Contractibility and idempotents in Banach algebras

R. Alizadeh: Amirkabir University of Technology

Abstract

Let \(A \) be a Banach algebra. It is shown that a contractible ideal of a Banach algebra is complemented by its annihilator. Then, it is proved the existence of minimal central idempotents in a contractible Banach algebra with a nonzero character. Moreover, the notion of b-contractibility and one of its equivalent forms are introduced. Through an example, it is shown that b-contractibility is strictly weaker than contractibility.

Introduction

Taylor in [13, Theorem 5.11] showed that a contractible Banach algebra with bounded approximation property is finite dimensional. Johnson in [6, Proposition 8.1] showed that a contractible commutative semisimple Banach algebra is finite dimensional. Curtis and Loy [1, Theorem 6.2] extended this result by dropping the semisimplicity assumption. But the question for noncommutative case has remained open. For more results of this type see [4], [5], [8], [10], [13].

This paper is organized as follows. In the second section, we show that a contractible ideal of a Banach algebra is controlled by its commutant and annihilator. Then, we prove the existence of minimal central idempotents in a contractible Banach algebra with a nonzero character. In the third section, we introduce a weaker version of contractibility which we call b-contractibility. We give a characterization of b-contractibility analog to that of contractibility given by Taylor. Also, we show that b-contractibility is strictly weaker than contractibility.

2000 Mathematics Subject Classification, 46H10, 46H20.

Key words: Contractible Banach algebras, Minimal idempotent.
First we recall some terminology. Throughout this paper, A is a Banach algebra and A-module means Banach A-bimodule. For a subset E of A, E^* is the commutant of E. If for every A-bimodule X every bounded derivation from A into X is inner, then A is called contractible. Also, the term "semisimple" means Jacobson semisimple.

An idempotent $e \in A$ is called minimal if eAe is a division ring. If e and f are idempotents in A, we write $e \leq f$ if $fe=ef=e$ holds. A nonzero idempotent $e \in A$ is called primitive if $0 \leq f \leq e$ implies that $f=0$ or $f=e$. Also, two idempotents e and f are said to be orthogonal if they satisfy $ef=fe=0$. Let S be a subset of A. The right annihilator of S in A which we denote by $\text{ran}(S)$ is the set

$$\text{ran}(S) = \{a \in A : ba = 0 \text{ for } b \in S\}.$$

The left annihilator $\text{lan}(S)$ is defined similarly. The annihilator of S is the set

$$\text{Ann}(S) = \text{ran}(S) \cap \text{lan}(S).$$

Contractibility

Theorem 2.1. Let A be a contractible Banach algebra which is an ideal in a Banach algebra B. Then $A + A^* = B$.

Proof. If $A + A^* \neq B$, then we can choose $b \in B - (A + A^*)$. Now define

$$D : A \to A, x \mapsto xb - bx.$$

Clearly D is a derivation on A. By assumption there exists an $a \in A$ such that $D(x) = xa - ax$ for all $x \in A$. The latter result implies that $b - a \in A^*$ or equivalently $b \in A + A^*$ which contradicts the selection of b. Therefore $A + A^* = B$.

Theorem 2.2. Let A be a contractible Banach algebra which is an ideal in a Banach algebra B. Then $B = A \oplus \text{Ann}(A)$.

Proof. Since A is contractible then $M_2(A)$ with l^1-norm is contractible, where $M_2(A)$ is the algebra of 2×2 matrices with the entries from A. On the other hand $M_2(A)$ is an ideal in $M_2(B)$ and by Theorem 2.1 we have the equality $M_2(B) = M_2(A) + M_2(A)^*$. One can easily observe that
Thus $B = A + \text{Ann}(A)$. But $A \cap \text{Ann}(A) = 0$, because A is unital. Therefore the identity $B = A \oplus \text{Ann}(A)$ holds.

Remark. In Theorems 2.1 and 2.2, A and B are related only algebraically. Indeed if there exists an infinite dimensional contractible Banach algebra A which is an ideal in a Banach algebra B, then the norm topology of A could be different from the relative norm topology of A which inherits from B.

Theorem 2.3. Let A be a contractible Banach algebra which admits a nonzero multiplicative linear functional f. Then A contains a central minimal idempotent.

Proof. Let $d = \sum_{n=1}^{\infty} a_n \otimes b_n$ be a diagonal for A and define

$$T: A \rightarrow a \mapsto \sum_{n=1}^{\infty} < f, aa_n > b_n.$$

Since $\sum_{n} a_n b_n = 1$, then

$$< f, T(1) > = \sum_{n} < f, a_n b_n > = \sum_{n} < f, a_n > < f, b_n >$$

$$= \sum_{n} < f, a_n b_n > = \sum_{n} a_n b_n = 1.$$

Thus $T(1) \neq 0$. Moreover for every $a \in A$ and $g, h \in A^*$ we have

$$< h, \sum_{n} < g, aa_n > b_n > = \sum_{n} < g, aa_n > < h, b_n > = < g \otimes h, \sum_{n} a_n b_n > = \sum_{n} < g, a_n > < h, b_n > = < h, \sum_{n} < g, a_n > b_n >.$$

This implies that

$$\sum_{n} < g, aa_n > b_n = \sum_{n} < g, a_n > b_n a.$$

Thus we assume that

$$T(1) = e,$$ then we have $T(a) = \sum_{n} < f, aa_n > b_n = \sum_{n} < f, a_n > b_n a = ea$. On the other hand we have $T(a) = \sum_{n} < f, aa_n > b_n = < f, a > \sum_{n} < f, a_n > b_n = < f, a > e$. Hence T is an operator of rank one and $e^2 = T(e) = < f, e > e = e$. Now define

$$T_1: A \rightarrow A, a \mapsto \sum_{n} a_n < f, aa_n >.$$
With a similar argument we can show that
\[T_i(a) = ae^r = \langle f, a > e^r \quad a \in A \]
where \(e^r = T_i(1) \). Also we have \(e^{r2} = e^r \) and \(\langle f, e^r > = 1 \). Now the identities
\[ee^r = \langle f, e^r > e = e, \quad ee^r = \langle f, e > e^r = e^r \]
imply that \(e = e^r \) and for every \(a \in A \) we have
\[ea = \langle f, a > e = \langle f, a > e^r = ae^r = ae. \]

Therefore \(e \) is a central idempotent. In addition since \(T \) is a rank one operator and \(ranT = eAe \) , then \(eA = eAe = Ce \) is a division ring. Therefore \(e \) is a minimal idempotent.

b-Contractibility

Definition. Let \(A \) be a Banach algebra and \(\pi \) be the natural map,
\[\pi : A \otimes A \rightarrow A, \quad \pi \left(\sum a_n \otimes b_n \right) = \sum a_n b_n. \]

Let \(b \in A \) and \(X \) be an \(A \)-module. We say that a derivation \(\delta : A \rightarrow X \) is a \(b \)-derivation if there exists another derivation \(\delta' : A \rightarrow X \) such that \(\delta = b\delta' \), where \((b\delta')(a) = b\delta'(a) \). Also we say that \(A \) is \(b \)-contractible if for every \(A \)-module \(X \), every bounded \(b \)-derivation from \(A \) into \(X \) is inner. We call \(d \in \hat{A} \otimes A \) a \(b \)-diagonal if \(\pi(d) = b \) and \(a.d = d.a \) for all \(a \in A \).

Theorem 3.1. Let \(A \) be a unital Banach algebra and \(b \in A' - \{0\} \). Then \(A \) is \(b \)-contractible if and only if \(A \) has a \(b \)-diagonal.

Proof. First suppose \(A \) is \(b \)-contractible and \(\pi \) is defined as above. Clearly \(\ker \pi \) is an \(A \)-module and if we define
\[\delta : A \rightarrow \ker \pi, a \mapsto ab \otimes 1 - b \otimes a \]
then it is easy to see that \(\delta \) is a \(b \)-derivation. Indeed \(\delta = b\delta' \) where
\[\delta' : A \rightarrow \ker \pi, a \mapsto a \otimes 1 - 1 \otimes a \]
ince \(A \) is \(b \)-contractible, then there exists an element \(\sum c_n \otimes d_n \in \ker \pi \) such that
\[\delta(a) = \sum a_c \otimes d_n - \sum c_n \otimes d_n a \quad a \in A. \]
Let \(d = b \otimes 1 - \sum_n e_n \otimes d_n \). The above identities show that \(\pi(d) = b \) and \(a.d = d.a \) for all \(a \in A \). Therefore, \(d \) is a \(b \)-diagonal for \(A \).

Conversely suppose \(d = \sum_n a_n \otimes b_n \) is a \(b \)-diagonal for \(A \), \(X \) is an \(A \)-module and \(\delta : A \rightarrow X \) is a bounded derivation. Clearly the map

\[\psi : A \times A \rightarrow X, (a, c) \mapsto a\delta(c) \]

is a bounded bilinear map. So by the universal property of projective tensor product there is a linear map \(\varphi : A \hat{\otimes} A \rightarrow X \) such that \(\varphi \circ \otimes = \psi \) that is \(\varphi(a \otimes c) = a\delta(c) \). In particular using the fact that \(d \) is a \(b \)-diagonal for \(A \), we get

\[\sum_n a_n \delta(b_n) = \varphi(a.d) = \varphi(d.a) = \sum_n a_n \delta(b_n a), \quad a \in A. \]

Now if \(x = \sum_n a_n \delta(b_n) \), then for every \(a \in A \) we have

\[ax - xa = \sum_n a_n \delta(b_n) - \sum_n a_n \delta(b_n) a = \sum_n a_n \delta(b_n) + b\delta(a) - \sum_n a_n \delta(b_n a). \]

Thus the identity \(ax - xa = b\delta(a) \) holds for every \(a \in A \). Therefore every \(b \)-derivation is inner.

Example 3.2. Let \(A \) be the Banach algebra \(l_1(N) \) with pointwise multiplication and \(\{e_n\} \) be the standard basis for \(A \). Then for every positive integer \(n \), \(A \) is \(e_n \)-contractible. Indeed \(e_n \otimes e_n \) is an \(e_n \)-diagonal for \(A \). But \(A \) is not contractible, since it is not unital.

Therefore \(b \)-contractibility does not imply contractibility.

Remark. If \(A \) is contractible, then it is unital and one can easily observe that \(A \) is \(b \)-contractible for every \(b \in A - \{0\} \). However the above example shows that for non-unital Banach algebras the converse is not true. We do not know whether this is true for unital Banach algebras or not.

Problem. Does there exist a unital Banach algebra which is \(b \)-contractible for some nonzero central idempotent \(b \), but is not contractible?

References

