سنگ‌های پازانتی مراکشی با دیک‌های متعددی قطع شده‌اند. به لحاظ کانی‌شناسی سنگ‌های پازانتی به صورت بلوریکلاژی، فلدسبس آتکالان، کوارتز، کلیپروکسین، آمفیوپل و بروتیت هستند و الیوین نیز به‌مدت در سنگ‌های آندزیت پازانتی دیده می‌شود.

پذیرشکاری‌ها دارای ساختار منطقه‌ای و آمفیپل‌ها دارای حاصله شرکت‌های زیست‌محیطی و گردشگری است. از نظر زون‌شیپینگ، تکنولوژی، تغییرات عناصر اصلی، عناصر کم‌پراکنده و ضریب تودسین نسبت به سیلیس پس‌کرده شده که همگی پهن‌تر از زیر بخش‌های بوادر پازانتی حاصل‌کرده‌اند. براساس نمو‌داری پترولوژیک سنگ‌های پازانتی مانند ماهیت کالکتوکالکان هستند. همچنین با استفاده از نمو‌داری، جدا کننده حس‌پذیر زمستانی‌ها و سنگ‌های آتش‌نشانی مورد نظر در گستره‌های نواحی فوران‌های قطع شده است. متعلق به کمربند انزیت-پازانتی-پازانتی نمودار عناصر کم‌پراکنده برای سنگ‌های پازانتی شده است که از جمله به‌هم‌بزرگ‌سازی موجود در این نمودارها مربوط به عناصر استرایسیم و نیوبیوم است. همچنین بررسی الگو پراکنده عناصر نادر خاکی، تشکیل مانگمات کالکتوکالکان را از یک گذار بخشی قطعه فوقانی پس‌پاشیده می‌کند.

Zareisah@yahoo.com

227
مقدمه
سنگ‌های آتشنشانی بررسی شده در شمال خاوری و خاور آتشیان در ۲۳۵ کیلومتری جنوب باختری تهران قرار گرفته و دارای مختصات جغرافیایی ای ۵۰۰۰۰۱۸ طول شرقی و ۴۰۰۱۸ عرض شمالی است. بخش‌های برون‌زاد این سنگ‌ها در نواحی این، جاده آتشیان تقریبی، نهر قطور و سفیدگان دیده می‌شود. سنگ‌های باد به شدت در جهتگاه قرار در بخش‌های از روند ایران مرکزی و در امتداد کم‌ریختی اروپا و در استوانه‌ای دیده می‌شود. ناحیه پژوهشی دارای ساختارهای ساده‌گری و قدیم‌ترین سنگ‌های بخش‌های اطراف از حواشی‌های رسوبی و فرایند‌های آتشنشانی داشته است به گونه‌ای که فاروان‌های آتشنشانی احتمالی ناشی از حواشی رودخانه‌های بخش‌های اطراف محدود به هم و به‌خصوص حواشی کشاورزی بوده است که توسط زمان‌های مختلف ازون‌های رودخانه می‌سیزند

گرفته و مشاهده آن در سایر مناطق ایران نظیر تفت و خضراید (۱۲) نازی‌ده می‌شود. برون‌زاده‌ای سنگی در فاصله و محیط‌های آن در منطقه منطبق به مزوزی و سنوزیک است و سنگ‌های قدم‌تر از تریاس وجود ندارد (۱۲). به‌طور کلی، روستای و شرایط منطقه منطبق به ایران افزون زیرین است (۱۲). نسبت‌های اروه‌سنارنگ‌های رسوبی آذر، اثر آواری و جداگانه، نگاره‌ای با بیش از ۳۰۰۰۰ متر ضخامت است که به شک لپزه‌ای E6 شناخته می‌شود. فوروان‌های آتشنشانی در هر دو محیط خشک و دریایی صورت گرفته است که این‌گونا است و توانایی معزول آن است. از نظر جمعیت فوروان‌های اسیدی و حتی واسط بر فوروان‌های باریک برکتی دارند.

موقعیت جغرافیایی آتشیان و راه‌های دسترسی به آن در نقشه ایران شناسه این شده است (شکل ۱).

تاکنون نقشه زمین‌شناسی چهارگوش قم با مقياس ۱:۲۵۰۰۰۰۰۰۰ را ارائه (۱)، نقشه زمین‌شناسی تقریبی با مقياس ۱:۲۵۰۰۰۰۰۰۰۰ با حاجیان (۳) و نقشه زمین‌شناسی فرمی‌سی اسکالداریا (۲) به کرده‌اند؛ ولی نقشه زمین‌شناسی آتشیان تاکنون تهیه نشده است. با این حال بخش‌هایی از منطقه آتشیان در نقشه‌های زمین‌شناسی

شکل ۱ موقعیت آتشیان و راه‌های ارتباطی منطقه
پژوهش در این شکل نشان داده شده است

۲۲۸
روش کار
برای بررسی سنگ‌های انتخابی در چند ناحیه جدایگانه نمونه‌برداری صورت گرفته و حدود ۲۰۰ نمونه سنگی جمع‌آوری شده است. سپس مقاطع نازک از آن‌ها تهیه شد و پس از بررسی‌های میکروسکوپی و سنگ‌شناسی، ۱۰ نمونه سنگی نام‌گذاری شدند و به روش‌های EPMA، XRD، XRF و newpet، Minpet، igpet برای تجزیه و تحلیل نتایج حاصل از تجزیه شیمیایی نمونه‌ها از نرم‌افزارهای GCDkit

شکل ۲. نقشه زمین‌شناسی تفرش با مقياس ۱:۰۰۰۰۰۰۰۰۰۰ که منطقه آشتبان بر روی آن نشان داده شده است (هاجبیان، ۱۹۷۰)
سنگ‌های آتششناختی بر اساس بررسی‌های سنگ‌شناسی و داده‌های زنده‌شیمیایی و با توجه به بررسی‌های میکروسکوپی دارای ترمیم‌های مختلف بوده که به صورت آذرآواز و گاذار در مناطق مختلف برون‌زد داده شده است.

چنان‌که در مقامه گفته شد، سنگ‌های آتششناختی منطقه آشتشان به صورت گذاره و آذرآوازی در مناطق مختلف برون‌زد داده شده‌اند. به لحاظ پتروگرافی، بافت عمده سنگ‌های بررسی‌شده در ناحیه آشتشان پورفیری بوده‌اند و پورفیری میکرولیتی، میکرولیتی و غیره در بین انواع شیمیایی و نسبتاً غیراین‌رود قرار داشته‌اند. این باعث شده که در این منطقه، کوارتز (نواحی حاوی خورده‌گر خلخالی شکل) هورتیندل (با حاشیه سوخته)، بیونت و به مقدار کمتر پروکسن و دیگر انواع بافت غیراین به سه بخش تقسیم شده‌اند.

پروکسن به همراه هورتیندل و بیونت عمده‌ترین کانی‌های مافیک سنگ‌های سیستم مس‌ها شده‌اند. کانی‌های غیراین موجود در سنگ‌های شامل کلریت، کلریت زنده‌شیمیایی و اکسیدهای آهن مثل لیموپنت، هاستینت و منیتین است. بافت غیراین در سنت‌هایی از سنگ‌های را تشکیل می‌دهد.

شکل 4: پلوتوهای پلازیوکلاز با بافت غیراین در سنگ‌های سیستمی منطقه آشتشان (5X10 XPL).

شکل 3: پلوتوهای هورتیندل با حاشیه سوخته در اندرتی‌های منطقه آشتشان (5X10 XPL).

پژوهش‌های نشان می‌دهد که پتروگرافی دارای ترمیم‌های مختلف بوده که به صورت آذرآواز و گاذار در مناطق مختلف برون‌زد داده شده است.
جدول 1. نتایج حاصل از تجزیه شیمیایی سنگ‌های آتش‌نشانی منطقه آتشان، عناصر اصلی بر حسب دارد وزنی و
عناصر کمیاب بر حسب پی.پ.پ.ام.

<table>
<thead>
<tr>
<th>sample name</th>
<th>symbol</th>
<th>colour</th>
<th>SiO2 (%)</th>
<th>TiO2 (%)</th>
<th>Fe2O3 (%)</th>
<th>P2O5 (%)</th>
<th>K2O (%)</th>
<th>Na2O (%)</th>
<th>CaO (%)</th>
<th>MgO (%)</th>
<th>MnO (%)</th>
<th>FeO (%)</th>
<th>LOI (Volarta)</th>
<th>Rb (ppm)</th>
<th>Sr (ppm)</th>
<th>Y (ppm)</th>
<th>Zr (ppm)</th>
<th>Nb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>15</td>
<td>51.78</td>
<td>0.75</td>
<td>19.98</td>
<td>3.08</td>
<td>0.02</td>
<td>0.28</td>
<td>4.50</td>
<td>3.55</td>
<td>0.60</td>
<td>0.19</td>
<td>0.19</td>
<td>1.82</td>
<td>10.03</td>
<td>23</td>
<td>149</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>AB12</td>
<td>18</td>
<td>52.44</td>
<td>0.28</td>
<td>20.91</td>
<td>4.59</td>
<td>3.41</td>
<td>0.19</td>
<td>0.18</td>
<td>3.45</td>
<td>2.17</td>
<td>0.18</td>
<td>1.03</td>
<td>8.61</td>
<td>0.19</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>MB1</td>
<td>18</td>
<td>53.67</td>
<td>0.56</td>
<td>21.37</td>
<td>2.07</td>
<td>4.43</td>
<td>0.17</td>
<td>0.12</td>
<td>1.17</td>
<td>2.17</td>
<td>0.41</td>
<td>1.54</td>
<td>8.61</td>
<td>0.19</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE1</td>
<td>18</td>
<td>55.26</td>
<td>0.29</td>
<td>18.21</td>
<td>1.3</td>
<td>6.98</td>
<td>0.16</td>
<td>3.4</td>
<td>5.65</td>
<td>4.99</td>
<td>0.98</td>
<td>2.17</td>
<td>1.35</td>
<td>1.94</td>
<td>31</td>
<td>117</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>AE2</td>
<td>18</td>
<td>55.99</td>
<td>1.31</td>
<td>12.65</td>
<td>1.13</td>
<td>2.92</td>
<td>0.25</td>
<td>0.35</td>
<td>2.89</td>
<td>2.94</td>
<td>0.98</td>
<td>2.08</td>
<td>1.98</td>
<td>1.02</td>
<td>30</td>
<td>128</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>AE3</td>
<td>18</td>
<td>57.27</td>
<td>0.51</td>
<td>18.4</td>
<td>2.02</td>
<td>4.22</td>
<td>0.15</td>
<td>3.65</td>
<td>4.1</td>
<td>7.1</td>
<td>3.44</td>
<td>1.02</td>
<td>8.43</td>
<td>0.18</td>
<td>30</td>
<td>128</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>MB3</td>
<td>14</td>
<td>58.85</td>
<td>0.37</td>
<td>19.64</td>
<td>1.88</td>
<td>3.91</td>
<td>0.22</td>
<td>0.14</td>
<td>1.33</td>
<td>8.05</td>
<td>3.48</td>
<td>0.44</td>
<td>0.21</td>
<td>0.21</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE18</td>
<td>14</td>
<td>59.35</td>
<td>0.38</td>
<td>15.96</td>
<td>1.03</td>
<td>9.05</td>
<td>0.14</td>
<td>0.14</td>
<td>1.33</td>
<td>8.7</td>
<td>3.92</td>
<td>0.44</td>
<td>0.21</td>
<td>0.21</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE5</td>
<td>14</td>
<td>60.92</td>
<td>0.06</td>
<td>17.45</td>
<td>2.6</td>
<td>2.47</td>
<td>0.08</td>
<td>0.23</td>
<td>5.7</td>
<td>4.52</td>
<td>1.1</td>
<td>0.19</td>
<td>0.18</td>
<td>0.18</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE7</td>
<td>14</td>
<td>62.14</td>
<td>0.84</td>
<td>14.61</td>
<td>2.55</td>
<td>3.35</td>
<td>0.09</td>
<td>0.14</td>
<td>2.34</td>
<td>2.84</td>
<td>0.41</td>
<td>1.08</td>
<td>1.55</td>
<td>1.55</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE8</td>
<td>14</td>
<td>64.41</td>
<td>0.68</td>
<td>14.75</td>
<td>0.32</td>
<td>1.41</td>
<td>0.01</td>
<td>0.13</td>
<td>2.65</td>
<td>1.41</td>
<td>0.56</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE21</td>
<td>10</td>
<td>65.21</td>
<td>0.71</td>
<td>16.6</td>
<td>3.62</td>
<td>2.99</td>
<td>0.06</td>
<td>0.11</td>
<td>1.58</td>
<td>1.89</td>
<td>0.19</td>
<td>0.87</td>
<td>0.77</td>
<td>0.77</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE15</td>
<td>10</td>
<td>65.32</td>
<td>0.55</td>
<td>16.25</td>
<td>2.12</td>
<td>2.13</td>
<td>0.11</td>
<td>0.11</td>
<td>2.65</td>
<td>5.81</td>
<td>3.2</td>
<td>2.11</td>
<td>1.02</td>
<td>1.02</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE40</td>
<td>10</td>
<td>64.36</td>
<td>0.45</td>
<td>16.88</td>
<td>1.99</td>
<td>1.16</td>
<td>0.08</td>
<td>0.10</td>
<td>2.15</td>
<td>5.32</td>
<td>2.73</td>
<td>2.84</td>
<td>0.19</td>
<td>0.19</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE25</td>
<td>10</td>
<td>64.64</td>
<td>0.62</td>
<td>14.75</td>
<td>0.32</td>
<td>1.41</td>
<td>0.01</td>
<td>0.13</td>
<td>2.65</td>
<td>1.41</td>
<td>0.56</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AB12</td>
<td>12</td>
<td>67.93</td>
<td>0.39</td>
<td>16.42</td>
<td>3.65</td>
<td>2.31</td>
<td>0.07</td>
<td>0.02</td>
<td>2.02</td>
<td>2.38</td>
<td>0.19</td>
<td>0.97</td>
<td>0.77</td>
<td>0.77</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE88</td>
<td>12</td>
<td>68.23</td>
<td>0.26</td>
<td>15.33</td>
<td>2.69</td>
<td>2.21</td>
<td>0.12</td>
<td>0.04</td>
<td>0.97</td>
<td>4.87</td>
<td>2.36</td>
<td>2.11</td>
<td>0.77</td>
<td>0.77</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AE25</td>
<td>12</td>
<td>67.22</td>
<td>0.23</td>
<td>15.41</td>
<td>1.65</td>
<td>0.08</td>
<td>0.12</td>
<td>1.52</td>
<td>0.97</td>
<td>2.34</td>
<td>1.98</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>AB12</td>
<td>12</td>
<td>66.62</td>
<td>0.41</td>
<td>16.41</td>
<td>1.92</td>
<td>1.38</td>
<td>0.08</td>
<td>0.02</td>
<td>2.02</td>
<td>2.38</td>
<td>0.19</td>
<td>0.97</td>
<td>0.77</td>
<td>0.77</td>
<td>23</td>
<td>148</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>sample name</td>
<td>Th</td>
<td>Ga</td>
<td>Zn</td>
<td>Ni</td>
<td>V</td>
<td>Cr</td>
<td>Hf</td>
<td>Cs</td>
<td>Ta</td>
<td>Co</td>
<td>U</td>
<td>Sn</td>
<td>La</td>
<td>Ce</td>
<td>Nd</td>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>AB1</td>
<td>5</td>
<td>18</td>
<td>114</td>
<td>103</td>
<td>274</td>
<td>690</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>37</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>51</td>
<td>24</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>AE12</td>
<td>7</td>
<td>17</td>
<td>62</td>
<td>57</td>
<td>144</td>
<td>260</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>22</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>44</td>
<td>21</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MB2</td>
<td>32</td>
<td>20</td>
<td>79</td>
<td>20</td>
<td>27</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>55</td>
<td>6</td>
<td>4</td>
<td>60</td>
<td>102</td>
<td>30</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>AS4</td>
<td>13</td>
<td>17</td>
<td>47</td>
<td>8</td>
<td>11</td>
<td>110</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>AE7</td>
<td>24</td>
<td>18</td>
<td>70</td>
<td>63</td>
<td>144</td>
<td>280</td>
<td>4</td>
<td>1</td>
<td>21</td>
<td>3</td>
<td>3</td>
<td>68</td>
<td>147</td>
<td>49</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>AB2</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>12</td>
<td>31</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>55</td>
<td>2</td>
<td>2</td>
<td>52</td>
<td>94</td>
<td>36</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>MB5</td>
<td>11</td>
<td>17</td>
<td>39</td>
<td>9</td>
<td>11</td>
<td>80</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>20</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>41</td>
<td>15</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AE18</td>
<td>5</td>
<td>18</td>
<td>58</td>
<td>49</td>
<td>150</td>
<td>320</td>
<td>4</td>
<td>1</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td>42</td>
<td>24</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>AS1</td>
<td>20</td>
<td>17</td>
<td>35</td>
<td>12</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>54</td>
<td>3</td>
<td>2</td>
<td>40</td>
<td>77</td>
<td>29</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>AE15</td>
<td>13</td>
<td>19</td>
<td>69</td>
<td>63</td>
<td>148</td>
<td>330</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>23</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>72</td>
<td>29</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>AE1</td>
<td>4</td>
<td>19</td>
<td>96</td>
<td>37</td>
<td>176</td>
<td>260</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>33</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>AE98</td>
<td>5</td>
<td>16</td>
<td>63</td>
<td>86</td>
<td>217</td>
<td>490</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>32</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>40</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>AB40</td>
<td>31</td>
<td>19</td>
<td>30</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>31</td>
<td>54</td>
<td>6</td>
<td>3</td>
<td>43</td>
<td>75</td>
<td>23</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>AE21</td>
<td>11</td>
<td>18</td>
<td>68</td>
<td>115</td>
<td>170</td>
<td>420</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>48</td>
<td>2</td>
<td>6</td>
<td>30</td>
<td>56</td>
<td>24</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>AE88</td>
<td>7</td>
<td>19</td>
<td>79</td>
<td>38</td>
<td>168</td>
<td>150</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>55</td>
<td>2</td>
<td>3</td>
<td>19</td>
<td>44</td>
<td>20</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>AE40</td>
<td>10</td>
<td>20</td>
<td>118</td>
<td>101</td>
<td>210</td>
<td>450</td>
<td>5</td>
<td>1</td>
<td>29</td>
<td>5</td>
<td>4</td>
<td>24</td>
<td>50</td>
<td>22</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>AB12</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td>130</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>18</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>AB88</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>11</td>
<td>24</td>
<td>20</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>33</td>
<td>2</td>
<td>33</td>
<td>65</td>
<td>24</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>AE25</td>
<td>9</td>
<td>22</td>
<td>127</td>
<td>25</td>
<td>204</td>
<td>360</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>28</td>
<td>3</td>
<td>3</td>
<td>27</td>
<td>58</td>
<td>25</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>AB98</td>
<td>16</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>23</td>
<td>150</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>33</td>
<td>64</td>
<td>22</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
جدول ۲. تجزیه الکترون میکروپروپ بیروکسین موجود در سنگ‌های آندزیتی منطقه آنتی‌تیان

<table>
<thead>
<tr>
<th>اولیه</th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>Al<sub>2</sub>O<sub>3</sub></th>
<th>Cr<sub>2</sub>O<sub>3</sub></th>
<th>FeO<sub>2</sub></th>
<th>Mn O</th>
<th>Mg O</th>
<th>Ca O</th>
<th>Na2O</th>
<th>K2O</th>
<th>Tota</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد وزن</td>
<td>50.44</td>
<td>1.57</td>
<td>6.98</td>
<td>0.14</td>
<td>11.2</td>
<td>0.42</td>
<td>16.9</td>
<td>11.4</td>
<td>1.64</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>تعداد کاتيونها</td>
<td>Si</td>
<td>0.14</td>
<td>0.16</td>
<td>0</td>
<td>0.345</td>
<td>0.04</td>
<td>0.88</td>
<td>0.0</td>
<td>0.45</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Al4</td>
<td>Al6</td>
<td>Cr</td>
<td>Fe</td>
<td>Mg</td>
<td>Mn</td>
<td>Ca</td>
<td>Na</td>
<td>K</td>
<td>Wo</td>
<td>En</td>
</tr>
<tr>
<td></td>
<td>1.86</td>
<td>0.43</td>
<td>0.12</td>
<td>0.06</td>
<td>0.13</td>
<td>0.35</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>0.26</td>
</tr>
</tbody>
</table>

جدول ۳. تجزیه الکترون میکروپروپ بیروکسین موجود در سنگ‌های آندزیتی منطقه آنتی‌تیان

<table>
<thead>
<tr>
<th>اولیه</th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>Al<sub>2</sub>O<sub>3</sub></th>
<th>Cr<sub>2</sub>O<sub>3</sub></th>
<th>FeO<sub>2</sub></th>
<th>Mn O</th>
<th>Mg O</th>
<th>Ca O</th>
<th>Na2O</th>
<th>K2O</th>
<th>F</th>
<th>Cl</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد وزن</td>
<td>45.22</td>
<td>0.42</td>
<td>12.1</td>
<td>12.1</td>
<td>0.07</td>
<td>13.9</td>
<td>11.9</td>
<td>0.18</td>
<td>1.05</td>
<td>0.39</td>
<td>0.12</td>
<td>0</td>
<td>97.52</td>
</tr>
<tr>
<td>تعداد کاتيونها</td>
<td>Si</td>
<td>0.14</td>
<td>0.05</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Al4</td>
<td>Al6</td>
<td>Ti</td>
<td>Fe</td>
<td>Mg</td>
<td>Mn</td>
<td>Ca</td>
<td>Na</td>
<td>K</td>
<td>F</td>
<td>Cl</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.88</td>
<td>1.12</td>
<td>1.05</td>
<td>1.54</td>
<td>3.14</td>
<td>0.01</td>
<td>1.95</td>
<td>0.02</td>
<td>0.31</td>
<td>0.07</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴. تجزیه الکترون میکروپروپ بیروکسین موجود در سنگ‌های آندزیتی منطقه آنتی‌تیان

<table>
<thead>
<tr>
<th>نوع پلاژیکلاز</th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>Al<sub>2</sub>O<sub>3</sub></th>
<th>FeO<sub>2</sub></th>
<th>Mn O</th>
<th>Mg O</th>
<th>Ca O</th>
<th>Na2O</th>
<th>K2O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>اندریت (فیلکروست)</td>
<td>55.9</td>
<td>5.97</td>
<td>0</td>
<td>0</td>
<td>10.1</td>
<td>5.63</td>
<td>0.15</td>
<td>99.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد کاتیونها</td>
<td>Si</td>
<td>0.14</td>
<td>0.05</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>An</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Ab</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td>0.14</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

تجزیه الکترون میکروپروپ بیروکسین موجود در سنگ‌های آندزیتی منطقه آنتی‌تیان پس از اثرات فیلکروستی و شناسایی بازیک زنده که پیروکسی‌ها می‌باشند مشخص شده است. با این حال، غلظت مختلف سنگ‌های آندزیتی و بیروکسی‌ها اعم از پلاژیکلاز و فیلکروستی در سنگ‌های آندزیتی تابستان و سرمایه‌هایی از طبقه‌بندی‌های شیمیایی نیز استفاده شده است. بر این اساس، ترکیب مختلف سنگ‌های آندزیتی بازیک، اندریت، اندریت، ریوستریت و ریوستریت است. شمارهٔ نمونه‌ها شمارهٔ عالی، همگونی و شکل آنها و معیار دسته‌بندی نمونه‌ها بر اساس نرم‌افزارهای GCDkit و Minpet است.
جدول ۵. شماره نمونه‌ها، شماره علامت و معیار دسته‌بندی نمونه‌ها در این جدول مشخص شده است.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>GCDkit</th>
<th>minpet</th>
<th>میزان SiO2 در نمونه‌ها</th>
<th>معیار دسته‌بندی نمونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1</td>
<td>17</td>
<td></td>
<td>52 % <SiO2<57 %</td>
<td>18</td>
</tr>
<tr>
<td>AE12</td>
<td>18</td>
<td></td>
<td>52 % <SiO2<57 %</td>
<td>18</td>
</tr>
<tr>
<td>MB2</td>
<td>18</td>
<td></td>
<td>52 % <SiO2<57 %</td>
<td>18</td>
</tr>
<tr>
<td>AS4</td>
<td>18</td>
<td></td>
<td>52 % <SiO2<57 %</td>
<td>18</td>
</tr>
<tr>
<td>AE7</td>
<td>18</td>
<td></td>
<td>52 % <SiO2<57 %</td>
<td>18</td>
</tr>
<tr>
<td>AB2</td>
<td>14</td>
<td></td>
<td>57 % <SiO2<62 %</td>
<td>22</td>
</tr>
<tr>
<td>MB5</td>
<td>14</td>
<td></td>
<td>57 % <SiO2<62 %</td>
<td>22</td>
</tr>
<tr>
<td>AE18</td>
<td>14</td>
<td></td>
<td>57 % <SiO2<62 %</td>
<td>22</td>
</tr>
<tr>
<td>AS1</td>
<td>14</td>
<td></td>
<td>57 % <SiO2<62 %</td>
<td>22</td>
</tr>
<tr>
<td>AE15</td>
<td>14</td>
<td></td>
<td>57 % <SiO2<62 %</td>
<td>22</td>
</tr>
<tr>
<td>AE1</td>
<td>14</td>
<td></td>
<td>57 % <SiO2<62 %</td>
<td>22</td>
</tr>
<tr>
<td>AE98</td>
<td>10</td>
<td></td>
<td>62 % <SiO2<66 %</td>
<td>1</td>
</tr>
<tr>
<td>AB40</td>
<td>10</td>
<td></td>
<td>62 % <SiO2<66 %</td>
<td>1</td>
</tr>
<tr>
<td>AE21</td>
<td>10</td>
<td></td>
<td>62 % <SiO2<66 %</td>
<td>1</td>
</tr>
<tr>
<td>AE88</td>
<td>10</td>
<td></td>
<td>62 % <SiO2<66 %</td>
<td>1</td>
</tr>
<tr>
<td>AE40</td>
<td>12</td>
<td></td>
<td>SiO2>66 %</td>
<td>2</td>
</tr>
<tr>
<td>AB12</td>
<td>12</td>
<td></td>
<td>SiO2>66 %</td>
<td>2</td>
</tr>
<tr>
<td>AB88</td>
<td>12</td>
<td></td>
<td>SiO2>66 %</td>
<td>2</td>
</tr>
<tr>
<td>AB25</td>
<td>12</td>
<td></td>
<td>SiO2>66 %</td>
<td>2</td>
</tr>
<tr>
<td>AB98</td>
<td>12</td>
<td></td>
<td>SiO2>66 %</td>
<td>2</td>
</tr>
<tr>
<td>M silurian</td>
<td>8</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>N MORB</td>
<td>6</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>WP</td>
<td>2</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>SVZ calc-alkal</td>
<td>4</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>CVZe ANDES</td>
<td>5</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>CVZw ANDES</td>
<td>1</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>NVZa ANDES</td>
<td>11</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>St Andes</td>
<td>3</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

شکل ۳. در این شکل علامت و شماره نمونه‌ها در محیط minpet و GCDkit یک هم‌ارز است. نمونه‌ها در محیط انرژی زنده‌شماری استفاده شده و نشان داده شد است. برابر طبقه‌بندی سنگ‌های آتش‌شناختی منطقه آنتالیان از نمونه‌های مجموع آلکان در مقابل سیلس [۴]، دیوار روش و همکاران [۳] در مقابل Nb/Y Zr/TiO2 [۱۱] استفاده شده است. بر اساس این نمونه‌ها

۲۳۲
سنگ‌های آتش‌شانسی از نوع آندزیت، آندزیت، تراکی، آندزیت، داسیت، ریوسیت و ریولیت است (شکل‌های 4، 5 و 6).

شکل ۴. نمودار مجموع آکاکان (TAS) در مقابل SiO2 سنگ‌های آتش‌شانسی منطقه آتش‌اشتیان بر اساس این نمودار شامل آندزیت باژالی، آندزیت، تراکی آندزیت، داسیت و ریولیت هستند.

شکل ۵. نمودار دوامش و همکاران [۴] بر طبق این نمودار سنگ‌های آتش‌شانسی منطقه آتش‌اشتیان در محدوده آندزیت باژالی، آندزیت، تراکی آندزیت، داسیت، ریوسیت و ریولیت قرار می‌گیرد.

نمودارهای زئوشیمیایی و پترولولوژیک، تغییرات عناصر اصلی نسبت به سیلیس، ضریب تفریق و نیز زئوشیمی عناصر کمیاب بررسی شده‌اند که ارتباط و خویشاندی را بین ترم‌های مختلف سنگ‌نامه‌های میده و بیانگر تفریق از طریق این بلور بخشی است. برای تعیین نوع مانگ، سنگ‌های آتش‌شانسی و ارائه مدل.
زئنتیکی از نمودارهای مختلف پتروولوژی نظری ابروین و باراگار [5] و غیره استفاده شده است. براساس نمودارهای فوق ماسه‌های سازنده سنجش‌های اشکافی منطقه آتشیان عمدتاً کالکوکالکن است. فقط دو نمونه تاکیه به تولیدی را از خود نشان می‌دهند (شکل 7).

[شکل 6: نمودار ۲ Zr/TiO۲ در مقابل Nb/Y، بر اساس این نمودار سنجش‌های اشکافی منطقه آتشیان در قمرو بازالت سپاب آلکان، آندزیت بازالت، آندزیت، تراکی آندزیت، داسیت، ریوداسیت و ریولیت قرار گرفته‌اند.]

[شکل 7: نمودار AFM منطقه آتشیان از نوع کالکوکالکن استند.

برای تعیین جایگاه تکتونیکی سنجش‌های ماسه‌ای با استفاده از عناصر اصلی و کمیابی از نمودارهای مختلف MgO-FeOt-Al2O3 (پیرس و کان، ۱۹۷۷) و Zr (پیرس و کان، ۱۹۸۳) در مقابل Ti [7] و ثیار-پیروت/3-Nb/16 و Zr-Ti/100-Y/3 [12] استفاده شده است. همگی این نمودارها تعلق این سنجش‌ها به مناطق کورزابی و حاشیه‌های فعالی از قاره‌ای را نشان می‌دهند. (شکل 8 و 9).]
شکل 8. نمودار تکنولوژی ماکمایی وود [۱۴]، سنگ‌های آتشنشانی آشتیان در این نمودار در محدوده CAB با حاشیه‌ای مخرب قاره‌ای قرار می‌گیرند. میانگین حدود ۲۰ نمونه از بزرگ‌های پالئوزویک زیرین ایران با علامت ستاره برای مقایسه آنها در موقعیت WPB قرار گرفته است.

شکل 9. نمودار تکنولوژی مانگمال تیرس و کان [۷۷] بر طبق این نمودار سنگ‌های آتشنشانی منطقه آشتیان در قلمرو مناطق کوه‌زایی قرار می‌گیرند.

نمودار الگوی عادی‌سازی شده‌ی عناصر کیهان سنگ‌های آتشنشانی منطقه آشتیان نسبت به مورب نیز ترسیم شده است (۱۱۰)، به نقل از [۸۸]. از جمله طبقاتی که در این نمودار از آن‌ها بهره‌برداری شده‌اند، شکل‌گذاری نیوپپیوم الگوی نمودار عنبیکی سنگ‌های آتشنشانی منطقه‌ای پیشگیری مهمی در منطقه فورانش شده‌است (شکل‌های ۱۰ و ۱۱). از طرفی بررسی پرکارگی عناصر نادر خاکی شکل‌گذاری کالکوکالکان سازنده سنگ‌های آتشنشانی را از یک گزار بخشی گوشت فقانی تحت تأثیر آب‌گیری از لبه پوسته اقیانوسی فرورونده بیش‌پیش می‌کند.
شکل 11 نمودار علائمی عناصر کیهاب سنگ های آتش شناسی منطقه آشیان که نسبت به مورب به هنگار شده است.

شکل 10 نمودار علائمی عناصر کیهاب سنگ های آتش شناسی منطقه آشیان که نسبت به مورب به هنگار شده است.

N-type MORB (با علائم مثل) و Within plate alkali basalt (با علائم دایره) نسبت به Ra الشان می‌دهند.
نتایج‌گیری
بخش اعظم منطقه پژوهش بسیار کمتر از سنگ‌های نفوذی
پوشیده شده است. بررسی رخ‌ریزی‌های موجود نشان می‌دهد که در منطقه پژوهشی سنگ‌هایی قدمتیتر از تریاس وجود دارد. بررسی‌های الیولوژیک و فیزیوژانیک نشان می‌دهد که سنگ‌های انششانی متعلق به انسانیت (لوسنی)
و سلول‌ریزیک با دایک‌های متعدد قطع شده‌اند. این مقدار ترکیب می‌گمی طی پروردگاری مختلف را نشان می‌دهد. از
نظر حجمی آن‌دی‌ها باز بازی کمترین حجم و آن‌دی‌ها. تراکی آن‌دی‌ها، داسیتی‌ها، روی‌سیتی‌ها و روی‌سیتی‌ها
بیشترین حجم خروجی‌ها را شامل می‌شود. به عبارتی، برتوری حجمی با سنگ‌های اسید و هواستا است. از
سیگر، مقیاس ترکیب شیمیایی سنگ‌های انششانی با تعلق های درونی آن‌ها را در منطقه پژوهش نشان
می‌دهد. این احتمال وجود دارد که سنگ‌های خروجی و سلول‌ریزی‌ها نفوذی آن‌ها در داخل خاس‌گاهی مشترک باشد.
شواهد کاتاناسی، پتروگرافی، زیست‌شناسی و پتروژئیک همگی بیش از تبلور بخشی برای
تشکل سنگ‌های انششانی را نشان می‌دهد. بر اساس نمودارهای مختلف تعیین نوع می‌گمی، می‌گمی‌ای سازنده
سنگ‌های انششانی منطقه آشتیان از نوع کلی‌کلاکان مستند. ضمنا نمودارهای مختلف پتروژئیک و الیولوژیک
نمودار عنکبوتی تعلق سنگ‌های انششانی منطقه پژوهش به فاصله فعال نمودار قرار دارد. از اینجا که خاس‌گاه
تکنیکی سنگ‌های انششانی مورد بررسی به نحوی در ارتباط با منطقه فرورنده است، لذا می‌توان منشا آن‌ها
را از ذوب بافت گسترش فوقانی مالیوماتی‌های با انگکی‌ای‌شیک پوسته‌ای دانست. برای فهم بیشتر این موضوع نیاز
به داده‌های ایزوتوپی است.

منابع
1. امامی، محمد هاشم، شرح چهارbh ژیست‌شناسی چهارگوش، سازمان زمین‌شناسی و اکتشافات معدنی کشور(1370).
2. حاجیان، جواد؛ ژیست‌شناسی نتوش، سازمان زمین‌شناسی و اکتشافات معدنی کشور گزارش شماره 2(1380).
3. حاجیان، جواد؛ امامی، محمد هاشم؛ شرح چهارbh ژیست‌شناسی 100011 / فارس، سازمان زمین‌شناسی و اکتشافات
معدنی کشور، ورقة شماره 4059 (1370).
4. De La Roche, H., Laterier, J., Grand Claude, P., Marchel, M., A classification of volcania
5. Irvine T.N. & Baragar, W. R. A., A guide to the chemical classification of the common

