بررسی اثرات کاربرد ماکروسیکلیک‌های دی‌آمید دی‌بنزوسولفوسید بر فعالیت آنزیم‌های انتی‌اکسیدانی، بی‌پرمارک آنزیم‌های حاصل از تخربی رادیکال‌های اکسیژنی و خصوصیات بافت‌شناختی

**Balg/C**

کبد و بیضه موس نژاد

مسعود مشهدی اکبر بوجار، مهناز اذن‌نیا، عباس شکروی:

دانشگاه تربیت معلم

حامد دانشورژه: دانشگاه پیام نور

چکیده

ماکروسیکلیک‌های دی‌آمید دی‌بنزوسولفوسید، ترکیبی است با اختلال حلقوی‌ناهجور شکل و دارای گروه‌های فعال به دلیل خاصیت قربانی در خارج از حلچه خود می‌تواند در عرض غیون کند. پژوهش حاضر با هدف تعیین پاسخ آنزیم‌های انتی‌اکسیدانی به اثر علائمی از این اثر کسب به‌طور مثابه از آزمون درون‌شناختی به موش‌های انگلیسی گرفته، هم‌چنین دقیقه بی‌پرمارک آنزیم‌های حاصل از تخربی رادیکال‌های اکسیژنی بررسی شد. نتایج نشان داد که میزان LD این دارو 250 میکروگرم بر کیلوگرم وزن بدن است. به موس‌های بروزن شده با علت LD 1500 میکروگرم بر کیلوگرم وزن بدن بروز نمی‌گردد. بعد از یک هفته بررسی بافت‌شناختی کبد نشان داد که سلول‌های هیپوستیت، طناب‌های هیپوستیتی، سلول‌های کوبل، سینوزیته‌ها و فضاهای پورتان در مقایسه با گروه شاهد هیچ گونه تغییر معنی‌داری نیافته‌اند. در حالی که بافت‌شناختی بیضه نشان داد که حجم و وزن بیضه، تعداد سلول‌های بی‌پرمارک، قطر لوله‌های منیتاس، تعداد سلول‌های استرولگونی نوع A و B اسپرماتوسیت اولیه، اسپرمائید و اسپرمایتوئید و سلول‌های سرگشتی بطور معمولی کاهش یافته. علائمی آنی‌اکسیداتور نشان دهنده درمان‌کننده گیاهی یا پیوند در کبد و بیضه در یک روند وابسته به علت رو به افزایش گاشتنت در مصرف‌های که این افزایش بارای بی‌پرمارک آنزیم‌های تخربی رادیکال‌های اکسیژنی معنی مالون دی‌آلید و دی‌بیروزین فقط به‌طور بی‌پرمارک آنها نشان دهنده می‌شود که ترکیب مورد استفاده داروی آزمایشی می‌تواند است. بد از یک هفته از کاربرد آن در زیر علائمی LD 1500 میکروگرم بر کیلوگرم وزن بدن بهبود یافته و بی‌پرمارک می‌گردد و درمانکننده گیاهی یا پیوند در کبد و بیضه در یک روند کاهش یافته. زیاد در متابولیسم مواد و توان بیشتر فعالیت آنزیم‌های انتی‌اکسیدانی، اثرات نامطلوب بیضه نشان نداد.

ولی‌اهالی کلیه: ماکروسیکلیک‌های دی‌آمید، سمت زیست شناختی، اسپرمایید و انتی‌اکسیدانی، بی‌پرمارک، کبد و بیضه دریافت‌0/26 0/23 پیام‌شناسی

35
مقدمه

ماکروسیلیک‌های درآمدها ترکیباتی هستند که در مسیر تولید آزیکر آن‌ها به وجود آمد. و دارای کاهش می‌گردد. به‌طوری‌که ترکیباتی هتروسیلیک‌هستند دارای میان‌نمایه‌ای که هنگام آن‌ها از واحد یا اتیلن اکسیدهای پادیم‌ها که مجموعاً با کلکه (NR) نمایش داده شده‌اند. در مکروسیلیک‌های آمیدها به کامی کردن اکسیدان آن‌ها (NH)n جای‌گیری می‌شود و در نتیجه آزیکر آن‌ها به‌وجود می‌آید. در ترکیب بررسی شده، عامل سولفورکسید به جای یک اتم اکسیدن مستقر شده و دین ترتیب سه اتم اکسیدن، وارگرد و آنت دارد. این یا گزینی‌ها به ثابت بیشتر و همچنین قدرت افزایش‌یافتنی اتصالات فلز به داخل حلقه ناجی شکل می‌انجامد[1].

این مواد به داشتن عامل مایع‌بینی و در بیرون خود خاصیت آب‌گیری و در داخل حداکثر آب‌گیری دارند. از همین روی، می‌توانند از ناحیه‌ای مایع‌بینی شکل‌دهنده زیستی عبرت کندن بخود صورت کنند در حال است که روی‌ها فلزهای خلاکی و گروه می‌توانند به داخل حلقه نفوذ (و سپس به آن متصدی شده و با انتقال از عرض غشاء منجر به تغییر غلظت یا آنت بین‌ها در یک دو طرف غشاء گردیده که پایداری متابولیک و فیزیولوژیک به دنبال دارد[2].)

بررسی کردن آن‌ها و مشاهدات آن‌ها در طی سالهای اخیر دسترسی‌ها جدید و با ارزشی در داروسازی و زیستشناسی است که زمینه استفاده‌گسترده‌ای آن‌ها را حتی در پزشکی فراهم نموده است؛ به طوری که برخی از آن‌ها به دلیل اثرات ضدایمنی‌کننده و ضد سرطانی[5] و ضد سرطانی[4] مورد استفاده قرار گرفته‌اند. از آنجا که همواره گونه‌های جدید از این ترکیبات ساخته می‌شوند، لازم است آن‌ها را سیرت سلول‌ها بازیابی‌اند دو ناحیه بررسی شده‌اند. این اثرات آن‌ها به وضعیت متابولیک و فیزیولوژیک به دنبال دارد[2].

یکی از راه‌حل‌های ارسال مصرف استفاده‌های جدید از آن‌ها در فرایندهای در سطح پوست‌نشی آن‌ها مبتنی بر اثار سلولی[6] است که این مواد در سطح پوست‌نشی آن‌ها به عنوان مواد گذاری‌بندی مشاهده شود. اثرات استرس اکسیدانی مواد متابولیک برای اعمال این گونه راه‌حل‌های ارسال مصرف به طوری که آن تولید گونه‌های رادیکال اکسیدانتی ارزیابی می‌یابد[7].

این رادیکال‌ها به‌طور طبیعی در موجودات هوایی در طی متابولیسم تولید می‌شوند، ولی غلظت آن‌ها با سببیت دفع‌کننده مواردی در سطح پاپین نوع داشته می‌شود[8]. هنگام روابط با میکتوم‌ها زندگی می‌کند و مداخله آن‌ها با مسیرهای متابولیک اکسیدانتی ممکن است تولید این گونه رادیکال‌های اکسیدانتی افزایش یابد. در این صورت به دلیل فعالیت و واکنش‌پذیری فعالیت‌ها، این رادیکال‌ها به سلول‌ها فرآیندهای اکسیدانتی مواد DNA سلول‌ها اسید وارد می‌کنند[9].[4]. پژوهش‌های بررسی انتشار گونه رادیکال‌های اکسیدانتی، مقاوم تام "رادیکال‌های اکسیدانتی" را در فرد یا انسان تولید می‌کند و به دلیل نیمه عمر کوتاهی رادیکال‌های اکسیدانتی
سنگش آنها دقیق نیست. از این رو محصولات پایدار حاصل از تخریب آنها را به عنوان "بیومارکرهای تخریب اکسیدانی" می‌سنجند. معترضترین و بالارزشترین این بیومارکرهای شامل مالون دی‌الدینی و دی‌تیروزین است که به ترتیب به عنوان بیومارکرهای تخریب اکسیدانی لیپید و پروتئین تولید می‌شوند [11]. از سوی دیگر، برای مقابلی با عوامل رادیکال اکسیدانی سببیک در اندام‌ها وجود دارد که مهم‌ترین اعتراض آن شامل سوپراکسید دی‌بی‌سی‌تی‌آز، کاتالاز و گلوتاتیون پراکسیداز است. سوپراکسید دی‌بی‌سی‌تی‌آز باعث تبدیل رادیکال سوپراکسید به آب اکسیژن می‌شود که خود هم با سایر اکسیژنهای خشک می‌شود. این تجزیه‌های می‌گردد [12].

گلوتاتیون پراکسیداز به عنوان یکی از بیومارکرهای صرافی حیاتی به‌شمار می‌آید. هدف پژوهش حاضر، تعیین اثرات کاربرد مکرووسلولیکی دی‌بی‌سی‌تی‌آز در جریان بروز ناشی از تخریب رادیکال‌های اکسیدانی (نتایجی که به کمک ویستیون تأسیسی و خصوصیات بافت‌شناسی کبد و بیضه به طریق تزریق درون صافی است. همچنین سطح سمت آن بر این حیوان آزمایشی Balb/C موش تژاد را می‌شود.

مواد و روش‌ها

حبیوان

از آنجا که نوع بررسی، تجربی بوده است برای این منظور موش‌های بالغ تژاد Balb/C از استانیتو پاستور ایران خریداری شد و پس از انتقال به حیوانخانه منتظر برای سازگاری با محیط جدید نگهداری شدند. در طول آزمایش ثابت گردید 20±2 درجه سانتی‌گراد 22 درجه بهداشت و پاتولوژی گرم و بروز مزاحم‌های ابتلا شده استندارد از شرکت دام و طیور پارس تهیه گردید.

مواد

مواد شیمیایی مورد استفاده خصوصاً از اهمیت‌های می‌باشد که با خلوص زیاد از کارخانه مرك و سیگما تهیه شدند. مکرووسلولیکی دی‌بی‌سی‌تی‌آز از آزمایشگاه شیمی‌آلی دانشگاه تربیت معلم تهران با خلوص 98/99% در اختیار پژوهشگران قرار گرفت.

تزرق

بر اساس وزن هر موش (22-24 گرم) مقدار ماهی تزریقی که محلول آن با فیلتر میلیپور 250 میکرون استریل شده بود تعیین و با سرنگ به درون هفره صافی تزریق گردید. از آب مذبو به عنوان حلال استفاده شد.

خون‌گیری، استخراج پایه‌ها و تهیه مقاطع نشیان

در موش‌های گروه‌های شاهد و ترجیبی سه سردیم استفاده و پس از پایان زمان تیمار، موش‌ها با اتر بی‌هشو
و با قطع کردن بزرس گاه سیاه و زرین خونگیری انجام شد. سپس حفره شکم با شده و بیضه‌ها خارج و هر کدام با سرم فیزیولوژی شستند.

**تعیین غلظت LD**

بدین منظور ماده مورد نظر با غلظت‌های مختلف، ویل حجم‌های مساوی در فلزه غلظتی صفر تا 2500 میکروگرم بر کیلوگرم وزن موسه‌ها به آن تزریق شد. مقادیر غلظتی شامل 5، 10، 50، 150 و 2000 و LD 2500 میکروگرم بر کیلوگرم وزن بدن بودند. پس از 24 ساعت ضمن مشختن شدن، که در آن 20% موشگاه مرجع بودند از همه موش‌های تیمار شده و شاهد خون‌گیری و میزان فعالیت آنزیم‌های آنتی‌کسیدانی به‌پراکنده در اختیار ارزیابی شدند.

**ثبت بافتی و رنگ‌آمیزی نمونه‌ها**

نمونه‌های باقی مانده در فیکساتور بونی به مدت 18 تا 24 ساعت قرار گرفتند سپس مرحله آب‌کریا با الكل اتیلهک انجام گرفت. نمونه‌ها به تولید الكلک‌های شدید در مرحله بعد پارافین در اتوکلاو به نمونه‌ها نفوذ داده شد و سپس سیلیکات بر روی رش زده شد. نوار های پارافین برش زده شد و فرمالین 2% پوشیده شد و نهایتاً روز لام پهن و خشک گردیدند. برای رنگ‌آمیزی هسته سلول‌ها از همانتوکسین و برای سیتوپلاسم از اتونزین استفاده شد.

**جداسازی سلول‌های خون**

مقدار 20 میلی‌لیتر خون محیطی جدا و پلاسمای آن پس از سنتریفیوژ در g 2000 به مدت 15 دقیقه تفکیک شد. لاک سلول‌های قرمز برداشت و در سالین ایزوتونیک با نسبت دو برابر حجم سلول‌ها ba PH=7 شسته شد. G رگید این سلول‌ها با دو برابر حجم خود با آب مقطر هموارسی شدند. سپس در g 15000 به مدت 40 دقیقه سنتریفیوژ و ماشین روبی جهت سنگش شاخص‌های بیوشیمیایی استفاده شد [15].

**شمارش سلول‌های استاتریتونزید**

سه میدان دید از مرکز لوله‌های منیساز در هر یک از گروه‌های کنترل و ترجیی انتخاب و شمارش سلول‌ها در میدان دید میکروسکوپ نوری به روش Glezerman و همکاران [16] به دست کارشکن با تجربه انجام گرفت. میانگین بعد آمده بر حسب درصد از کل سلول‌ها بینان شد.

**آماده‌سازی بافت‌ها برای تعیین شاخص‌های بیوشیمیایی**

بافت‌های جدا شده سپس از شستشو با سالین نرمال و استریل در محلول KCl، 1/15% (با نسبت 10% وزن به حجم) با هموزاپار تلفی و در مجاورت بخ هموئن گردید. سپس در g 13000 به مدت ده دقیقه سنتریفیوژ و
سنجد فعالیت انزیم‌های انتی‌اکسیدان

فعالیت سپرایکسید دیسنتاز بر اساس مطالعات Spitz (15 میلی مول) حاوی باتکوریلن سولفات (3/0 میلی مول) در طی یک دقیقه ارزیابی و فعالیت بر حسب واحد ملیلی بر میلی گرم پروتئین تام گزارش شد. سنجش فعالیت کاتالاز بر اساس روش و همکاران انجام شد. در این روش تجزیه آب اکسیژن آن در محلول با فسفات PH=7/4 در 200 نانومتر با استفاده از دستگاه ایزیلی و منحنی استاندارد با آب اکسیژن 200/0 مول استفاده گردید (20). برای سنجش گلوتاتیون پراکسیداز، محلول واکنش حاوی 0 میلیمول تریس (PH=7/4) و 0/20 مول NADPH بوده پس از اضافه شدن 0 میکرولیتر نمونه به این محلول، به مدت 2 دقیقه در 25 درجه سانتی‌گراد به شدت نوعی روتاسیون نموده شد. درصد تغییر چرب در 360 نانومتر اریزیابی شد (21).

سنجد کامل "عوامل رادیکال اکسیژنی" (ROS)

(22) این سنجش بر اساس روش Doria در عمل 0 میکرولیتر محلول نمونه به محلول حاوی 0 میکرومایرل دی‌هیدرو انتیدیوم اضافه شد. این محلول هم چنین حاوی 0 میکرولیتر RPMI-1640 به مقدار 400 میکرولیتر بود. احیای دی‌هیدرو انتیدیوم با استاندارد تریس در دو طول موج 420 و 450 نانومتر اریزیابی و نسبت جذب 0/420 برای سنجش عوامل رادیکال اکسیژنی استفاده شد. مقام عوامل عوامل رادیکال اکسیژنی در نمونه تیمار به مقایسه عوامل رادیکال اکسیژنی نمونه رزمال به صورت نسبت بیان شد.

اریزیابی مالون دی‌الدنیل و دیتیروزین

بر اساس روش HPLC با استفاده Brid (25/0 مول) ترکیب شا استاندارد از ستون Supelcosil به قطر 5 میلی‌متر (LC-18) به روش reverse ODS2 و ستون 2 و به کمک reverse phase-HPLC ارایه گردیده شد (23). دیتیروزین نیز با روش phase محلول استاندارد از این ماده اریزیابی شد (24).

انالیز آماری

در آزمایش بر روی نمونه‌ها سه مرتبه تکرار شد. میانگین مقادیر به دست آمده و انحراف معیار آنها محاسبه و به منظور مقایسه نتایج آزمون ANOVA در نرم افزار آماری SPSS استفاده شد.
نتایج

وزن حیوانات در گروه تیمار (244±347/100±3400 20 گرم) در
سطح سه میکروگرم LD 50 کاهش معنی‌دار نشان داد.

در خصوص بیشتر و هم‌طور که در جدول 1 مربوط به خصوصیات کمی این بات‌ها مشاهده می‌شود،
وزن و حجم بیشتر در گروه تیمار، کاهش معنی‌دار در سطح P<0/5 نسبت به گروه کنترل نشان داد. بیضه
در طول کم‌های به نام خلاف کیسماتی قرار گرفته که مقدار زیادی کلاژن دارد. بررسی مقطع میکروسکوپی این
غلاف نشان داد که قطر آن در گروه تیمار نسبت به گروه کنترل کاهش داشته است و در این گروه معنی‌دار
نیست. (شکل 1) به دلیل هیدرولز ویتامین اف است که لوله‌های میکرو‌سیار دارند، این بات‌ها از نظر این سولول‌های بیضی شکل بندان سولول‌های بیباتینی قرار دارند. این سولول‌ها از نظر تعداد در گروه تیمار کاهش
معنی‌دار در سطح P<0/1 نسبت به سولول‌های شاهد داشته است.

بررسی لوله‌های میکرو‌سیار (شکل 2) نشان داد که قطر آنها در سطح P<0/1 در گروه تیمار شده نسبت به
گروه شاهد کاهش داشته است. هنگامی که اولین گروه سولول‌های اسپرماتوگونی، یعنی گروه A به رنگ‌پذیری
متوسط داشتند بررسی شدند، تعداد آنها در گروه تیمار در سطح P<0/0 نسبت به گروه شاهد کاهش معنی‌دار
داشته است.

سلول‌های اسپرماتوگونی نوع B سولول‌های اسپرماتویتیولیه، سولول‌های اسپرماتوئید و نهایتاً سولول‌های
اسپرماتوزونی نیز در گروه تیمار شده در سطح P<0/0 نسبت به گروه شاهد کاهش معنی‌دار نشان داده
(شکل 3). بررسی سولول‌های سرتولی نشان داد که تعداد آنها نیز در گروه تیمار شده در سطح P<0/5 نسبت به
گروه شاهد کاهش معنی‌دار دارد.

در خصوص کیفیت بررسی مقاطع میکروسکوپی کبد (شکل 4) نشان داد که تعداد سولول‌های هیپئویتی،
سلول‌های کویپر، سبتوزونداها، قطر طناب‌های هیپئویتی و ابعاد فضای پورتال در گروه تیمار شده در مقایسه
با گروه کنترل تفاوت معنی‌داری دارند.

سطح فعالیت انتی‌اکسیدان‌ها، غلظت بیومارکرهای تخربی اکسیداتیو لیپید و پروتئین و نسبت کل
"عوامل رادیکال آکسیدانی" در خون محیطی موشها پس از ٠/٤ ساعت از دریافت ماده شیمیایی در جدول ٢
نشان داده شدند.

مقدار ٠٥٠٠ میکرو‌گرم بر کیلوگرم وزن بد تعیین گردید. همان‌طور که در جدول ٢ مشاهده
می‌شود، هیچ یک از انتی‌اکسیدان‌ها، افزایش معنی‌داری در غلظت ٢٥٠٠ میکرو‌گرم بر کیلوگرم وزن
بدن نسبت به کنترل نشان داد. از سوی دیگر با افزایش غلظت‌های کاربردی، هر یک از بیومارکرهای مالان

۴٠
۱۴۰۰ میکروگرم بر کیلوگرم وزن بدن و غلظت های افزایشی از ماده مصرفی، هر دو عامل مورد نظر به نحو معناداری نسبت به کنترل افزایش نداشتند و در غلظت ۱۵۰۰ این افزایش معنی‌دار به بیشترین مقدار خود در بین غلظت‌های تزریقی رسید. نظر به مشارکت "عوامل رادیکال اکسیدانی" در تخریب ماکرومولکول‌های پروتئین و لیپیدها، سنجش تأثیر این عوامل نسبت به گروه شاهد در این جدول نشان داد که از غلظت ۱۰۰ میکروگرم بر کیلوگرم وزن بدن به بعد این شاخص افزایش یافت و در غلظت ۲۵۰۰ به حدود ۳۶۰۰ برای مقدار نرمال رسید.

مقادیر همین شاخص‌های بیوشیمیایی خون متوسط موش‌ها که غلظت‌های کبیر از غلظت LD ۵۰ را دریافت کردن پس از یک هفته در جدول ۳ مشاهده می‌شود. بر این اساس فعالیت هر یک از آنزیم‌های انتی‌اکسیدانی در روند وابسته به غلظت ترکیب مورد استفاده روا به افزایش گذاشت و در غلظت ۱۵۰۰ و ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن بطور معنی‌دار نسبت به گروه شاهد افزایش نیافت. افزایش مشاهده شده در سطح فعالیت آنزیم‌های انتی‌اکسیدانی در غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن نسبت به غلظت ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن در گروه تیمار شده معنی‌دار نبود. از سوی دیگر، سنجش "عوامل رادیکال اکسیدانی" نشان داد که مقادیر کامل آن‌ها در غلظت‌های کاربردی از ماده شیمیایی حتی تا غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن نسبت به گروه شاهد تغییراتی داشتند که معنی‌دار نبود. در اینجا نیز سطح مالون دیالدی و دیتیروزین (پیوبرنرکه‌های تخریب اکسیداتیو) افزایش معنی‌دار از هر یک از غلظت‌های تزریقی در گروه تیمار نسبت به گروه کنترل نشان داد. افزایش در مقدار آن‌ها تا غلظت ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن شاخص و از ان به بعد از شدت آن کاسته شده است بطوری‌که اختلاف بین غلظت ۱۵۰۰ تا ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن معنی‌دار نبوده است.

جدول ۳ مقادیر شاخص‌های بیوشیمیایی را در پایت بیشتر موش‌ها پس از یک هفته دریافت غلظت‌های مختلف از ماده شیمیایی تا غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن نشان می‌داد. بر این اساس، فعالیت هر یک از آنزیم‌های مورد نظر در پایت بیشتر در روند وابسته به غلظت ماده شیمیایی رو به افزایش گذاشت. فعالیت افزایشی تا غلظت ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن به شدت فعال‌شان افزایش یافت. در غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن افزایش فعالیت آنزیم‌ها خفیف‌تر شد و بطوری‌که تفاوت فعالیت آن‌ها بین دو غلظت ۱۵۰۰ تا ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن معنی‌دار نبود. مقادیر مربوط به دو شاخص مالون دیتیروزین و دیتیروزین نیز در غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن از ماده شیمیایی به اکثر رفت و بطور معنی‌دار نسبت به شاهد افزایش یافت و به حداکثر مقدار خود نسبت به گروه شاهد رسیدند. مقدار
در تیروزین در این غلظت از ماده شیمیایی بعکر رفتار تقیدی به سه برای تیروزین در گروه کنترل نبود مقدار هر یک از دو شاخص مائون دیدند و تیروزین در ۱۵۰۰ نسبت به غلظت ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن از ماده شیمیایی بکار رفته تفاوت معنی‌دار نشان نداد.

جدول ۵ شاخص‌های بیوشیمیایی را در کیفیت نشان می‌دهد. سطح فعالیت هر یک از آن‌های آنتی‌اکسیدان در بافت کبد در روند وابسته به غلظت ترکیب شیمیایی بررسی شده تا ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن افزایش یافته. در ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن انرژی‌ها اختلاف معنی‌داری نسبت به گروه شاهد نشان داد. در غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن فعالیت با آنزیم سوپراکسیدسوزدار و کاتالاز نسبت به فعالیت‌انها در ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن کاهش یافته. فعالیت آن‌زیم گلدوکسیداز در غلظت ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن از ترکیب شیمیایی بررسی شده نسبت به فعالیت آن در ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن افزایش شاهد داد. با این حال اختلاف فعالیت هر یک از این ها از آن‌زیم در غلظت ۱۵۰۰ نسبت به ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن از ترکیب شیمیایی بررسی شده معنی‌دار نبود. مقدار مائون دیدند و تیروزین در دامنه غلظت ترکیب شیمیایی بررسی شده حتی در ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن نسبت به گروه شاهد تغییرات معنی‌دار نشان نداد.

شکل ۱. فنومیکروگراف از غلاف سفید بپژه در گروه‌های کنترل (شکل A) و تجربی تیمار شده با ۱۰۰۰ میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (شکل B). رنگ‌آمیزی سری به استر اکسلین در کاهش قطر غلاف سفید در گروه تجربی نسبت به گروه کنترل توجه شود (برگ‌نامه‌ی ۴۰۰).
بررسی اثرات کاربرد ماکروسیکل‌های دی‌آمید

شکل ۱. فتوشیمیکروگرافی از غلاف سفید بیضه در گروه‌های کنترل (شکل A) و تجربی تیمار شده با ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (B) (شکل), رنگ‌آمیزی شده با انوزین یک‌تایی. به کاهش قطر غلاف سفید در گروه تجربی نسبت به گروه کنترل توجه شود (پیشگیری×۴۰۰)

شکل ۲. فتوشیمیکروگرافی از سلول‌های بین‌پیوستگی گروه‌های کنترل (شکل A) و تجربی تیمار شده با ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (B), رنگ‌آمیزی شده با انوزین یک‌تایی. به تعداد سلول‌های بین‌پیوستگی در گروه تجربی نسبت به گروه کنترل توجه شود (پیشگیری×۴۰۰)
شکل 3. فتومیکروسکوپی از لوله‌های منیساز در گروه‌های کنترل (A) و تجربی تیمار شده با ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (B). رنگ امیزی شده با آنیوئین همانوتکسین. به قطر لوله‌های منیساز در گروه تجربی نسبت به گروه کنترل توجه شود (برگردونیابی: ۱۰۰).
شکل ۵. فتومیکروگراف استخوان‌های اسپرماتوزونیت در گروه کنترل (شکل A) و تجربی بیمار شده با ۱۵۰۰ میکروگرم بر کیلوگرم وزن دن بعد از یک هفته (شکل B، رنگ‌آمیزی شده با آنتزین-هیاتوکسیلین. به کاهش تعداد استخوان‌های اسپرماتوزونیت در گروه تجربی نسبت به گروه کنترل توجه شود (بزرگ‌نمایی ×۴۰۰).

شکل ۶. فتومیکروگراف از فضاهای سینتووید (a)، پورتال (b)، سولوی هیاتوست (c) و ئیپی‌های هیاتوستی (d) کبد در گروه کنترل (شکل A) و تجربی بیمار شده با ۱۵۰۰ میکروگرم بر کیلوگرم وزن دن بعد از یک هفته (شکل B، رنگ‌آمیزی شده با آنتزین-هیاتوکسیلین (بزرگ‌نمایی ×۱۰۰).
بررسی اثرات کاربرد مکروسیکلیک دی-آمید

شکل ۴: فتومیکروگراف‌های فضاهای سینتوزابد (a)، پورتال (b)، سولون‌های کوپر (c) در گروه کنترل (شکل A) و تجربی تیمار شده با ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن بعد از یک هفته (شکل B)، رانگ‌بندی شده با انویژن‌های هماتوکسلین (وزن‌گذاری ×۴۰۰).

جدول ۱: کمیت‌های سلولی پایین‌پیچیده موش‌های گروه کنترل و گروه تیمار شده با ۱۵۰۰ میکروگرم بر کیلوگرم وزن بدن از ۴ روز تا بعد از یک هفته.

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تفاوت اماری</th>
<th>گروه کنترل</th>
<th>گروه تیمار شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن بیضه‌ها (گرم)</td>
<td>در سطح ۰/۰۰۰۰۰۰</td>
<td>۱۲۰/۴۰/۰۰۰۰۰۰</td>
<td>۱۰۰/۰۰۰۰۰۰/۰۰۰۰۰۰</td>
</tr>
<tr>
<td>حجم بیضه‌ها (میکرون مکعب)</td>
<td>در سطح ۰/۰۰۰۰۰</td>
<td>۷۲/۰۰۰۰۰۰۰۰</td>
<td>۹۲/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>قطر غلاف سفید (میکرون)</td>
<td>در سطح ۰/۰۰۰۰۰</td>
<td>۴۴/۰۰۰۰۰۰۰۰</td>
<td>۴۴/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>قطر لهیمه میساز (میکرون)</td>
<td>در سطح ۰/۰۰۰۰۰</td>
<td>۴۲/۰۰۰۰۰۰۰۰</td>
<td>۴۲/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>تعداد سلول‌های اسیرماکزیمین A</td>
<td>در سطح ۰/۰۰۰۰۰</td>
<td>۷۲/۰۰۰۰۰۰۰۰</td>
<td>۷۲/۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>تعداد سلول‌های اسیرماکزیمین B</td>
<td>در سطح ۰/۰۰۰۰۰</td>
<td>۱۰۰/۰۰۰۰۰۰۰۰</td>
<td>۱۰۰/۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

* مقادیر بی پاسخ میانگین ± انحراف معیار.
جدول 2. فعالیت آنزیم‌های انتی آسیداتو و سطح بیو مارک‌های تخرب اکسیداتوپلاستی و پروتئینی خون عمیقی موش بعد از 24 ساعت تزریق صافی از غلظت‌های مختلف کرون اتر.

<table>
<thead>
<tr>
<th>شاخص بیوشیمیایی</th>
<th>غلظت کرون اتر (میکرو گرم بر کیلو گرم ون بدن)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

سوزر آسید دیسمونتاز (واحد بر میلی گرم پروتئین)
کاتالاز (واحد بر میلی گرم پروتئین)
غلطاتون پر اکسیداز (نانونول بر میلی گرم پروتئین)
مانون دی اندی (نانونول بر 100 میلی گرم پروتئین)
رادیکال‌های ازالاسکین (تسبیب به گروه کنترل)

مجیده بر حسب میانگین ± احتمال معیار

جدول 3. فعالیت آنزیم‌های انتی آسیداتو و سطح بیو مارک‌های تخرب اکسیداتوپلاستی و پروتئینی خون عمیقی موش بعد از یک هفته تزریق درون صافی از غلظت‌های مختلف کرون اتر.

<table>
<thead>
<tr>
<th>شاخص بیوشیمیایی</th>
<th>غلظت کرون اتر (میکرو گرم بر کیلو گرم ون بدن)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

سوزر آسید دیسمونتاز (واحد بر میلی گرم پروتئین)
کاتالاز (واحد بر میلی گرم پروتئین)
غلطاتون پر اکسیداز (نانونول بر میلی گرم پروتئین)
مانون دی اندی (نانونول بر 100 میلی گرم پروتئین)
رادیکال‌های ازالاسکین (تسبیب به گروه کنترل)

مجیده بر حسب میانگین ± احتمال معیار

47
جدول ۴. فعالیت انزیم‌های آنتی اکسیدان‌ها و سطح بیو مارکرها تخرب اکسیدان‌های لپیدی و پروتئینی را بهبود می‌بخشد

<table>
<thead>
<tr>
<th>غلظت کرون آتر (میکرو گرم بر کیلوگرم وزن بدن)</th>
<th>شاخص بیوشیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰</td>
<td></td>
</tr>
<tr>
<td>۵۰۰</td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td></td>
</tr>
</tbody>
</table>

سوپر اکسید دیسموتاز ۱۰/۱۷ ± ۲۲/۸۱
(واده بر میلی‌گرم پروتئین)

کاتالاز ۸/۴۳ ± ۵/۲۷
(واده بر میلی‌گرم پروتئین)

گلوتاتیون پر پروپنتان
(نامول بر ۱۰۰ میلی‌گرم پروتئین)

مالان دی اتاندید ۸/۴۱ ± ۵/۳۳
(نامول بر ۱۰۰ میلی‌گرم پروتئین)

دی‌تیروزین ۷/۸۵ ± ۵/۱۱
(نامول بر ۱۰۰ میلی‌گرم پروتئین)

رانيکالیه آزاد کیسین ۸/۴۱ ± ۵/۳۳
(نسبت به گروه کنترل)

مقدار ب حسب میانگین ± انحراف معیاره.
بحث

هرتروماکروسیکلیک بررسی شده در این پژوهش، خود الیگومر از دو اکسان است که واحد بنیادی آن اکسیتیلن است. در این ترکیب گروه‌های شیمیایی همه‌وند سولونفوسیدی و آمید وجود دارد که بر خصوصیات شیمیایی آن تأثیر می‌گذارد. با توجه به نوع ساختار این مواد برای بررسی اثرات زیستی و کاربردهای بالینی آنها تلاش زیادی صورت گرفته است: ولی هیچ‌کان برای روشن شدن جنبه‌های مختلف اثرات آنها آزمایش‌های گوناگون انجام می‌گیرند.

در پژوهش حاضر [25] میکروگرم بر کیلوگرم وزن به عونان غله‌های LD تیمین شد. مزرعه موجود زندگی مربوط به سمت این ماده شیمیایی است. چنین اثر سببی از سایر کرونا اثر نیز ماه‌های گذشته بررسی شده با طبیعتی که در پروکاریوتات و بی‌کارپاتات‌ها حتی منجر به مزایای موردن آزمایش شده است. یک‌رده‌نامگان اعلام کرده‌اند که میزان غله‌های مزرعه اثرات سیمی و باعثه به نوع خاص دریافتی موجود در حلقه تاجی شکل ماده مصرفی و همین‌گونه بموقع سولیون بررسی شده وابسته به عونان است [26]. بررسی منابع، مکانیسم‌های مختلفی دارای اهداف سیستم‌شناسان داده‌ای که یکی از آنها، اثرات حاصل از افزایش رادیکال‌ها و سلول‌های آزاد در پاسخ به همین ماده به عنوان ماده گازنیوتیک کیت سلول‌های V79 و مشتقات شبیه به آن در سلول‌های W138 بوده است [27]. این مکانیسم از آنجا همان‌طور این مکانیسم که می‌تواند با عونان مدل مناسب در این گونه تحقیقات، موجودی هوازی بوده و بطور طبیعی مقدار کمی از "رادیکال‌های آزاد اکسیژنی" (Reactive Oxygen Species=ROS) ماده شیمیایی مورد استفاده در این پژوهش در بخش خارجی مولکول خود ویژگی لیپید دوستی دارد که به آن خصوصیت فوندوبندی چسبیده است یعنی زئیتی می‌دهد. همچنین داخل ساختار حل‌حای این توانایی جنب یون‌های فلزی دارد. بر این اساس پژوهش گران نشان داده‌اند در روابطی سلول‌ها با ترکیبات شیمیایی که دارای چنین خصوصیاتی هستند احتمال دارد که این ترکیبات با دخالت در فعالیت‌های طبیعی غشا یا شرکت در اندازه‌گیری عمر، تعداد غله‌های آنها را در دو سوی غشا به هم زندگی و یا با تأثیر غیرمستقیم بر واکنش‌های اکسیدانت‌ها، تعداد طبیعی به بین نمود از تجزیه "رادیکال‌های آزاد اکسیژنی" وجود دارد مختل کنند و از آن به بعد با افزایش میزان رادیکال‌های آزاد و تأثیرات تغییری بر مکرولیکون‌ها باعث بروز سمنت زیستی گردیده [29].

بر این اساس، به دنبال پژوهش حاضر پس از مشخص شدن سطح سرم LD ماده مورد نظر بررسی یک آزمایش میزان رادیکال‌های آزاد و تأثیرات تغییری بر مکرولیکون‌ها باعث بروز سمنت زیستی گردیده [29].

فراینده است که آن سبب‌ساز استیت‌های مشاهده شده این ماده می‌تواند مربوط به کارکرد تغییری "رادیکال‌های آزاد اکسیژنی" باشد؟ بررسی انجم شده نشان داد که ۴۴ ساعت پس از زمان تزریق ماده شیمیایی، مقدار رادیکال‌های آزاد اکسیژنی در خون موش‌ها در روتدی وابسته به غله‌های افزایش یافته و در غله‌های LD۲۵۰۰ میکروگرم بر
کیلوگرم وزن دنک که معادل LD50 بینان شده است. در بررسی آنان مکانیسم افزایش و تاثیر رادیکال‌های آزاد اکسیژنی در پاسخ به اثرات مواد شیمیایی برسی شده و بر اساس چنین بیان‌های نئودیمومی شکل‌گیری پیدا می‌کنند. این B پیشنهاد شد که مایل‌سازی که محصولات باقیمانده از این ترکیب‌ها به همراه جریان خون در سراسر بدن توزیع می‌شود. چنین فرایندهای نهایتاً منجر به آسیب‌آمیزی اند.
نیبوده است که بطور کامل مقادیر این بیمارکره‌ها را به‌طور حفظی برگرداند. از سوی دیگر، انتقال بخشی از این بیمارکره‌ها از بافت‌های مختلف به خون، منبع افزایش دهنده آنها در خون محيطی بوده است. در ایلید این موضوع معنا دارد که ایجاد نمونه‌های مختلف از این فعالیت‌های ادامه‌دار تحت تأثیر مواد شیمیایی منجر به تولید مقادیر مختلف از بیمارکره‌های تخربی اکسیداتیو شدند [37, 39]. بر این اساس در تحقیق حاضر، بررسی باقی‌مانده بیشتر در حداکثر دور قابل تحمل موشی‌ها را را در مدت یک هفته (1500) میکروگرم بر کیلوگرم وزن بدن، که کاهش معنی‌دار در حجم عده، تعداد سلول‌های لیپیدی، قطر لوله‌های منیساز، تعداد سلول‌های جنسی و سلول‌های پیش‌تر و آنها را شناساند دارد. در این بین، افزایش چشگیر و معنی‌دار آنزیم‌های آنتی‌کاسپتانت مشارکت در این است؛ بنابراین افزایش فعالیت آنها در حداکثر سطح کامل مانع این اسپیرو شود. احتمالاً بیمارکره‌های تخربی اکسیداتیو در این بیافت نیز ناشی از تأثیرات تخربی خاص اولیه رادیکال‌های آزاد اکسیدیزی بوده است. همچنین همانطور که پیش‌تر گفته شد، با ورود بخشی از بیمارکره‌ها به جریان خون، به طور غیرمستقیم از متابی‌الا فعال‌کننده میزان آنها در خون بوده است. در Filho و همکاران [39] و Habib و همکاران [38] تأیید گردید که مطالب منظوره در تحقیقات مشابهی که بدین‌سان [40] انجام داده‌اند، آماره‌ای که از آنها نشان داده‌اند پس از تولید رادیکال‌های آزاد اکسیدیزی می‌بایست، منعکس‌کننده مقادیر آنزیم‌های آنتی‌کاسپتانت افزایش نشان دادند و در پایان به دلیل کمیابی و اکتشاف‌های ترمیمی در این بیافت مقادیر چشگیری از بیمارکره‌های تخربی اکسیداتیو در حضور آنزیم‌های آنتی‌کاسپتانت موجود بوده‌اند.

هنگامی که بافت کبد ازبی‌شده، قد برحال بی‌پیشنهادی است. اثرات نامطلوب ماهیت درگیری در گرده یکم شده داشته‌اند، بنابراین پس از بیمارکره‌های تخربی اکسیداتیو نیز در بافت کبد تغییرات عمدی نشان ندادند. بر این اساس، احتمالاً باعث آنزیم‌های روی رادیکال‌های آزاد اکسیدیزی که به صورت افزایش فعالیت این آنزیم‌ها بروز گردید توانسته است در طی یک هفته از اثرات نامطلوب رادیکال‌های آزاد ایجاد شده جلوگیری کند. از سوی دیگر با دلیل دیگری به دلیل تغییرات چشگیر بافت کبد به عنوان جایگاه متلاژیسم مواد شیمیایی احتمالاً با متلاژیسم سریع ماده شیمیایی منجر به کاهش تأثیرات آن نسبت به بافت بیشتر شده است. مطلبي که در تحقیقات مختلف در زمینه تأثیر مواد شیمیایی مختلف بر بافت کبد بیان شده است [1] [31] [32].

در مجموع این تحقیق نشان داد که ماده شیمیایی بررسی شده توانایی تولید رادیکال‌های آزاد اکسیدیزی دارد و از طریق آن به واسطه تخربی اکسیداتیو لیپیدا و پروتوئین‌ها، اثرات سیمی خود را در غلظت‌های بالا بر بافت‌ها و نهایتاً موش‌های تیمار برجای گذاشته است. دخالت و تأثیر این مکروسوکولیک‌ها ممکن است به‌طور گسترده‌تر در بدن تولید شود.
حمل بولی و نفوذپذیری آن در غشاء‌های سلول که از خصوصیات دیگر ترکیبات مشابه آن است ارتباط داشته باشد. تغییر در ویژگی‌های فسفولیپیدهای غشا براثر پراکسیدازیون لیپیدی که شاهد آن افزایش مالون دی‌آکیدی است منجر به آن دست دادن ثبات و کارکرد طبیعی آن شده و آن هم منجر به افزایش نفوذپذیری غشا می‌شود که مجموعاً از عوامل مهم مارک سلولی هستند [۴۴]. از سوی دیگر، فضای داخل حلقه تاجی شکل این ماکروسیکلیک امکان اتصال به کلسیم و سدیم را دارد. پرون هایی که تغییر در تعادل غلتی آنها در سلول منجر به افزایش تولید رادیکال‌های آزاد اکسیژنی و به دنبال آن بروز سمیت و مارک سلولی می‌شود [۴۴]، [۴۴]، [۴۴]، [۴۴] یکی از آنها جایگزینی اگر چه این تحقیق بخشی از شواهد را برای تأیید تسا می‌کند، این ترکیب ماکروسیکلیک نشان داده با وجود این بررسی‌های بیشتری برای روش‌شندن مکانیسم‌های مرتبط با اثرات آن نیاز است.

منابع


