بررسی اثرات کاربرد مکروسکلیک دی‌آمید دینیزوسولفوكسید بر فعالیت آنزیم‌های آنتی‌اکسیدان‌ها، بیومارکر‌های حاصل از تخریب رادیکال‌های اکسیژنی و خصوصیات بافت‌شناسی Balb/C کبد و پیش‌بینی نزدیک مسعود مشهدی اکبر بحور، مهناز آذری، عباس شکری: دانشگاه تربیت معلم

حکم دانشیزه: دانشگاه پیام‌نور

چکیده

مکروسکلیک دی‌آمید دینیزوسولفوكسید، ترکیبی است با واحدهای طولانی‌تری که سالم، سلامت و حیاتی می‌باشد. این دارو در حال حاضر برای کنترل کبد و دیگر آنزیم‌های حاصل از تخریب رادیکال‌های اکسیژنی به کار می‌رود. در این مطالعه، به منظور بررسی تأثیرات مکروسکلیک دی‌آمید دینیزوسولفوكسید بر فعالیت آنزیم‌های آنتی‌اکسیدان‌ها، بیومارکر‌های حاصل از تخریب رادیکال‌های اکسیژنی و خصوصیات بافت‌شناسی Balb/C کبد، از آن استفاده شد.

نتایج نشان داد که مولکول LD۵۰، ۲۵۰ میکروگرم بر کیلوگرم وزن بد است بطوری که subLD۵ به غلطی ۱۵۰۰ میکروگرم بر کیلوگرم وزن بد می‌باشد. بعد از یک هفته براتری با فیزیولوژیکی کد نشان داد که سلول‌های خودتستی، طناب‌های خودتستی، سلول‌های کویپر، صورت‌های و فضای پورتان در مقایسه با گروه پزشک گونه‌های معنی‌داری دارند. در حالت باعث شدنی بیشتری از جمله داد که حجم وزن بیشتر است، تعادل سلول‌های بیشتری و قدرت لوله‌های مناسب، تعادل سلول‌های اسپرماتوگونی نوع A و B، اسپرماتوزیت‌های امیدی و اسپرماتوزیت‌های سلول‌های سرطانی تهیه می‌شود.

تعداد آنزیم‌های آنتی‌اکسیدان شامل سوپراکسید دیاسموتاز، کاتالاز، گلوتاتیون، پروپیداز در کبد و پیش‌بینی در یک روند واکنش به غلطی روز به افزایش گاهی می‌باشد. این افزایش برای بیومارکر‌های تخریب رادیکال‌های اکسیژنی معنی‌دار می‌باشد.

در این مطالعه، به دنبال ارزیابی می‌باشد. این دارو در حال حاضر برای کنترل کبد و دیگر آنزیم‌های حاصل از تخریب رادیکال‌های اکسیژنی به کار می‌رود. در این مطالعه، به منظور بررسی تأثیرات مکروسکلیک دی‌آمید دینیزوسولفوكسید بر فعالیت آنزیم‌های آنتی‌اکسیدان‌ها، بیومارکر‌های حاصل از تخریب رادیکال‌های اکسیژنی و خصوصیات بافت‌شناسی Balb/C کبد، از آن استفاده شد.

ولایه‌های کلیدی: مکروسکلیک دی‌آمید، سپت زیست خانم‌یار، آنزیم‌های آنتی‌اکسیدان‌ها، بیومارکر‌های حاصل از تخریب رادیکال‌های اکسیژنی.
مقدمه

ماکرووسیلیکی دی امیدها ترکیباتی هستند که در مسیر تولید آزکرودان اثره (Aza Crown Ethers) را به وجود آمده و خالص می‌گردد. بنابراین بسیاری از خواص کرون اثره را که ترکیباتی هتروسیلیکی هستند دارا می‌باشند؛ از جمله این که همانند آن‌ها از واحدهای اتیلن اکساید با پیوندهای کووالنت که مجموعاً یک حلقه تنازی شکل تشکیل می‌دهند شدیدان در ماکرووسیلیکی دی امیدها به جای اتیلن اکساید کرون اثره - (NR)

جایگزینی NH، جای یک اتم اکساید مسیر شده و باعث تب همگونی می‌شود. در ترکیب بررسی شده، عامل سولفوسید به دریافت اتم اکساید در نظر گرفته شده و با انتقال از عرض غشاء منجر به تعیین غلظت این بیوتاپیک در طرف غشاء هیدروکن به بیشتر و همچنین در نتیجه انتقال فاز به داخل حلقه تنازی شکل می‌انجامد. [1]

این مواد با داشتن عامل شیمیایی غیرقطی توسط خارج از حلقه حوزه، خاصیت اسپیروئی و در داخل جریان خاصیت آب‌سنجی دارند. از همین روی می‌توانند از هم‌نها مایعی به لبیک عضلانی زیستی عبور کنند. این است که می‌توانند به داخل حلقه نفوذ و سپس به آن مصله نشده و با انتقال از عرض غشاء نمک به تعیین غلظت این بیوتاپیک به دنبال دارد [2].

بررسی کرون اثره و مشقت‌اند آن‌ها در طی سال‌های اخیر دست‌آوردهای جدی و با ارزشی در داروسنجی و زیست‌شناسی داشته است که زمینه استفاده‌گسترده از آن‌ها را حتی در یک‌شکل فرام نمو است؛ به طوری که برخی از آن‌ها به دلیل اثرات ضدایمن‌کننده [3] و ضد سرطانی [4] مورد استفاده قرار گرفته‌اند. از آنجا که همواره این‌ها می‌شود، لازم است اثرات سپید سلولی خاصیت در پیش از کاربرد در انسان بررسی شود تا در صورت آن‌ها در سطح پیش‌تر از غلظت سلولی در vivo شرایط استفاده‌های نیازمند از آن‌ها مراقب شود. در صورتی که اثرات سیمی از این مواد شیمیایی به عنوان مواد گزینوپاتیک مشاهده شود، اثرات اسکیدانو می‌تواند از مزون‌های مصرف‌پذیر برای اعمال گونه زیستی باشد که طی آن تولید گونه‌های رادیکال‌کسیدنی افزایش می‌یابد [2].

این رادیکال‌ها به‌طور طبیعی در موقعیت‌هایی در طی متابولیسم تولید می‌شوند، ولی غلظت آن‌ها با سیستم دفاعی همواره در سطح پایین نگه داشته می‌شود [8]. هنگام روابط بینی سیستم زندگی به‌روز و می‌گردد. این مواد به‌روز و می‌گردد. در این صورت به دلیل فعالیت و واکنش‌پذیری فوق‌العاده، این رادیکال‌ها به هم‌کاری با الهام‌شده‌های پروتئین، لیپید و حتی سلول‌های اپی‌دی‌سین می‌کنند [9]. در چنین شرایطی برای رادیکال‌ها، غلظت رادیکال‌های اکسیدانی، مقدار DNA تام "رادیکال‌های اکسیدانی" را در بافت‌ها ادان‌تام‌گری می‌کند و لی به دلیل نیمه عمر کوتاه رادیکال‌های اکسیدانی
سنجد آنها دقیق نیست. از این رو محققان پایبند حاصل از تجربی آنها را به عنوان "بیومارکرهای تجربی اکسیدان" می‌سنجند. معترضین و بالرین‌ترین این بیومارکرهای شامل مالون دی‌الدین و دی‌تیروزین است که به ترتیب به عنوان بیومارکرهای تجربی اکسیدان لیپید و پروتئین همیشه [11]. از سوی دیگر، برای مقایسه با عاملی رادیکالی اکسیدانی سنتی دفاعی آن‌ها وجود دارد که مهم‌ترین اعضای آن شامل سوپراکسید دیسموتاز، کاتالاز و گلوتاتیون پراکسیداز است. سوپراکسید دیسموتاز باعث تبدیل رادیکال سوپراکسید به آب اکسیدانه می‌شود که قید هم با سایر آن‌ها احتمالاً نتیجه‌کننده می‌گردد [12].

گلوتاتیون پراکسیداز هم از تجربی اکسیدان لیپیدهای غشاء جلوگیری می‌کند [13]. هدف از این تحقیق حاضر، تعبیر اثرات کاربرد ماکروسیکلیک دی‌آمید دی‌نیتروسولفونیک بر عفای آنتی‌اکسیدانی بیومارکرهای حاصل از تجربی رادیکال‌های اکسیدانی و خصوصاً بافت‌شناسی کبد و بیضه بنا به روش تزریق درون‌صفاقی است. همچنین سطح سمیت آن بر این حیوان ارزیابی Balb/C موش نژاد می‌شود.

مواد و روش‌ها

حیوان

از آنجا که نوع بررسی تجربی بوده است برای این منظور موش‌های بالغ نژاد از انستیتو پاستور Balb/C ایران خریداری شد و پس از انتقال به حیوانخانه منسی برای سازگاری با محیط جدید نگهداری شدند. در طول ازامانش دو ماه محیط ۲۴±۲ بود غذا موش‌ها یکسان و با صورت پلت آماده شده استاندارد از شرکت دام و طیور پارس تهیه گردید.

مواد

مواد شیمیایی مورد استفاده خصوصاً انزیم‌ها همگی با خلوص زیاد از کارخانه مرك و سیگما تهیه شدند.

ماکروسیکلیک دی‌آمید دی‌نیتروسولفونیک از آزمایشگاه شیمی آلی دانشگاه تربیت معلم تهران با خلوص ۹۹/8% در اختیار پژوهندهان قرار گرفت.

تزریق

بر اساس وزن هر موش (۲۶-۲۲ گرم) مقدار ماده تزریقی که محصول آن با فیلتر میکروپور ۲۵/۰ میکرون استریل شده بود تعیین و با سرنگ به درون حفر صافی تزریق گردید. از اب مقدار به عنوان جریان استفاده شد.

خون‌گیری، استخراج بافت و تهیه مقاطع بادی

در موش‌های گروه‌های شاهد و تجربی سه سرموش استفاده و پس از پایان زمان تیمار، موش‌ها با اتر بی‌هوش ۳۷
و با قطع کردن بزرگ‌سیاهگ زرین و زرین خون‌گری انجام شد. سپس حفره شکم باز شده، کبد و پیسه‌ها خارج و هر کدام با سرم فیزیولوژی شستنش شدند.

تعیین غلظت LD

بدین منظور ماده مورد نظر با غلظت‌های مختلف، ولی جوهرهای مساوی در فاصله غلظتی صفر تا ٢٥٠٠ میکروگرم بر کیلوگرم وزن موش‌ها به آن تزریق شد. مقدار غلظتی شامل ۵٠۰، ۱۰۰۰، ۱۵۰۰ و ۲٠٠٠ میکروگرم بر کیلوگرم وزن دنبال و پس از ۲۴ ساعت ضمیم مشخص شدن. LD ه که در ان ۵۰% موشهای مرده بودند از همه موشهای تیمار شده و شاهد خون‌گری و میزان فعالیت انزیم‌های آنتی اسکیدانت و بیومارکرهای تخریب اسکیدانتی ارزیابی شدند.

ثبت بдесь و رنگ‌آمیزی نمونه‌ها

نمونه‌های بالینی در فیکساتور بوتن به مدت ۱۸ تا ۲۲ساعت قرار گرفته سپس مراحل آلیکبیری با الکت اتیلیک انجام گرفته نمونه‌ها با تولید الکلآسیدی زدند. در مرحله بعد پارافین در اتوکلاو به نمونه‌ها نفاذ داده شده و سپس قابلیتی بر وری زده شد. نوارهای پارافین نریز زده شد که در انتظار هامتوکسین و برای سپری شدن از انزیم‌های اسکیدانت شد.

جداواری سولهای خون

مقدار ٢/٠ میلی‌لیتر خون خونی‌تیپ چِدا و پلاسمای آن پس از سانتیفیوز در گ ٦٠۰۰ به مدت ١۵ دقیقه تفکیک شد. ما سولهای گردیده در سالین ایزوتوئیک با نسبت دو بردار حجم سوله‌ها با PH=۷ شستشو گردید این سوله‌ها با دو بردار حجم خود با آب مقطع همولیز شدن. سپس در گ ١٥٠۰۰ به مدت ٣٠ دقیقه سانتیفیوز و ماش روی جهت سنجش شاخه‌های بیوشیمیایی استفاده شد [١۵].

شمارش سوله‌های اسپرماتوزونید

سه میان که از مرکز لوله‌های منیساز در هر یک از گروه‌های کنترل و تجربی انتخاب و شمارش سوله‌ها در میان دید میکروسکوپ نوری به روش هرمان [١۴] به دست کارشناس با تجربه انجام گرفت. میانگین به‌دست آمده بر حسب درصد از کل سوله‌ها بیان شد.

اماده‌سازی بافت‌های پرای تبعیض شاخه‌های بیوشیمیایی

بافت‌های جدا شده پس از شستنش با سالین نرمال و استریل در محلول KCl، ١/۵% (با نسبت ١٠% وزن به حجم) با هموزناور تفتی و در مجاوزات بیخ هموزن گردید. سپس در گ ١٣٠۰۰ به مدت ١۵ دقیقه سانتیفیوز و
سنجش فعالیت آنتی‌اکسیدان‌ها

فعالیت سوپراکسید دیسموتاز بر اساس مقدار تترازولیوم (15 میلی مول) حاوی بتاکورپن سولفات (3/5 میلی مول) در طی ۱ دقیقه از روش و فعالیت بر حسب واحد بین‌المللی بر میلی‌گرم پروتئین تنام گزارش شد. سنجش فعالیت کاتالاز بر اساس روش و همکاران انجام شد. در این روش تجزیه آب اکسیژن به محلول با فسفات PH=7/6 در ۲۴۰ دانومتر با استفاده از سنجش دوبالانکن اکسیداز، محلول واکنش حاوی ۵ میلی‌مول تریس (PH=7/6) و ۲/۵ مول NADPH و بعد زیست از اضافه شدن ۱۰۰ میکرویلتر نمونه به محلول، به مدت ۲ دقیقه در ۲۵ درجه سانتی‌گراد به آن پراکسید هیدروژن اضافه شد. سپس تغییر حجم در ۳۶ دانومتر از روش [۲۱].

سنجش کامل "عوامل رادیکال اکسیژنی" (ROS) این سنجش بر اساس روش Doria انجام شد [۲۲]. در عمل ۲۰ میکرویلتر محلول نمونه به محلول حاوی ۲ میکرومول دی‌هیدرو اتیدیوم اضافه شد. این محلول هم‌چنین حاوی RPMI-۴۶۴۰ به مقدار ۴۰۰ میکروولتر بود. احیاء دی‌هیدرو اتیدیوم با اسپلت فوتوترمتر در دو طول موج ۴۲۰ و ۴۳۰ و ۴۰۰ نانومتر از روش و نسبت جذب ۶۴۰/۴۲۰ و ۶۴۰/۴۳۰ به الگوی سنجش عوامل رادیکال اکسیژنی استفاده شد. مقدار عوامل رادیکال اکسیژنی در نمونه تیمار به مقادیر عوامل رادیکال اکسیژنی نمونه نرمال به صورت نسبت بیان شد.

ارزیابی مالون دی‌الدئید و دی‌تیزورین همکاران مقدار مالون دی‌الدئید که با تیوباربیتریک اسید Brid با استفاده HPLC بر اساس روش Supelcosil reverse phase-HPLC محلول استاندارد از این ماده ارزیابی شد [۳۷].

انالیز آماری

بر اساس پروپوزال سه مرتبه تكرار شد. میانگین مقدار به دست آمده و انحراف معیار آنها محاسبه و به منظور مقایسه نتایج از آزمون ANOVA استفاده شد.
نتایج

وزن حیوانات در گروه تیمار (100±20 گرم) نسبت به گروه شاهد (9±30 گرم) در سطح 0.05 پذیرفته شد.

در خصوص بافت بیضه همان‌طور که در جدول 1 مربوط به خصوصیات کمی این بافت مشاهده می‌شود، وزن و حجم بیضه در گروه تیمار، کاهش معنی‌دار در سطح 0.05 نسبت به گروه کنترل نشان داد. بیضه درون کم‌سازی به نام غلاف کیسومونی قرار گرفته که مقدار زیادی کلرین دارد. بررسی مقطع میکروسکوپی این غلاف نشان داد که قطر آن در گروه تیمار نسبت به گروه کنترل کاهش داشته است، ولی این کاهش معنی‌دار نبوده است (شکل 1). بیضه همیند در بیضه‌ها باقی است که لوله‌های منیساز را بنشیبی می‌کند. در این بافت سلول‌های بیضی کش دانش سلول‌های بیشترین قرار دارند. این سلول‌ها از نظر تعداد در گروه تیمار کاهش معنی‌دار در سطح 0.01 نسبت به گروه شاهد داشتند (شکل 2).

بررسی لوله‌های منیساز (شکل 3) نشان داد که قطر آن‌ها در سطح 0.01 نسبت به گروه تیمار شده نسبت به P<0.01 در گروه تیمار شده نسبت به P<0.001، گروه شاهد کاهش داشته است. هنگامی که اولین گروه سلول‌های اسپرماتوگونی، یعنی گروه A که رنگ‌پذیری متوسط داشتند بررسی شدند تعداد آن‌ها در گروه تیمار در سطح 0.05 نسبت به گروه شاهد کاهش معنی‌دار داشت.

سلول‌های اسپرماتوگونی نوع B سلول‌های اسپرماتوسیت اولیه، سلول‌های اسپرماتوئید و نهاتا سلول‌های اسپرماتوزونی نیز در گروه تیمار شده در سطح P<0.001 نسبت به گروه شاهد کاهش معنی‌دار نشان دادند (شکل 4). بررسی سلول‌های سرتولی نشان داد که تعداد آن‌ها نیز در گروه تیمار شده در سطح P<0.001 نسبت به گروه شاهد کاهش معنی‌دار دارد.

در خصوص کبد، بررسی مقاطع میکروسکوپی کبد (شکل 5) نشان داد که تعداد سلول‌های هیپوسیت، سلول‌های کارپف، سنوزونی و دیگر قطعات حاوی تیمار بوده و ایجاد فضای پوستی در گروه تیمار شده در مقایسه با گروه کنترل نتایج معنی‌داری دارند.

فعلیت انزیم‌های آنتی‌اکسیدان‌های غلتست بیومارکرهای تخرب اکسیداتیو و پروتئین و نسبت کل عوامل رادیکال اکسیژنی "در خون محيطی موسا" پس از 24 ساعت آزمایش شد. نتایج نشان داد که:

2/500 میکروگرم بر کیلوگرم وزن بدن تعبیه گردید. همان‌طور که در جدول 2 مشاهده می‌شود، هیچ یک از آن‌های انتی‌اکسیدان افزایش معنی‌داری در غلتست 2/500 میکروگرم بر کیلوگرم وزن بدن نسبت به کنترل نشان نداد، از سوی دیگر با افزایش غلتست به یک‌فرم بیومارکرهای مالون، مدیریت کاربرد مایلی برای ماناف راه‌نیاز می‌کند.
1500 میکروگرم بر کیلوگرم وزن بدن و غلتگی‌های افزایشی از ماده‌های تولید کننده، گروه دوم مورد نظر به نحو معنی‌داری نسبت به کنترل افزایش داشته‌اند و در غلتگی‌های 1500 افزایش معنی‌دار به بیشترین مقدار خود در بین غلتگی‌های توزیعی رشد. نظر به مشارکت "عوامل رادیکال اسیزنتی" در تخرب مکارومولولی‌های پروتئین و لیپیدها، سنجش تا این عوامل نسبت به گروه شاهد در این جدول نشان داد که از غلتگی‌های 1000 میکروگرم بر کیلوگرم وزن بدن به بعد این شاخص افزایش یافته و در غلتگی‌های 2500 بی حدود 30 برای مقدار نرمال رشد.

مقدمات همین شاخص‌های بیوشیمی‌ای خون محیطی موش‌ها که غلتگی‌هایا که گسترش داده شده گروه LD 4 را دریافت کردن پس از یک هفته در جدول 3 مشاهده می‌شود. بر این اساس فعالیت هر یک از آن‌های آنتی‌اکسیدان‌های در روند واپس‌های غلتگی‌های توزیعی مورد استفاده روز به افزایش گذاشته گردید به مقدار 1000 و 1500 میکروگرم بر کیلوگرم وزن بدن نسبت به گروه شاهد تفاوت معنی‌داری داشته که معنی‌دار نبود. از اینجا نیز سطح مالون دیده ودی‌باز شانس (پیوسترکردها یک حیوان اکسیدانی) از راهی‌های در هر یک از غلتگی‌های توزیعی مورد است. نسیب‌های افزایش معنی‌دار در گروه تیمار نسبت به گروه کنترل نشان داد. افزایش معنی‌دار عاملان آن‌ها در غلتگی‌های 1000 میکروگرم بر کیلوگرم وزن بدن شاخص و نیز این نبوده است که کاسته شده است به طوری که اختلاف بین غلتگی‌های 1500 و 1500 میکروگرم بر کیلوگرم وزن بدن معنی‌دار نبوده است.

جدول ۴ مقادیر شاخص‌های بیوشیمی‌ای را در بافت پیش‌گیر در غلتگی‌های مختلف از ماده اکسیدی‌زا غلتگی‌های 1500 میکروگرم بر کیلوگرم وزن بدن نشان می‌دهد. بر این اساس، فعالیت هر یک از آن‌های مورد نظر در بافت پیش‌گیر در روند واپس‌های غلتگی‌های ماده اکسیدی‌زا رو به افزایش گذاشته خواهد که در غلتگی‌های 1500 میکروگرم بر کیلوگرم وزن بدن نیز افزایش فعالیت افزایشی طبیعی خاصیست. به طوری که تفاوت غلتگی‌های آن‌ها بین دو غلتگی‌های 1500 و 1500 میکروگرم بر کیلوگرم وزن بدن معنی‌دار نبوده است. مقادیر مربوط به گروه شاهد مالون دیده ودی‌باز شانس (پیوسترکردها یک حیوان اکسیدانی) افزایش معنی‌دار در گروه تیمار نسبت به گروه کنترل نشان داد. افزایش معنی‌دار عاملان آن‌ها در غلتگی‌های 1000 میکروگرم بر کیلوگرم وزن بدن نیز این نبوده است که کاسته شده است به طوری که اختلاف بین غلتگی‌های 1500 و 1500 میکروگرم بر کیلوگرم وزن بدن معنی‌دار نبوده است.
در دو گروه بیضه در گروه‌های کنترل (شکل A) و تجربی تیمار شده با 1500 میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (شکل B) رنگ‌آمیزی شده با انویژن، همان‌که قطع غلاف سفید در گروه تجربی نسبت به گروه کنترل توجه شود (برگ‌گشایی‌هایی).
شکل 1. فلور میکروگرافی ثانیه‌سازی در گروه‌های کنترل (A) و تجربی تیمار 1500 میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (B) رنگ‌آمیزی شده با منیزر-هیتاکسیلین. به کاهش قطر غلاف سفید در گروه تجربی نسبت به گروه کنترل توجه شود (پیکرگن‌نمایی × 400).

شکل 2. فلور میکروگرافی ثانیه‌سازی در سلول‌های بین‌بینی گروه‌های کنترل (A) و تجربی تیمار 1500 میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (B) رنگ‌آمیزی شده با منیزر-هیتاکسیلین. به تعداد سلول‌های بین‌بینی در گروه تجربی نسبت به گروه کنترل توجه شود (پیکرگن‌نمایی × 400).
شکل 3. فتومیکروگرافی از لوله‌های میکرساز در گروه‌های کنترل (Şekil A) و تجربی تیمار شده با 150 میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (Şekil B)، رنگ امیزی شده با آنزین همادیوکسیلن. به فطر لوله‌های میکرساز در گروه تجربی نسبت به گروه کنترل توجه شود (بزرگنمایی×100).
بررسی اثرات کاربرد ماتریس بیولوژیکی در آمیدی

شکل ۴. فتومیکروگراف از سلول‌های اپیتالونژونی در گروه کنترل (A) و تجربی بیمار شده با ۵۰۰ میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (B). رنگ‌گامازی شده با آنیون-هیاتوکسیلین. به کاهش تعداد سلول‌های اپیتالونژونی در گروه تجربی نسبت به گروه کنترل توجه شود (برگ‌گرفته از ۴۰۰×).

شکل ۵. فتومیکروگراف از فضاهای سینتوپیدی (a)، پورتان (b)، سلول‌های هیاتوست (c) و طبیعی هیاتوستی (d) کبد در گروه‌های کنترل (A) و تجربی بیمار شده با ۱۵۰ میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (B). رنگ‌گامازی شده با آنیون-هیاتوکسیلین (برگ‌گرفته از ۴۰۰×).
جدول 1. کمیت‌های سلولی پایتی بیضه‌های موش‌های گروه کنترل و گروه تیمار شده با 1500 میکرو گرم بر کیلو گرم وزن بدنش در آن‌ها بعد از یک هفته

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تفاوت آماری</th>
<th>گروه کنترل</th>
<th>گروه تیمار شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن بیضه‌ها (گرم)</td>
<td>P<0.001</td>
<td>142</td>
<td>120</td>
</tr>
<tr>
<td>حجم بیضه‌ها (مکعب میکرون)</td>
<td>P<0.001</td>
<td>342</td>
<td>242</td>
</tr>
<tr>
<td>قطر غلاف سفید (میکرون)</td>
<td>P<0.001</td>
<td>271</td>
<td>139</td>
</tr>
<tr>
<td>تعداد سلول‌های لیدیگ</td>
<td>P<0.001</td>
<td>437</td>
<td>58</td>
</tr>
<tr>
<td>قطر لوله‌های مرنیساز (میکرون)</td>
<td>P<0.001</td>
<td>313</td>
<td>177</td>
</tr>
<tr>
<td>تعداد سلول‌های اسپرماتوگونی</td>
<td>P<0.001</td>
<td>1/324</td>
<td>1/364</td>
</tr>
<tr>
<td>اسپرم‌ماتوئیولی</td>
<td>P<0.001</td>
<td>1/335</td>
<td>1/345</td>
</tr>
<tr>
<td>سلول‌های سروتولی</td>
<td>P<0.001</td>
<td>1/309</td>
<td>1/345</td>
</tr>
</tbody>
</table>

* مقادیر بر حسب میانگین ± انحراف معیار.
جدول 2. فعالیت انزیم‌های آنتی اکسیدان‌ها و سطح بیو مارکهای تخم‌زیم اکسیداتوپلیپید و پروتئینی خون محيطی موش بعد از ۲۴ ساعت تزریق صافایی از غلظت‌های مختلف کرون اتر. *

<table>
<thead>
<tr>
<th>شاخص بیوشیمیایی</th>
<th>غلظت کرون اتر (میکرو گرم بر کیلوگرم وزن بدن)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۲۵۰۰</td>
</tr>
<tr>
<td>سوپر اکسید دیسمونتاز (واحد بر میلی گرم پروتئین)</td>
<td>۱۷/۶/۳۸ ± ۱/۳۸۸</td>
</tr>
<tr>
<td>کاتالاز (واحد بر میلی گرم پروتئین)</td>
<td>۱/۱۵ ± ۱/۸۸</td>
</tr>
<tr>
<td>گلوتاتیون پر اکسیداز (نانومول بر میلی گرم پروتئین)</td>
<td>۲/۴۳ ± ۲/۴۴</td>
</tr>
<tr>
<td>مالون دی اتیلن (نانومول بر ۱۰۰ گرم پروتئین)</td>
<td>۱/۲۱ ± ۱/۳۱۰</td>
</tr>
</tbody>
</table>

* مقادیر بر حسب میانگین ± انحراف معیاران.

جدول 3. فعالیت انزیم‌های آنتی اکسیدان‌ها و سطح بیو مارکهای تخم‌زیم اکسیداتوپلیپید و پروتئینی خون محيطی بعدها از یک هفته تزریق صافایی از غلظت‌های مختلف کرون اتر. *

<table>
<thead>
<tr>
<th>شاخص بیوشیمیایی</th>
<th>غلظت کرون اتر (میکرو گرم بر کیلوگرم وزن بدن)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۵۰۰</td>
</tr>
<tr>
<td>سوپر اکسید دیسمونتاز (واحد بر میلی گرم پروتئین)</td>
<td>۳۴/۶/۲۸ ± ۳/۲۸۸</td>
</tr>
<tr>
<td>کاتالاز (واحد بر میلی گرم پروتئین)</td>
<td>۱۲/۸۲ ± ۲/۲۱۷</td>
</tr>
<tr>
<td>گلوتاتیون پر اکسیداز (نانومول بر میلی گرم پروتئین)</td>
<td>۳۷/۱۰ ± ۳/۷۲۲</td>
</tr>
<tr>
<td>مالون دی اتیلن (نانومول بر ۱۰۰ گرم پروتئین)</td>
<td>۵۸/۲۸ ± ۵/۴۴</td>
</tr>
<tr>
<td>گلوتاتیون پر اکسیداز (نانومول بر ۱۰۰ گرم پروتئین)</td>
<td>۱۱/۳۲ ± ۱/۱۴۶</td>
</tr>
<tr>
<td>گلوتاتیون پر اکسیداز (نانومول بر ۱۰۰ گرم پروتئین)</td>
<td>۱/۱۴ ± ۰/۱۰۵</td>
</tr>
</tbody>
</table>

* مقادیر بر حسب میانگین ± انحراف معیاران.
جدول 5. فعالیت آنزیم‌های آنتی اکسیدان‌ها و سطح بیو مارک‌های تخییر اکسیداتو لیپیدی و پروتئینی بافت بیضه موش
بعد از یک هفته تزریق درون صفاتی از غلظت‌های مختلف کرون اتر.*

<table>
<thead>
<tr>
<th>غلظت کرون اتر (میکرو گرم بر کیلو گرم وزن بدن)</th>
<th>شاخص بیوشیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>1000</td>
</tr>
<tr>
<td>88/46 ± 7/51</td>
<td>94/51 ± 4/16</td>
</tr>
<tr>
<td>47/34 ± 3/12</td>
<td>94/51 ± 4/16</td>
</tr>
<tr>
<td>31/43 ± 3/12</td>
<td>94/51 ± 4/16</td>
</tr>
<tr>
<td>59/33 ± 3/12</td>
<td>94/51 ± 4/16</td>
</tr>
<tr>
<td>28/32 ± 3/07</td>
<td>94/51 ± 4/16</td>
</tr>
<tr>
<td>58/21 ± 3/07</td>
<td>94/51 ± 4/16</td>
</tr>
<tr>
<td>47/34 ± 3/12</td>
<td>94/51 ± 4/16</td>
</tr>
<tr>
<td>31/43 ± 3/12</td>
<td>94/51 ± 4/16</td>
</tr>
</tbody>
</table>

مقدار بر حسب میانگین ± انحراف معیار.

* مقادیر بر حسب میانگین ± انحراف معیار.
بحث

هترومگروسوکلین بررسی شده در این پژوهش، خود الیگومری ازدیک ان کاسن است که واحد بنیادی آن اکسیژن است. در این ترکیب گروه‌های شیمیایی همچون سولفوکسید و آمید و همچنین کربن دهه که بر خصوصیات شیمیایی آن تأثیر می‌گذارد. با توجه به نوع ساختار این مواد برای بررسی اثرات زیستی و کاربردهای بالینی آن‌ها تلاش زیادی صورت گرفته است. ولی هیچ‌چنین برای رسیدن به اینیمی‌های متنوع اثرات آن‌ها نیاز است. گواهگون انجام می‌گیرد.

در پژوهش حاضر 500 میکروگرم بر کیلوگرم وزن بدن به عنوان غلظت LD تعيين شد. مرك موجود، زنده مربوط به سمیت اين ماده شیمیایی است. چين اثر مسبب از سایر كروين اثر نيز مداوم شده به طورى كه در بروکاربیوتها و بروکاربیوتها حتي منجر به مرك سلولهاي مورد آزمایش شده است. پژوهنداي اعلام كردهاى كه ميزان غلظت براي بروز اثرات سي، وابسته به نوع حاشیهي موجود در حلقه تاجي شکل ماده مصرفی و همينه به نوع سلول يا حيان بريسي شده وابسته به داده است[25]. بررسی منابع مکانیسم‌های مختلفی را برای ایجاد سمیتی داده‌ها که یکی از آن‌ها، اثرات حسایل از افزایش رادیکال‌های آزاد در پاسخ به همین ماده به عنوان ماده گروسوکلین در کتست سلول‌های V79 و مشتقات شیبی به آن در سلول‌های W138 بوده است [26]. این مکانیسم از آنجای حاتم است که موس به عوان مدلی مناسب در این گونه تحقیقات، موجودی هوازی بوده و بطور طبیعی فردی کمی از "رادیکال‌های آزاد اکسیژنی" (Reactive Oxygen Species=ROS) باعث شده است.

مواد شیمیایی مورد استفاده در این پژوهش در نخ خارجی ملکول خود ویژگی لپید دوستی دارد که به آن خصوصیت نفوذپذیری چسبنده در غشاء‌های زیستی می‌دهد. همچنین داخل ساختار حلف‌های حاوی انواعی جنبه‌های قلیایی دارد. بر این اساس پژوهش گزارش داده‌است در روابطی غیر این ماده با ترکیبات شیمیایی که دارای چنین خصوصیاتی هستند احتمال دارد که این ترکیبات با دخالت در فعالیت‌های طبیعی غذا یا شرکت در انتقال بیون، توانایی آن‌ها را در دو سوی غذا یا با تأثیر غیرمستقیم بر وکنش‌ها و اکسیداتیو، توانایی که بین تولید و تجزیه "رادیکال‌های آزاد اکسیژنی" وجود دارد مختل کنند و از آن به بعد با افزایش میزان رادیکال‌های آزاد و تأثیرات ترکیبی بر ماکرومولکولها باعث بروز سمیت زیستی گردند [27]. بر این اساس، هدف از پژوهش حاضر پس از مشخص شدن سطح سه‌تیم (ROS) ماده مورد نظر بررسی این

بررسی اثرات کاربرد ماکروسیکلین دی‌آمید...
کیلوگرم وزن دن که معادل LD۵ ساله است به نظر می‌رسد. مشابه چنین نتیجه‌ای در تحقیقات نور و همکاران [۲۰] بیان شده است. در بررسی اثر مکانیسم‌های افزایش و تأثیر رادیکال‌های آزاد اکسیژنی در پاسخ به اثرات مواد شیمیایی بررسی شده و بر اساس این چگونگی، شکل‌گیری دیده می‌گردد. سلول‌های بیان شده است. با افزایش علائم اثر رادیکال‌های اکسیژنی و رایگان آنها با طولانی‌ترین دنیای شیمیایی از اثرات ترمیبی بر ملکول‌های زیستی شکل می‌گیرد که محصولات باقی مانده از این مداخله با همراه جریان خون در سراسر بدن توزیع می‌شوند. چنین فرایندهای نهایتاً منجر به افزایش بدن‌های اندام‌ها و مارک موجود زنده می‌شود [۳۱].

پدیده‌ای که در پژوهش حاضر در علل LD۵ مشاهده شد.

تعداد تحقیقات در سطح عفای‌های انزیمی اکسیدان‌های جدی در گروه تیمار شده با ماده شیمیایی در این تحقیق نسبت به گروه شاهد می‌تواند ناشی از سرعت عمل‌کرد و تأثیرات این ماده در قیام تولید رادیکال‌های اکسیژنی باشد. در حالی که تعدادی اکسیدانی که نظام نیتروژن یا فعال گشته داشته است. نیز زمان تأخیر در تحقیقات مختلف بررسی شده است و در نتیجه حاصل شده است که برای علائم شدن زن‌ها این انزیم‌ها وجود مدت زمانی بعد از افزایش در غلظت رادیکال‌های آزاد اکسیژنی ضروری است [۳۲][۳۳][۳۴].

برای این اثرات سرمایه این ماده شیمیایی از نظر بالاترین بی‌پای اثری بررسی شد و بافت کبد به عنوان مهم‌ترین مرکز متابولیسم مواد شیمیایی و غده بیشتر محل تولید سلول‌های جنسی است. انتخاب شدند. موش‌ها با ترخیص ماده مورد نظر تا غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن دست توانستند حالت یک هفته زندگی مانند. بقای این گروه تیمار شده احتمالاً با این این با افزایش رادیکال‌های آزاد اکسیژنی فعالیت شاخه‌ای و معنی‌دار آن در خون می‌باشد مربوط بوده. با ترخیص که بررسی شبان داد گروه تیمار شده توانست در محدوده مدت یک هفته از افزایش رادیکال‌های آزاد اکسیژنی خون لگدری کنند آن را در پایان زمان به محدوده کنترل رساند. این تحقیقات به تایبی تحقیقاتی افزایش اولیه در غلظت رادیکال‌های آزاد اکسیژنی پس از مدتی به این سنتر اکسیدانی انتی‌اکسیدان‌ها انجامید و آن را نیز منجر به کاهش سطح رادیکال‌های آزاد اکسیژنی می‌گردد. از آنجا که در پایان یک هفته هنوز مقادیر بی‌پای بی‌پایی تئوری اکسیدان‌های کاربردی ۱۰۰۰ و ۱۵۰۰ میکروگرم بر کیلوگرم وزن دست به نحو معنی‌دار بیش از گروه کنترل بوده است؛ به نظر می‌رسد افزایش عفای‌های انزیمی انتی‌اکسیدان‌های در حدی

مسعود مشهدی اکبر بوجار و همکاران
بررسی اثرات کاربرد مانگو سیكلیک دی‌آمید...
بررسی اثرات کاربرد مایکروسیستمکیک در... مسعود مشهدی اکبری، بوجار و همکاران

نبوده است که بیشتر کلی مقدار این بیومارکرها را به محدوده طبیعی پرگردنداز. از سوی دیگر، انتقال بخشی از این بیومارکرها از بافت‌های مختلف به خون، منبع افزایش دهنده آنها در خون محيطی بوده است. در تأیید این موضوع می‌توان به تحقيقات اشاره کرد که در آنها فعالیت فیژوپریک ادامه‌ای مختلف تحت تأثیر مواد شیمیایی منجر به تولید مقدار مختل از بیومارکرهای تخریب اکسیداتیو شده‌اند (مراجع ۳۷ و ۰۴). بر این اساس در تحقیق حاضر، بررسی بافت‌شناسی بیضه در حداکثر دور قابل تحمل موش هراشی در مدت یک هفته (۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن) کاهش معنی‌دار در حجم عده، تعداد سلول‌های لیپیدی، قطر لوله‌های مینیساز، تعداد سلول‌های جنسی و سلول‌های پیش‌ساز آنها را نشان داد. در این بافت، افزایش جنشگیری و معنی‌دار آنزیم‌های آنتی‌کسیدانس ماهیت شده است؛ با این حال افزایش فعالیت آنها در حذف نبوغه که بطور کامل مانع این آسیب‌ها شود. احتمالاً افزایش بیومارکرهای تخریب اکسیداتیو در این بافت نیز ناشی از تأثیرات تخریبی افزایش أولیه رادیکال‌های آزاد اکسیدنتی بوده است. هم‌چنین مانگان که پیشتر گفته شده، با ورود به بخشی از بیومارکرها به جریان خون، به طور غیرمستقیم از منابع بالا آزادنده میزان غلطی آنها در حذف بیم است. در Filho و Habib [۳۹] و همکاران [۳۷] و Aydos و همکاران [۴۰] انجام داده‌اند اشاره کرد که می‌توان این نشان دادن یا افزایش نیز ناشی از آزادی اکسیدنتی بیضه، متعادلی مقدار آنزیم‌های آنتی‌کسیدانت افزایش نشان داده. با این حال با پايان به دليل کم‌شدت و اکتشاف‌های ترمیمی در این بافت مقدار چشمه‌گیری از بیومارکرهای تخریب اکسیداتیو در حضور آنزیم‌های آنتی‌کسیدانتی موجود بوده‌اند.

هنگامی که بافت گاهی ارزیابی شد، برخلاف بیضه، اثرات نامطلوب مشاهده نگردید. این در حالتی است که نه تنها مقدار فعالیت آنزیم‌های آنتی‌کسیدانت افزایش معنی‌داری در گروه تیمار شده داشته‌اند، بلکه سطح بیومارکرهای تخریب اکسیداتیو در باقی کم تغییرات علمی نشان دادند. بر این اساس، احتمالاً باعث آنزیمی به رادیکال‌های آزاد اکسیدنتی که به سرعت افزایش فعالیت آنها روز گردیده توانسته است در طی این فرآیند از اثرات نامطلوب رادیکال‌های آزاد ایجاد شده جلوگیری کند. از سوی دیگر به دلیل غلیظی چشمه‌گیر بافت کبک به عنوان جایگاه متابولیسم مواد شیمیایی احتمالاً با متابولیسم سریع ماده شیمیایی منجر به کاهش تأثیرات آن نسبت به باقی بیضه شده است. مطلوبی که در تحقیقات مختلف در زمینه تأثیر مواد شیمیایی مختلف بر بافت کبک بیان شده است (مراجع ۳۱ و ۳۲). در مجموع این تحقیق نشان داد که ماده شیمیایی بررسی شده توانایی تولید رادیکال‌های آزاد اکسیدنتی دارد و از طریق آن به واسطه تخریب اکسیداتیو لیپیدها و پروتئین‌ها، اثرات سیمی خود را در غلظت‌های بالا بر بافت‌ها و نهایتاً موش‌های تیمار شده برجای گذاشته است. دخالت و تأثیر این مایکروسیستمکیک‌ها ممکن است به توانایی
محصول بولی و نفوندیری آن در غشاهاي سلول گروه از خصوصیات دیگر ترکیبات مشابه آن است ارتباط داشته باشد. تغییرات در ویژگی‌های فسفولیپیدهای غشا را نشان داده‌اند. البته این نشان می‌دهد که مجموعاً از عوامل مهم، سلولی سیمین دارد. بیشتری که تغییر در تعداد غلظتی آنها در سلول منجر به افزایش تولید رادیکال‌های آزاد اکسیژنی و به دنبال آن پروز سیمین و مارک سلولی مشود [44][45].

نهایتاً اگر چه این تحقیق بخشی از شواهد را برای تأثیر نمی‌آید ترکیب ماکروسیلیک نشان داد، با وجود این، بررسی‌های بیشتری برای روشن کردن مکانیسم‌های مرتبط با اثرات آن تیاز است.

منابع

