بررسی اثرات متقابل مس و میزان برخی عنصر در ریشه و اندام هوایی دانه‌های ذرت

لطفه پوراکی، مسعود خیامی، جلیل خرا: دانشگاه ارومیه

چکیده

dانه‌های ذرت با غلظت‌های مختلف مس (0, 25, 50 و 100 میکرو مولار) بدون و با EDTA به مدت 120 ساعت تیمار شدند. کاهش شدیدی در طول ریشه و وزن خشک و افزایش در نتیجه پتاسیم EDTA با افزایش غلظت مس در محلول غذایی در گیاهان تیمار شده با مس بدون شاهده شد. تجربه مس در ادامه زیرزمینی ممکن است بسیار هوابی بطور معنی‌داری بیشتر بود. با افزایش غلظت مس، میزان کلسیم، مسیمی، پتاسیم و آهن در ریشه و سیستم هوایی دانه‌های ذرت یافت. اعمال EDTA با مس موجب افزایش وزن خشک، طول ریشه

و کاهش نتیجه پتاسیم به میزان کشش شد. اعمال EDTA تجربه مس در ریشه و سیستم هوایی در کاهش جدا و بی‌بستگی عنصر در دیگر نیز اثرگذار داشت. در کل توانست اثر مسمومیت ناشی از مس را تاحذدی کاهش دهد.

مقدمه

مس (Cu) یکی از منابع است، و در بسیاری از فرآیندهای فیزیولوژیک در گیاهان شرکت می‌کند. مس

در ساختار پروتئین‌های تنظیمی، زنجیره انتقال الکترون فوتوسنتزی، تنفس متوکردنی، پاسخ به استرس

اکسیداتیو، متابولیسم دیواره‌های و سیگنال‌های هورمونی شرکت دارد.[17] هرقون Cu به عنوان

کوافکتور در پیشرفت (از نجوم هموگون Cu/Zn سوپراکسید دیسوموتاز، سوپراکسید اسیدز) و Cu2+ و

Cu4+ اکسیداز، لافکار، پلاستوسیلات و پلی فیل اکسیداز شرکت دارد. مس در گیاه به حالت Cu2+ موجود است.

Cu2+ و Cu4+ می‌تواند رادیکال هیدروکسیل سیم تولید کند که در نتیجه به DNA، RNA و

پروتئین‌ها و بیو موکول‌های نیکی آسیب می‌رساند.[10] هر چند این الگویی در غلظت باز و سیستم مسیمیت شديد

گیاه می‌شد که از نتایج آن، زردی، مردگی بافتی، جلوگیری از رشد و نمو، ممکن است و رشد ریشه

است.[2, 19].

تجربه فلزات سنگین را می‌توان رمز ریزی باعث می‌شود که در خاک‌های خسته‌گیری از فلزات سنگین نیز درک که بین

گیاهان دیگر سرمایه‌ای در دیدگاهی از طریق پس‌کش زنوتیب گیاه و می‌تواند گاه بیماری‌ای ناشی داده می‌شود.[19] تجربه

ولاده‌ها کلیدی: ذرت، مس، EDTA، کلسیم، مسیمی، پتاسیم، آهن و نتیجه پتاسیم. در میانه 87/9/18

دریافت 87/8/5

† Zea mays L.
غلطه‌های شدید از فلزات در گونه‌ها و کونفیوئیری که می‌توانند روند خاک‌های آلوده رشد کنند، می‌تواند با طبیعی از میکروسپورسیون بالقوه در سطح سلولی صورت گیرد که احتمالاً در سمی‌تزا دای تبدیل. به نظر میرسی که 
این میکروسپورسیون با ابتدا به دنبال یابی پروتئین‌های خاص، که می‌توانند در برقرار اثرات فلز سنگین مقاومت کند. با
فلز‌گیری از انبساطه شدن گلطه‌های سلیقه در جایگاه‌های حساس درون سلولی، از اثرات آسیب‌رسان جلوگیری
می‌کنند.

از شلاته سنگین، ویاژن سنگین، مانند اینلین دی امین تنا استیک اسید (EDTA)، برای زهودن
فلزات از خاک‌ها استفاده می‌شود. در بررسی هایی که بر این اصلاح خاک‌های آلوده به فلز سنگین توسط گیاهان
انجام یافته است، نشان داده شده است که طوری فلزات جنگ گیاه‌های می‌شود که آن‌ها را در خود به مقدار
زیادی انبساطه می‌کند و با مواد شلاته کننده کمپلکس تشکیل می‌دهند. لومبی و همکاران (2001) گزارش
کردند که تحرک فلز سنگین را در خاک و جنب آن را به وسیله ریشه‌ها به ترتیب افزایش می‌دهد,
که با سهته‌های ذرت سبب شده است و مثل سایی انتقال این
مواد به سبک هواپیایی را کاهش می‌دهد پس
EDTA در عین بر انتشار محدود شدن فلزات به سطح ریشه‌ها
بیشتر کارامدتر است تا انتقال آن از ریشه‌ها به سطح آن

مواد و روش‌ها

بذرها ۱۲ ساعت، ۱۲ ساعت در اینجی به‌طور کلی، کشاورزی، قبل از کشت به مدت ۱۰ دقیقه با مطلوب 
ضدعفونی و بعد با آب مقطع کاملی است و به داده شدید. طوری که می‌تواند به قطر ۹ سانتی‌متر قبل از
اقدام به کشت به مدت دو ساعت در آب در دمای ۵۰ درجه سانتی‌گراد قرار گرفته. در پایان یکس دوره‌ی مورد
پرتره‌ی این محتوایی که به هر جای از آن‌ها در به وق عضایی واکنش‌های نمایندگان سبب استفاده از یک
پنس استریلیت مکرون‌ده دوباره که
۱۲ ساعت قبل از کشت در داخل آب مقطع قرار گرفته و دوره آسان را طی کرده بودند، در داخل آن‌ها کشت
وسیله کلیه پرتره‌ها در داخل انکوباسور در ۲۵ درجه سانتی‌گراد به مدت دو ساعت روز داده شدند. بعداً
داروست‌سازی سه روز به داخل دمای‌های کشت محتوای مس (۰٫۲ و ۰٫۵، ۱ و ۱۰۰ میکرو مولار) متقاطع شد. آزمایش در قابل
(CDR) با ۵ تیمار
۲۰ میلی‌متر هگونگ با غلطه‌های مختلف مس
(CuSO4.۵H2O) استفاده شد.
و هر تیمار در ۳ نتایج انجام شد. برای بهبود محتوایی
Cu از سولفات‌های مس (۰٫۲ و ۵). در طی این دوره
داروست‌سازی به مدت ۱۲۰ ساعت در اتاق کشت با دوره تورلی ۱۶ ساعت روزدانی و ۸ ساعت تاریکی شد
۱۰۰۰ نوی ۱۲۷/۲۷ درجه، دمای C ۱۲/۵۷/۲۷ درجه، روتاتور و رینتیک ۸۵۰/۸۵۰ دقیقه. در طی این دوره
سولفور هگونگ به سطح پیک بار تنشی گشته‌است. پس از کشت ۱۲۰ ساعت طول و زنک خشک‌ریزش‌ها
اژدر می‌گیرد. خشک دندان نمونه‌ها برای تعیین وزن خشک و برخی آزمایش‌ها که نیاز به وزن خشک نمونه‌ها

1. Lombi 2. Zea mays L.
پربررسی اثر مقدار مس و ЕDTA بر ذرت

پربررسی اثر مقدار مس و ЕDTA بر ذرت

بررسی اثر مقدار مس و ЕDTA بر ذرت

پربررسی اثار مقدار مس و ЕDTA بر ذرت

پربررسی اثمانی بیشتر می‌باشد...
نتایج حاصل از اثر مس به تهیه‌ی و اثر آن به همراه EDTA بر طول ریشه‌ها در نمونه‌های اولیه است. نتایج حاصل از بررسی‌ها بر طول ریشه در گیاهان تیمار دیده گویای آن است که با افزایش غلظت مس طول ریشه نیز کاهش می‌یابد (نمونه‌ی 1) تیمار تأمین مس و EDTA. رشد طولی ریشه در شاهد و غلظت ۲۵ میکرو مولار مس نسبت به نمونه‌های تحت تیمار مس بدون کمتر است و در غلظت‌های بالاتر از ۲۵ میکرو مولار مس، رشد طولی ریشه را نسبت به گیاهان تحت تیمار مس بدون افزایش داده بود، که طبق باره‌ی عمودی که گویای احتراف معیار است. این تغییرات در گیاهان تحت تیمار نسبت به بدون EDTA معنی‌دار است.

نمودار ۱. اثر ترکیب‌های مختلف مس و EDTA بر رشد طولی ریشه در گیاه نتیج باره‌ی عمودی گویای SE ± است.

نمودار ۲. اثر ترکیب‌های مختلف مس و EDTA بر وزن خشک در گیاه نتیج باره‌ی عمودی گویای SE ± است.
نتایج حاصل از اثر مواد مختلف و EDTA بر نشتن پتاسیم به محيط کشت در نمونه‌های مختلف مس به مازاد K+ به محيط کشت 3 آورده شده است. نتایج نشان می‌دهد که در حدود دو برابر شاهد است. افزایش نشتن پتاسیم به محيط کشت از ناحیه‌های مختلف باید ثابت می‌باشد. طبق این نمونه‌های تحت تیمار تعیین نشته‌های تحت تیمار مس بدون EDTA وتا مس و EDTA نشته پتاسیم نسبت به نمونه‌های شاهد تحت تیمار مس بدون EDTA و در همه نمونه‌های تیمار شده با مس، EDTA نشته پتاسیم به محيط کشت را نسبت به گیاهان تحت تیمار مس بدون کاهش داده است، که طبق باره‌های عملی که گیاهان انحراف معیار است این تغییرات در گیاهان تحت تیمار EDTA نسبت به بدون EDTA معنی‌دار است.

نمودار 3. اثر ترکیب‌های مختلف مس و EDTA (مس + EDTA) بر نشتن پتاسیم به محيط کشت در گیاهان نهایی باره‌های عملی که گیاهان تحت تیمار EDTA نسبت به بدون SE-ر. است.

نتایج حاصل از بررسی اثر مس و EDTA بر میزان عنصر در سیستم‌های میکرووریکس و تحت تیمار تیمار نسبت به ریشه بیشتر است و با افزایش میزان کلسیم منیزیم و پتاسیم در سیستم‌های میکرووریکس تحت تیمار مس در جدول 1 و در ریشه‌ها در جدول 2 آورده شده است. طبق این نتایج، تجمیع مس در ریشه گیاهان تحت تیمار نسبت به ساقه بیشتر است و با افزایش غلظت مس، بر میزان مس تجمع یافته در ریشه و سیستم‌های نیز افزوده می‌شود.

غلظت مس، میزان کلسیم، منیزیم، پتاسیم و آهن در ریشه و سیستم هوایی کاهش می‌یابد.

نتایج حاصل از بررسی اثر مواد مختلف و EDTA بر میزان عنصر در سیستم‌های میکرووریکس و تحت تیمار مس در جدول 3 و ریشه در جدول 4 آورده شده است. طبق این نتایج، تجمیع مس در ریشه گیاهان تحت تیمار نسبت به سیستم‌های میکرووریکس تحت تیمار مس است و با افزایش غلظت مس، بر میزان مس تجمع یافته در ریشه افزوده می‌شود. میزان مس در سیستم‌های میکرووریکس تحت تیمار EDTA نسبت به ریشه‌ای گیاهان و همچنین سیستم‌های میکرووریکس تحت تیمار مس بدون EDTA کمتر است.
بررسی اثرات متفاوت مس و EDTA بر نشانه‌های میزان برخی عناصر

بر میزان کلسیم از قانون خاصی بستگی نمی‌کند و میزان کلسیم در سیستم هواپی و ریشه گیاهان تحت تیمار مس و EDTA در غلظت ۲۵ μM تحت تیمار مس و EDTA (۲۵ μM) نسبت به شاهد کاهش می‌یابد؛ ولی در غلظت‌های بیشتر از ممکن است میزان کلسیم بیش از غلظت‌های خود در سیستم آهن در ریشه و سیستم هواپی گیاهان تحت تیمار مس و بدون EDTA در همه غلظت‌های مس به غلظت‌های مس بدون EDTA نسبت به گیاهان تحت تیمار مس بدون EDTA در همه غلظت‌های مس به غلظت‌های مس بدون EDTA نسبت به گیاهان تحت تیمار مس بدون EDTA در غلظت‌های ۲۵ و ۵۰ میکرومول کاهش، ولی در غلظت‌های ۵۰ و ۱۰۰ میکرومول افزایش یافته است.

جدول ۱: اثر ترکیب‌های مختلف مس و مس (EDTA) على میزان عناصر سیستم هواپی در گیاه درخت (mg.g⁻¹ DW). نتایج موجود بین میزان‌های سیستم هواپی در گیاه درخت (mg.g⁻¹ DW) نشان داده شده است از لحاظ امیری در سطح احتمال ۵٪ معنی‌دار است.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>K</th>
<th>Fe</th>
<th>Mg</th>
<th>Ca</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت مس</td>
<td>۰</td>
<td>۵</td>
<td>۱۰</td>
<td>۲۵</td>
<td>۵۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

جدول ۲: اثر ترکیب‌های مختلف مس و مس (EDTA) على میزان تعدادی از عنصر در ریشه گیاه درخت (mg.g⁻¹ DW). نتایج موجود بین میزان‌های هر سانتی‌متر که با علائم نشان داده شده است از لحاظ امیری در سطح احتمال ۵٪ معنی‌دار است.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>K</th>
<th>Fe</th>
<th>Mg</th>
<th>Ca</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت مس</td>
<td>۰</td>
<td>۵</td>
<td>۱۰</td>
<td>۲۵</td>
<td>۵۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

جدول ۳: اثر مس + EDTA بر میزان تعدادی از عنصر در سیستم هواپی گیاه درخت (mg.g⁻¹ DW). نتایج موجود بین میزان‌های هر سانتی‌متر که با علائم نشان داده شده است از لحاظ امیری در سطح احتمال ۵٪ معنی‌دار است.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>K</th>
<th>Fe</th>
<th>Mg</th>
<th>Ca</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت مس</td>
<td>۰</td>
<td>۵</td>
<td>۱۰</td>
<td>۲۵</td>
<td>۵۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

۱۲۶
بیانگری ها هر سانتیمتر مربع بخشی از

جدول ۴. اثر (μg·g⁻¹DW) (EDTA) بر میزان تعدادی از عناصر در ریشه‌های غلظت‌های مختلف

<table>
<thead>
<tr>
<th>عنصر</th>
<th>غلظت مس (μM)</th>
<th>غلظت Ca (μM)</th>
<th>غلظت Cu (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>774±0/0/5</td>
<td>33±0/0/4</td>
<td>0/0/0/0/6</td>
</tr>
<tr>
<td>Fe</td>
<td>492±0/0/5</td>
<td>772±0/0/4</td>
<td>492±0/0/4</td>
</tr>
<tr>
<td>Mg</td>
<td>492±0/0/5</td>
<td>492±0/0/5</td>
<td>492±0/0/5</td>
</tr>
</tbody>
</table>

بحث

بررسی علائم ظاهری در گیاه در تیمار تیمار غلظت‌های مختلف مس نشان داد که با افزایش غلظت مس در گیاهان، برگ‌های علامت می‌گیرد راه‌های اکثرین تکه‌های شش حاشیه‌ای برگ‌ها داده می‌شود. این نتایج با نتایج حاصل از تکه‌های زار و آلو، تیمار گزارش شده است که زار نیز ممکن است در اثر کمبود آهن الگه‌دانه و گیاه‌های جوان گیاهان تحت تیمار مس نیز ممکن است در اثر کمبود آهن الگه‌دانه و گیاه‌های جوان گیاهان تحت تیمار دیده نیز آن را تایید می‌کند. این استدلالات ناشی از اسطوره‌های کلرورژیش شود [۵،۱۳].

کاهش معنی‌دار برای وزن خشک ریشه ناشی از اثر سرمایه مس در این اندام است. از آن جا که ریشه اولین اندامی است که در معرض سرمایه شنید قرار دارد و بیش از سایر اندامهای در معرض آسیب عوامل بیولوژی قرار می‌گیرد، سرمایه می‌تواند کاهش رشد آن را بیش‌تر از اثر سمومیت مس در گیاهان، ازونیتوده و همکاران زود و همکاران و یانگ و کوبی [۲۴]، در تحقیقات مشابه گزارش‌های دیده‌اند. رشد ریشهها و ظهور آنها است خاکدسته چرب کننده آب و مواد غذایی به عوامل زیست محیطی بستگی دارد. تنش فلزات سنگینی از جمله عوامل محور کننده رشد ریشه است. با افزایش غلظت Cu کاهش تعداد تراکمه کننده مشاهده می‌شود، که این نیز ممکن است از عوامل کاهش وزن خشک ریشه باتش کاهش شدید حجم ریشه متعکس کننده ارتباط آن با کاهش بیومس است که آن در سنگینتی سنگینتی با کاهش قیمت سولئی و ترکیب آن است [۲۰].

نتایج حاصل از سنجش میزان مس در سیستم خوراکی و زمینی نشان داده‌است که بود که این مس بشری در اندام زمینی در گیاه دیده تمر می‌پاید. میزان جذب مس توسط گیاه غلظت آن در گیاه به شرایط محیطی، فیزیولوژیک

بررسی اثرات متقابل مس و EDTA بر نشان‌های مدل و میزان برخی عناصر...

طوفان پوراکر و همکاران

و عوامل بیولوژیکی است بیشتر دارد. ریشه‌ها معمولاً محتوای مس بیشتری نسبت به سیستم هوایی نشان می‌دهند، زیرا آنها اولین اندام‌هایی هستند که در ارتباط با مس قرار می‌گیرند [23]. و پیوندهای فلزات مسی در بافت‌های ریشه و ریشه‌های زنده با مس سیستم هوایی جلوگیری می‌کند. بنابراین نشان‌های ریشه بسیار مهم است. زیرا ریشه‌ها می‌توانند به عنوان مخلوط اصلی برای رسوب‌گیری و غیرفعالسازی فلزات عمل نمایند [24].

اثر مس بر پایداری غشای سلول‌های ریشه با اندازه‌گیری میزان برونتراوش پتاسیم بررسی شد. پتاسیم کاتیونی را طریفیتی است و عنصری بربرصر، ضروری و مهم است که در داخل سیتولپلاسم و واکول‌ها تجویز می‌باشد. فعالیت انجام مس آن را به عنوان عاملی در و اکتش‌ها انتقال انرژی سلولی مطرح می‌سازد. همچنین مس در داخل پاتاسیلی برای ایجاد حساسیت اکسیداتو به صورت افزایش غلتان است [25]. برونتراوش مس آزاد بین سلول‌های میکرود الا این وارد واکنش شده و رادیکال آزاد هیدروکسیل تولید گردیده که به نوبه خود موجب پرانکسیداسیون چربی می‌شود [26]. به علاوه، مس می‌تواند جایگزین کاتیون‌های نیتروفیتی در ماکرومولکول‌ها شود. که موجب غیرفعالسازی گذشته در سرعت برونتراوش K+ به طور گسترده‌ای به عنوان K+ از ریشه‌ها است سرعت برونتراوش سخته است [27]. می‌تواند از این‌رو برونتراوش طول دارد K+ در گیاهان سالین کوکوبالس [28]، می‌مولوس گواتوس [29] و آرای فیزیولوژیکی G ساختاری می‌گذارد برای انتقال اسید اکسیداتو ساختاری [30] و K+ می‌تواند در طریق تغییرات در غلتان مسیم می‌مکن این پاسخ فیزیولوژیکی گیاه در مقابل سیستم فلز باشد [31]. ژن اثر مس در جنبه و انتقال این نیز مشاهده شده است [32]. برونتراوش K+ می‌تواند از طریق انتشار از جنبه داخلی گیاه و یا از طریق کانال‌ها انجام گیرد. اصلی به چربی غشا می‌تواند نتیجه‌ای از پرانکسیداسیون آن‌ها در طی اسید اکسیداتو و احتمالاً تخرب غشا بانش که آن هم موجب نشت سلول می‌شود [33].

یون‌های مس اضافی کمبود عناصر ضروری ضروری دیگر را به دلیل رقابت در جنبه به وسیله ریشه همراه با مهاریون. فلز وابستگی به واکنش‌ها می‌کند [34]. کاهش معنی‌داری در محتوای پتاسیم، آهن، نیکل و کلسیم در بافت‌های گیاه تا ریشه نسبت به مس مس می‌شود. مس می‌تواند به جانشینی یون‌های کلسیم‌های فضای از ریشه‌های دارد [11]. به نظر می‌رسد که تغییرات در غلتان مسیم می‌مکن این پاسخ فیزیولوژیکی گیاه در مقابل سیستم Fe3+ بود. تعیین اثر مس در جنبه انتقال این نیز مشاهده شده است [36]. مس می‌تواند اکتش‌ها تغییرات را بسیار دارد. این عمل مخصوصاً در مولکول‌های کلوروفیل رخ می‌دهد و موجب کاهش فتوسنتز در طی سیستم می‌شود [20].

1. Silene cucubalis 2. Mimulus gutatus
نتایج حاصل از اعمال توماس و EDTA نشان می‌دهد که این ماده می‌تواند اثر سرمایه‌دار سرک و کاهش داده و EDTA می‌تواند بسیار مهیب به عنوان شناخته‌نامه سبب غشا در طی اعمال فلز سنگین را کاهش و رشد طولی ریشه‌ها را هم افزایش دهد. شانه کننده‌های سنگین بر این این اثر استکب (EDTA) برای زودن اقلام از خاک‌ها استفاده می‌شود. در بررسی‌هایی که برای اصلاح خاک‌های آلوده به فلز سنگین، توسط گیاهان اندازه‌گیری شده است نشان داده این که ظاهرًا فلزات جنوب گیاهانی می‌شود که آنها را در خود به مقدار زیادی انبیانشته می‌کنند و با مواد شالته کننده کمیکس تشکیل می‌دهند. به هر حال به نظر میرسد که ریشه گیاهان این مولکول‌های بزرگ را به آسانی جذب می‌کنند ویله عقدی عمومی از مانند گیاه‌شناسی، شانه کننده‌های سنگین ویله وان دارای خواص نمی‌کنند. در حقیقت کاهش فلز سنگین توسط گیاه در حضور شانه کننده‌ها گزارش شده است در ضمن این که شانه کننده‌ها موجب غیرمتغیر شدن فلز سنگین می‌شود. با شانه‌شناسی مس به این ترتیب، سر زائده در بافت‌های گیاهی کاهش یافته و موجب می‌شود که آثار مسمومیت مس نیز در گیاهان کنترل شود و در نتیجه تولید بیوماس بیشتر در گیاهان در نتیجه افزودن EDCA به محیط کشت مشاهده می‌شود که با تغییر حالت "ناتاختمان" و همکاران، 2007. [۴] هم‌سیبی نشان می‌دهد. آن‌ها (2001) گزارش کردند که تعادل فلز سنگین در خاک و EDTA گرددن که جذب آن به وسیله ریشه‌ها افزایش می‌یابد ویله به افزایش می‌دهد. Zn، Pb و Cd می‌تواند در انتقال فلزات سنگین مثل Cu در ساختار زنت‌ر در داده به‌طور گام‌گذاری انتقال این مواد به طور در حدی با همراهی آن را کاهش می‌دهد پس در علیه EDTC. بر انتشار محدود شده فلزات به سطح ریشه‌ها بیشتر کارآمدتر است تا انتقال آن ریشه‌ها به ساقه‌ها [۱۶].

پیلاک و همکاران (1997) گفتند که اعمال EDTA در خاک گنج‌انگیز را در آلودگی چندگانه خاک کاهش می‌دهد. به‌طور جالب، سلولارگانیسمها شانه‌ها کننده‌های سنگین را کنترل نژادی می‌کنند، و آن‌ها روی این موضوع حاضر به ارائه می‌شوند. در گذشته‌هایی با مهارت زیست‌شناسی خاک نیز هستند. [۳]. این مواد دارای اثرات می‌توانند از فلور میکرووی خاک نیز هستند. [۳].

منابع

۱. طهیه فرودنیا، بررسی اثرات فیزیولوژیکی و پیش‌سازی‌نامی آن‌گونه سرب بر دانه‌سازی‌های ذرت، pH بر جمع سرب و کانال‌سازی‌های مقاومت ذرت در برای اهداف سرب. پایان نامه دکتری. دانشگاه ارومیه گروه زیست‌شناسی (1383).


