بررسی ریختن‌زاّی کانال‌های غضروفی

طاره فروتن: دانشگاه تربیت معلم
مجتبی رضازاده: دانشگاه تربیت مدرس

چکیده
در این پژوهش نسل مولکولی در ریختن‌زاّی کانال‌های غضروفی با استفاده از روش‌های هیستوپاتولوژیک و هیستوپاتولوژیک پس از اینکه کودن نم‌گذاری غضروفی نزدیک به جوجه در روز‌های 13 و 18 جنبه ویژه داشتند. پس از عمل فیکساسیون و دکلیفیکاسیون استخوان بی‌تیتان قطعات با اعداد H&E و کمرنگ، کریموس سو و اسید
فسفات محلول داده که ویژه‌های تبدیل شده و باعث استفاده از روش آمیزه‌های عصبی هستند و به
نظر میرسد که مولکولی می‌تواند عامل در مورفولوژی کانال‌های غضروفی دخیل درست و به
تشخیص نوع مولکولی استفاده از میکروسکوپ الکترونیکی ضروری به نظر میرسد.

مقدمه
در اغلب متون بافت‌شناسی غضروفی به عنوان بافتی بدون رگ توصیف می‌شود که غضروفی که غشای آن از طریق
انتشار مواد از رگ‌های پری‌کندروم به درون ماده بین‌بلیدی صورت می‌گیرد. عواملی که پیوسته‌گرایی وضعیت
این نظامی کانال‌های غضروفی را نیز به عنوان عامل غضروفی کننده غضروفی در نظر گرفته.
کانال‌های غضروفی بخش‌هایی از بافت غضروفی هستند که حداقل در مراحلی از زندگی موجود زنده می‌باشد
می‌شوند مجاری فوق عبارت از سیستم‌های پیچیده‌های وسیعی رگ‌ها و بافت‌های متشکلی
رشته‌ای اشغال شده‌اند. منشا ساختاری، عمل و مورفولوژی آنها موضوع بررسی‌های مختلف است و هنوز مورد
بحث است.

در مورد نحوه مورفولوژی این کانال‌ها نظریه مختلفی ارائه شده است. برخی معتقد به همکاری رگ‌ها و
باافت پری کندروم هستند به‌طور خلاصه گسترش و اندام پری کندروم به داخل غضروف را عامل مهم
مورفولوژی کانال‌های غضروفی نکرده‌اند. برخی دیگر فنیکس‌پیکت، سیستم‌های مختلف از جمله،
اندوزی ارزی و گوناگونی کنترول‌کننده، فیبرولایس و ... را عامل مورفولوژی کانال غضروفی ذکر می‌کنند.

نمره نیز عامل هورمونی مانند تیروکسین را در این مورد بی‌ثباتی نمی‌داند.

۱-Lochman ۲-Semithin section

دریافت ۸۵/۲۰۱۳ پنجره ۳۰/۲۰۱۳

۹۸۳
دبل gzip و همکارانش در سال 1991 طی چند آزمایش، نتایج خود را بیداری صورت گرفتند که سالمات غضروفی و محتوای پری کندروم، ساختمان‌های مجزا-ایزی از هم هستند، بنابراین کنار های فوق نمی‌تواند نتیجه امتداد یافته گزینه باشد. پژوهش‌گان مزبور طی آزمایش‌های دیگری در سال 1992 چنین نتیجه‌گیری کرده که هورمون بروکسین به تکامل سالمات غضروفی است. از آنجا که هورمون بروکسین به عنوان عامل بالای قرار مروگ سولی معرفی شده است، اشکال احتمالی داند که ردش کنال در ارتباط با پدیده مروگ سولی بریزه را باشد.

مواد و روش‌ها

تحم مرغ‌های نطفه در نزدیک آکن در حربت 5/0+ عددی گراد و رطوبت نسبی 50% اینکویه شدند.

برای دستیابی به اهداف پیش‌بینی شده در این تحقیق جنگلی‌های ترکیبی در روز‌های 13، 15 و 18 برای بررسی انتخاب شدند پس از خارج کردن جنگلی از تخم مرغ، اینفیز بالایی استخوان تیبیای پای راست آنها جدا شد و داخل فیسکاپ بونی فرآیند. پس از گذشت 24 ساعت عمل دکلزفیکاسیون به مخلوط ادینا، رضمنی به مدت 3 روز انجام گرفت. نمونه‌های دکلزفیکاسیون، با بارسوسیلون و آب جاری شستشو شدند و تا مرحله مشاهده با میکروسکوپ علی‌رغم آماده‌سازی و برریزی‌های تهیه شدند.

بررسی استخوان (شیمی‌محور) بطور مطلق تهیه شده و با روش‌های رنگ‌آمیزی هماوتکسیلین-آنوزین، تری کروماسون و فولگن رنگ‌آمیزی شدند. بررسی نیمه نازک با روش آبی تولوئیدین و آبی تولوئیدین ساخته شدند، نیمه‌های نیمه‌ای رنگ‌آمیزی شدند. بررسی نیمه نازک با روش‌های استخوانی میکروسکوپی به ضخامت یک میکرومتر تهیه و به وسیله فیسکاپسیون با گل‌ناریک‌ها و نیچه‌پوش‌های فیسکاپسیون آماده مراحل بعدی شد. مرحله نفوذ با اکسید بروئین، زرین با نسبت‌های 1/3‌不禁ش. برای بررسی فاکتورهای موجود در داخل کنال از تکنیک هستوپالیمیایی اسید سفتاز استفاده شد.

نتیجه‌گیری

بررسی میکروسکوپی با روش‌های رنگ‌آمیزی شده نشان داد که در اطراف سالمات غضروفی بخصوص در کنال‌هایی که در مراحل اندازی تشکیل یافته، سولی‌های با هسته تراکم و سیتوپلاسمی کاهش یافته، قطعات کوچکی از هسته و نیز سولی‌های که اجزای نازک‌تر شده‌ها در برگرفته‌اند، مشاهده می‌شود در زیر کنال‌هایی تولوئیدین-سافرازین، سه رنگ متمایز از هسته سولی‌های پیرامون کنال مشاهده شد. اکثر سولی‌های که گرمه‌ساز کنال‌هایی بودند، رنگ آبی بیشتر از خود نشان دادند سولی‌هایی که نسبت به کنال‌های بزرگتر بودند، رنگ قرمز و سولی‌های حداقلی نیز تا نوع سولی فوق تقیی مناسب رنگ قهوه‌ای را از خود نمایان کردند.

1-Delgado 2-Bouin 3-Feulgen

984
نکته قابل ذکر این است که در راس کانال‌ها و یا به عبارتی در مرحله آغاز تشکیل کانال‌های غضروفی ابتدایی ادامه چند کندروسیت نرم‌ال که مجموعه یک‌ویجی در روش‌هایی که به زمینه اصلی ایفای‌شده‌اند می‌دانند مشاهده شد و با این حال آن به‌طور جداگانه شاهد سلول‌های بودرم با هم‌رها متراکم و سیتون‌های گاهی باقی به مجموعه نزدیک می‌شوند (شکل ۸). استفاده از رنگ‌گامی تری کروماسون نشان داد که این نوع سلول‌های غضروفی احاطه کننده کانال در مناطقی که هسته‌های یپکتروزس فراوان‌تر بود، گسترش گیر و در مناطقی که این سلول‌ها از فراوانی کم‌تری برخوردار بودند، خود را واضح تر نشان می‌دادند (شکل ۷). شکل ۷(الف-خ) بهطور سریالی، گسترش کانال‌های غضروفی را تا پایان شکل نهایی آن نشان می‌دهد.

علاوه بر این که در اطراف کانال‌ها شاهد کانال‌های کاهش هسته و سیتون‌های تابعی و رنگ‌هایی قطعی شده‌اند آنها و تشکیل اجزای تری‌های مختلف بخاری سلول‌های مجاور کانال‌ها را عواملی از آنها به دو در کانال شدند، و البته سلول را که مشابه از وسیع‌تر شدن ارگان‌های سلولی است که در انتهای نشان می‌دهند (شکل ۲۰۲۱) با دنبال کردن سیر کانال‌ها، واکنش‌های یک‌پرگ‌های در داخل آنها ملاحظه شده‌اند (شکل ۲).

در بررسی هیستوپاتومگرافی، استفاده از تکنیک اسید سفات‌نیزی تشکیل داده که سلول‌های داخل و مجاور کانال‌های غضروفی مربوط به سلول‌های اطراف کانال و اکتش با پتری تنها به دو روش می‌دهد. مصالحی که به اکتش اسید سفات‌نیزی پاش می‌شود هم‌اکنون اغلب اعتبار منطقه بر محل سلول‌های جنگه، است ولی و نیز اندوتروم‌های موجود درکانال است (شکل ۹).

شکل ۱. مقطع عرضی کانال‌های غضروفی در ایبی‌فیز چنین ۳ روزه.

H&E: رنگ‌پذیری

ضخامت: ۵μm

پذیرش‌مانی: ×۱۰۰

شکل ۲. نزدیک شدن سلول‌های با مورفولوژی سلول‌های تازه به محل کانال در گسترش از ایبی‌فیز چنین نرم‌ال ۳ روزه.

شکل ۲. رنگ‌پذیری ایبی‌فیز چنین ۳ روزه.

ضخامت: ۱μm

پذیرش‌مانی: ×۲۰۰
ظاهره فروتن، مجتهي رضازاده

بررسی ربخنتی اتوماتیک عضروفي

شکل ۳. رنگامیزی فولگن. وجود سلول‌های با مورفولوژی سلول مردی را در اطراف کانال غضروفي ایجاد نموده (پیکان) در اطراف کانال‌هایی در حال تشکیل با خطر مرسد علیه بر این سلول‌ها کندرستی‌هایی که دارای واکنش بزرگی هستند نیز در حال ورود به داخل کانال هستند.

رنگامیزی: ای پلورین. سفارتین
ضخامت: ۱ μm
بزرگنمایی: ×۱۰۰۰

شکل ۴. مقدار تشکیل یک کانال غضروفي در ابتدا ادغام کندرسته‌هاي بافت غضروفي و اضافه شدن تدرجي سلول‌های با ظاهر سلول مردی به داخل آن‌ها مشاهده ميشود.

رنگامیزی: ای پلورین. سفارتین
بزرگنمایی: ×۵۰۰
ضخامت: ۱ μm
در این مطالعه به بررسی ۲ خوشه غضروفی از دو دروازه ناحیه پنجه در افراد ۷۸۹ ساله کوشیده شده است.

شکل ۱: تراکم کمتر غلاف فیبرئی غضروفی در مناطق که هسته‌های متراکم بیشتر دیده می‌شود. رنگ‌آمیزی: تری کروم مسون ضخامت: ۵ عضوی بزرگ‌نما: ۴۰۰×

شکل ۲: رنگ‌آمیزی مورفولوژیک این غضروفی از طریق رنگ‌آمیزی سریال ۵ میکرووی‌کی (الف، ب، ج). این دو کانال نازه تشکیل شده

(الف) افزایش تراکم هسته و کاهش سیتوپلاسم

(ب) سلول‌های جدید در اطراف

(ج) اضافه شدن یا گسترش ماترکس احاطه کننده کانال در مناطق مربوط به امتداد بافت همبند به طرف این مناطق.
بحث
کانال‌های غضروفی بحثی در خصوص در فرا‌آینده‌ای می‌چون تغییر ضعف و استخوان سازی ثانویه از اهمیت خاصی برخوردار هستند. در مورد نحوه مورفولوژی این کانال‌ها نظیر‌های مختلف مطرح شده است. دلگادو و همکاران (۱۹۹۲) در آزمایش‌های خود هورمون تیروکینین را برای تکامل کانال‌های غضروفی ضروری گزارش کردند. نیشیکاوا (۱۹۸۹) هورمون تیروکینین را از جمله عواملی ذکر کرد که برای اتفاق مرجی سلولی لازم است. دلگادو و همکاران در سال ۱۹۹۲ با توجه به مشاهدات خود در نتیجه اعمال تیروکینین روی ایپی‌فر استخوان تیپ‌ها (گسترش کانال‌های غضروفی را سبب کرده و به توجه به وجود ارتباط بین تیروکینین و القای مرجی سلولی، جنین احتمال داند که یکی از مرجی سلولی، عامل مورفولوژی کانال‌های غضروفی باشد. در پژوهش‌های انجام شده موردی باعث نشد که این احتمال را با تکثیف‌های نشان دهد. مرجی سلولی ثابت کن. در پژوهش حاضر با استفاده از چند تکثیف نشان دهنده مرجی سلولی بر آن شدید که احتمال وجود ارتباط بین مورفولوژی کانال‌های غضروفی و مرجی سلولی را به چین بیشتری تبدیل کنیم. مرجی سلولی جزئی اساسی در تکامل مهردانان، به‌خصوص در دوران جنین محسوب می‌شود، اولین گزارش در باره نقش مرجی سلولی در تکامل را در سال ۱۹۵۱ گلاسمن بین کرد. وتربیت فعالیت بیولوژیک، مرجی سلولی را به سه دسته مورفولوژیک، هستوزنیک و فیلوژنیک تقسیم کرد. مرجی سلولی مورفولوژیک را می‌توان به‌طور مشخص در شکل‌گیری انگشتان و کامپلاکس ماهی‌دهنده کرد. علاوه بر این مکانیسم‌های مورفولوژیک نسبتاً قطعی، مرجی سلولی در مراحل اولیه جنینی و در مراحل مورفولوژی ساختمانی های

\[\text{شکلا ۹} \text{ عکس مثبت اسید فسفات در ایپی فیز جنین.} \]

\[\text{شکلا} ۱۰ \text{ : رنگ‌آمیزی اسید فسفات.} \]

\[\text{شکلا} ۱۱ \text{ : پزشک‌ها M10.} \]

\[\text{ضخامت:} \]

\[\text{۱-Delgado} \quad \text{۲-Nishikawa} \quad \text{۳-Glusksman} \]

۹۸۸
زیادی مانند سیستم عصبی، چشم و اندامها مشاهده شده است. نتایج تحقیق حاضر نشان داد که علائم بر
ساسه نهایی ذکر شده مترکسل می‌باشد. گسترش مترکسل در مولفه‌های غذایی و درمانی نیز ایفای نقش می‌کند.

ویلی (1984) بی‌کی از روش‌های نشان‌دهنده مترکسل را را تغییرات هم‌اکنونی- انویژن می‌داند.
همچنین بهبود ویلی که در آن بررسی‌های جدیدی از کنترل‌های سرده و پاتل و هرده روستا یک با هم‌اکنونی- انویژن رانگ‌آمیزی شده برای مشاهده روش‌های نشان داد که هوشمندی به طرف کانال‌های غیرشروع نشان نیاز می‌ود. سلول‌ها ویژگی‌های ذکر شده در فوک را از خود نشان می‌دهند. به عبارت دیگر,

در مجازات کانال‌های اولیه قطعه قطعه قطعه شدن هسته به صورت دانه‌ای کوچک و تیره که به ویژگی‌های
سلول‌های مرده است، بدیهی می‌شود. سلول‌های در فوک و طی مترکسل شدن، نماس با سلول‌های مجاری را از دست
داده و اعتراف به در محیط کانال در مقایسه با مناطق دورتر، فضای حذف‌ساز سلول‌ها، و سبب پاتологی می‌رسد.

به نظر سنادر (1960) از انجمنی که بارزترین تغییرات درنژاتیو مترکسل در هسته صورت می‌گیرد و
رنگ‌آمیزی فولگر نیز رانگ‌آمیزی اختصاصی DNA است. از رانگ‌آمیزی فوک برای تأیید بیشتر یافته‌های
استفاده شد. گسترش سلول‌های مجار و کانال در طی این رانگ‌آمیزی رنگ قرمز تیره‌تر نسبت به اطراف از
خود نشان داد، ضمن اینکه فقط قطعه قطعات قطعه شدن هسته به صورت هنی ملاحظه شد هنی منابع این سلول‌ها
به رنگ‌آمیزی آبی تتواندین و سفراستین واکنش مشت نشان دادند. پارتمور و همکارانش در سال 1986
این رنگ‌آمیزی را به عنوان روشهای اکتیو و دیکرومیک برای اثبات مترکسل معرفی کردند. در طی این تحقیق,
برناره تیم‌مختار رنگ شده با روش فوک نشان داد که سلول‌های پیرامون کانال، دو رنگ متغیر آبی و
قرمزی از خود نشان می‌دهند. در واقع هسته‌های آبی نمایانگر سلول‌های مرده و رنگ قرمز نشان دهنده سلول‌های
سالم هستند. مکانیسم این تمایز رنگ بدنی ترتبی است که در مرحله اول رانگ‌آمیزی از آبی تتواندین به
سلول‌ها اعمال می‌شود و سلول‌های آبی به علت دو رنگ آبی تتواندین و سلول‌های سالم، پیوست است. در
مرحله دوم رانگ‌آمیزی با سفراستین، پیوست سلول‌های سالم با سفراستین جایگزین می‌شود. در نتیجه
سلول‌های زنده رنگ قرمز و سلول‌های مرده رنگ آبی از خود بروز می‌دهند.

بیون(1981) شواهد مختلفی از افزایش فعالیت انزیم‌های مخرب را از شروع مترکسل ذکر می‌کند.
مکانی که در این مورد، مخصوصاً اسید هیدروژن‌آمین اسید سفتازان را می‌توان نام برد. این تغییرات گرچه
اولین تغییرات تیزبدنی، اما اغلب از اسب‌های ساختگی بر مورد ژن‌ها یا میکوژن‌ها یا میکوژن‌ها
برای انتک‌های این موضوع شکل‌های اولیه نشان داد که
یک روند تدریجی را طی فرآیند مارگ سلولی می‌پیامده است. واکنش اسید سفتازان استفاده‌های کردنی. نتایج نشان داد که
با افزایش تنش، قطعه سفتاز شدن می‌تواند در سلول‌های تکاملی سفتاز در سلول‌های مشاهده شود. که این موضوع تأیید

دیگری بر نشان مارگ سلولی در مورفولوژی کانال‌های است.

بطور خلاصه نتایج حاصل از رنگ آمیزی‌های ذکر شده نشان داد که مشخصات سلول‌های مجاز
کانال‌های در حال گسترش و یا در مرحله شروع تشکیل کانال، مطالب با مشخصات سلول‌هایی است که تحت
عنوان سلول مرده معروف شده‌اند (با میکروسکوپ نوری). یعنی در ابتدا تغییرات بیشتر در کروماتین یا یک تغییر
قطعه شدن شده، منظور شدن سلول از دست دادن نفس سلول‌های مجاز و با پاک‌کردن قطعه طبیعه شدن هسته
همراه با استویالاسیم.

ما در مشاهده‌های خود مرحله انحلالی مارگ سلولی را که شامل دست دادن با رنگ‌دانه کروماتین و کربنگ
شدند است. ملاحظه نکنیدمک. در بیشتر فرآیندهای مارگ سلولی جنین، سلول‌های مرده به این مرحله آخر
نیم‌سردند: زیرا سلول‌های مجاز سالم در مراحل اویله دژرسنسان آنها را فاگوسیته می‌کند.

نتایج حاصل از این تحقیق گزارشی را که کل و همکارش در سال ۱۹۸۹ آن را ارائه کرده تأثیر نمی‌کند. ایشان
ضمن مقبسای کندروپسیه‌های مرحل مفصول و کندروپسیه‌های واقع در میکوت کانال غضروفی چنین اظهار داشتند
که در سطح مفصول کندروپسیه‌های دارای اندامه کچک، هسته مترک و تپه از نظر اندازه‌های سیتوپلاسمی
است اما در طول مرز کانال هوریکندروپسیه‌های داخل و خارج مرز همانند هم هستند.

تفاوت دیگری که بین نتایج تحقیق حاضر و نتایج بیهوراندان منجر و وجود دارد این است که ایشان انتقال
کندروپسیه‌های پرآورون کانال را به طرف داخل یک انحلال و عبور ناگهانی می‌دادند، در صورتی که یافته‌های ما
نشان داد که اولاً بیشتر سلول‌های مارگ کانال در حال گذراندن فرآیند مارگ سلولی هستند، ثانیاً این روند یک
روند تدریجی است. نه ناگهانی. مطلب دیگر اینکه ایشان برخی از سلول‌های داخل کانال را کندروپلاست تعريف
کردن که با شیوه یک لاکونیا اتصال و ارتباط خود را با کندروپسیه‌های دور کانال بنمایی می‌کنند. احتمالاً
بیشتر سلول‌هایی را که ایشان کندروپلاست نابی‌گذری کردن، کندروپسیه‌های هستند که در مراحل اویله مارگ
سلولی هستند.

در اطراف کانال‌های عضفی بیک غلاف‌های بیفیبری می‌توانند مشاهده شوند که میزان ترکم و پوستگی، آن
بستگی به نوع کانال غضروفی دارد؛ مثلاً کانال‌های عضفی دارای غلاف وپیچت و مارک‌پیچت هستند، اگر مارگ

۱-Cole

۹۹۰
سولولی را عامل عمده مفوروزن کانال‌های عضروی پدیدایم، گسترش مرگ سلولی در اطراف این کانال‌ها می‌باشد از کانالهای دیگر باشد یافت‌های ما نشان دهنده را تتأثیر می‌کرده. بنابراین، به میزان غلاف فیبرولیتی دور کانال و گسترش مرگ سلولی رابطه مستقیم مشاهده می‌شود و این موضوع مربوط با این واقعیت است که مواد فیبرولیتی رنگ‌دانی و مواد پیشک در جرایح‌های که مرگ سلولی وجود دارد (غشاء بین اندامشی جوجه واردکننده افزایش مرگ سلولی و پس‌روی پایین ترکیم این مواد افزایش می‌یابد[۸]).

یاماشیتا آن(۱۹۸۹) در بررسی‌های ایمنوهیستوپاتولوژی در عضروف افریقی و وجود انترکولین ۱ را در
کندروسیت‌های احاطه‌کننده کانال عضروی ثابت کرده است. با نگرش الیوت (۱۹۸۶) انترکولین ۱ سبب افزایش
تشکل آنزیم کلاژن و رابطه انتانگوستین را برقرار است. قیل‌اش اشاره کردم که شواهد گسترش‌های از افزایش فعالیت انزیم‌های
متحرک با خصوصیت اسید هیدرولیز اثبات سیستم‌های استروژن، کلاژن‌ها، برلیز مرگ سلولی وجود
دارد که نتایج مانند نشان‌گارنده از مراحل احاطه‌کننده کانال، رشته‌های
رشته‌های کلاژن این اثر سولولی مربوط به وارد شدن به داخل کانال و پس از آن برداشت با سولولی
فاقوسیت کندنند، بدست این شد بیور کندن.

منابع